导数及偏导数的计算
偏导数与方向导数的计算与应用
偏导数与方向导数的计算与应用导数是微分学中的重要概念,它不仅可以对函数进行切线的斜率计算,还可以对多元函数进行求导运算。
在多元函数中,偏导数和方向导数是导数的两种常见形式。
本文将介绍偏导数和方向导数的计算方法,并讨论它们在实际应用中的作用。
一、偏导数的计算方法偏导数是多元函数在某个指定变量上的导数。
它的计算方法与普通函数的导数类似,只需将其他变量视为常数进行求导即可。
例如,对于二元函数f(x, y),要计算其对x的偏导数∂f/∂x,可以视y为常数,将f(x, y)作为只与x有关的函数进行求导。
同样地,计算其对y的偏导数∂f/∂y时,将x视为常数进行求导。
对于多元函数而言,偏导数可以存在多个,每个偏导数都表示函数在不同变量上的变化率。
通过偏导数的计算,可以得到函数在各个方向上的斜率信息,进而分析函数对各个变量的依赖程度。
二、方向导数的计算方法方向导数是多元函数在某个指定方向上的导数。
它表示函数在该方向上的变化率。
设函数为f(x, y, z),要计算在点P(x0, y0, z0)处沿着向量u=(a, b, c)的方向导数,可以按照以下步骤进行计算。
1. 求出点P的梯度向量∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)。
2. 计算向量u与梯度向量的内积,即求出u与∇f的点积:u·∇f =a(∂f/∂x) + b(∂f/∂y) + c(∂f/∂z)。
3. 将点积的结果与向量u的模长相乘,得到方向导数的值:Duf = u·∇f × ||u||,其中||u||表示向量u的模长。
通过计算方向导数,我们可以研究函数在某个特定方向上的变化情况。
方向导数的大小和正负表明了函数增长或减少的趋势,对于优化问题和梯度下降算法等有重要应用价值。
三、偏导数和方向导数的应用偏导数和方向导数在数学和物理学中有广泛的应用,以下是其中的几个典型例子:1. 函数极值的判定:通过计算偏导数,可以找到多元函数的极值点。
多元函数的偏导数与方向导数
多元函数的偏导数与方向导数在数学中,多元函数是指有多个自变量的函数。
对于多元函数,我们可以研究其导数和方向导数来揭示函数的性质和变化规律。
本文将介绍多元函数的偏导数和方向导数的概念及其计算方法,并通过具体的例子进行解析。
一、多元函数的偏导数偏导数是多元函数在某一变量上的导数。
对于一个具有n个自变量的函数f(x1, x2, ..., xn),它的偏导数可以表示为∂f/∂xi(i=1, 2, ..., n),表示在其他自变量保持不变的条件下,函数对第i个自变量的变化率。
注意,偏导数只关心某一变量的变化对函数的影响,而其他变量视为常数。
计算多元函数的偏导数时,可以按照每个自变量单独求导的方式进行,即将其他自变量视为常数进行计算。
最终的偏导数结果是一个函数,而不是一个具体的数值。
例如,对于函数f(x, y) = x^2 + 2xy + y^2,我们可以计算出∂f/∂x = 2x + 2y,∂f/∂y = 2x + 2y。
二、方向导数方向导数是多元函数在给定方向上的变化率。
对于一个具有n个自变量的函数f(x1, x2, ..., xn),在点(x0, y0, ..., zn)沿着向量u=(u1, u2, ..., un)的方向上的方向导数可以表示为∂f/∂u = ∇f · u,其中∇f表示函数f的梯度(即所有偏导数的向量),u表示单位向量。
计算函数沿给定方向的方向导数时,首先需要计算函数的梯度∇f,然后再与给定方向向量u进行点乘,得到方向导数的值。
例如,对于函数f(x, y) = x^2 + 2xy + y^2,在点(1, 2)处沿着向量u=(2, 1)的方向上的方向导数可以表示为∂f(u)/∂u = ∇f(1, 2) · (2, 1) = 10。
三、应用实例下面我们通过实例来进一步理解偏导数和方向导数在多元函数中的应用。
例1:考虑函数f(x, y) = x^3 + 3xy^2,求其在点(1, 2)处的偏导数和沿着向量u=(1, 2)的方向导数。
偏导数的定义与计算方法
偏导数的定义与计算方法偏导数是数学中的一个重要概念。
它可以在多变量函数中反映出每个变量对函数的影响程度。
偏导数的计算方法和一元函数的导数有所不同,下面将详细介绍偏导数的定义、性质以及计算方法。
一、偏导数的定义在多元函数中,每个自变量的取值都会影响函数值的大小。
因此,在计算偏导数时,需要将其他自变量看作常数,只考虑某一个自变量对函数的影响。
对于一个函数f(x1,x2,...xn),对于自变量xi的偏导数定义为:∂f/∂xi=lim (Δxi→0) (f(x1,x2,...,xi+Δxi,...xn)-f(x1,x2,...,xi,...xn))/Δxi其中,Δxi表示自变量xi的增量,是一个很小的数。
当Δxi趋近于0时,称之为f对xi的偏导数。
二、偏导数的性质1. 偏导数存在性对于连续的多元函数,偏导数一定存在。
但对于非连续的函数,偏导数可能不存在。
2. 二阶偏导数如果一个函数的一阶偏导数存在,则可以进行二次偏导数的计算。
二次偏导数的计算方法和一次偏导数类似,只需要在一次偏导数的式子中再次取偏导数即可。
3. 高阶偏导数类似于二次偏导数,多元函数的任意阶偏导数也可以进行计算。
高阶偏导数的符号和计算方法与一阶偏导数相同。
4. 取偏导数的顺序不同的偏导数的计算顺序有可能会影响计算结果。
例如,f(x,y)=x^2y^2,如果先对x求偏导数,再对y求偏导数,得到的结果为:∂f/∂x=2xy^2,∂f/∂y=2x^2y如果先对y求偏导数,再对x求偏导数,得到的结果为:∂f/∂y=2xy^2,∂f/∂x=2x^2y由于偏导数的计算顺序不同,导致结果也不同。
因此,在取偏导数时,需要注意顺序。
三、偏导数的计算方法1. 公式法偏导数的计算可以使用公式法。
首先需要将待求的函数f(x1,x2,...xn)展开为多项式形式,然后按照偏导数的定义进行计算。
例如,对于函数f(x,y)=x^2+y^2,需要求∂f/∂x和∂f/∂y。
多元函数的偏导数与方向导数计算
多元函数的偏导数与方向导数计算在多元函数中,偏导数与方向导数是常用的求导工具,可以帮助我们研究函数在不同方向上的变化率和导数值。
本文将介绍计算多元函数的偏导数和方向导数的方法和公式,并通过实例进行说明。
一、多元函数的偏导数多元函数是指含有多个自变量的函数,其偏导数表示在各个自变量上的变化率。
1. 一阶偏导数对于二元函数 $z = f(x, y)$,其一阶偏导数表示对每个自变量的偏导数值。
分别记作 $\frac{{\partial z}}{{\partial x}}$ 和 $\frac{{\partial z}}{{\partial y}}$,计算方法如下:$$\frac{{\partial z}}{{\partial x}} = \lim_{{\Delta x \to 0}} \frac{{f(x + \Delta x, y) - f(x, y)}}{{\Delta x}}$$$$\frac{{\partial z}}{{\partial y}} = \lim_{{\Delta y \to 0}} \frac{{f(x, y + \Delta y) - f(x, y)}}{{\Delta y}}$$2. 高阶偏导数如果一阶偏导数存在,我们还可以继续求解二阶、三阶乃至更高阶的偏导数。
对于二阶偏导数,我们可以通过对一阶偏导数再次求导得到,记作 $\frac{{\partial^2 z}}{{\partial x^2}}$、$\frac{{\partial^2 z}}{{\partial x \partial y}}$ 和 $\frac{{\partial^2 z}}{{\partial y^2}}$。
计算方法如下:$$\frac{{\partial^2 z}}{{\partial x^2}} = \frac{{\partial}}{{\partial x}} \left(\frac{{\partial z}}{{\partial x}}\right)$$$$\frac{{\partial^2 z}}{{\partial x \partial y}} =\frac{{\partial}}{{\partial x}} \left(\frac{{\partial z}}{{\partial y}}\right)$$$$\frac{{\partial^2 z}}{{\partial y^2}} = \frac{{\partial}}{{\partial y}} \left(\frac{{\partial z}}{{\partial y}}\right)$$二、多元函数的方向导数方向导数表示函数在某个方向上的变化率,是由函数的梯度(gradient)来表示的。
导数及偏导数的计算
偏导数在优化问题中的应用
总结词
偏导数可以用于求解约束优化问题,通过求偏导数并找到使目标函数取得极值的点,可以确定最优解 。
详细描述
在约束优化问题中,如果目标函数具有多个变量,则可以通过求偏导数并找到使目标函数取得极值的 点,从而确定最优解。偏导数的应用在多变量函数优化问题中具有广泛的应用价值。
THANKS.
导数在极值问题中的应用
总结词
导数可以用于求解函数的极值,通过求导数并找到导 数为零的点,然后分析该点附近的函数值变化情况, 可以确定函数的极值。
详细描述
如果一个函数在某一点的导数为零,且该点附近左侧 导数大于零、右侧导数小于零,则该点为函数的极大 值点;反之,则为极小值点。因此,通过求函数的导 数并找到导数为零的点,可以求解函数的极值。
幂函数求导法则
总结词
幂函数求导的常用方法。
详细描述
幂函数求导法则指出,对于幂函数$f(x) = x^n$,其导数为$f'(x) = nx^{n-1}$。此外, 对于复合幂函数,如$f(x) = (g(x))^n$,其导
数可以通过链式法则和幂函数求导法则进行 计算。
偏导数的定义与性质
03
偏导数的定义
复合函数求导法则
总结词
通过复合函数的导数计算方法。
详细描述
复合函数的导数可以通过链式法则进行计算。对于复合函数$f(g(x))$,其导数为 $f'(g(x)) cdot g'(x)$,其中$f'(g(x))$表示函数$f$关于$g(x)$的导数,$g'(x)$表示函
数$g$关于$x$的导数。
链式法则
导数的计算方法
02
定义法
总结词
偏导数与方向导数
偏导数与方向导数偏导数和方向导数是微积分中的重要概念,用于描述函数在某一点的变化率和方向性。
在本文中,我们将介绍偏导数和方向导数的定义、计算方法以及它们在实际问题中的应用。
一、偏导数的定义和计算方法偏导数是多元函数在某一点上对某个变量的偏导数。
对于一个函数f(x1, x2, ..., xn),它的偏导数可以表示为∂f/∂xi,其中∂表示偏导数的符号,f表示函数,xi表示自变量。
偏导数的计算方法与一元函数的导数类似,只需将其他变量视为常数,对某个变量求导即可。
例如,对于函数f(x, y) = x^2 + 2xy + y^2,我们可以分别计算∂f/∂x和∂f/∂y。
计算∂f/∂x时,将y视为常数,对x求导,得到2x + 2y。
同理,计算∂f/∂y时,将x视为常数,对y求导,得到2x + 2y。
因此,函数f(x, y)的偏导数为∂f/∂x = 2x + 2y,∂f/∂y = 2x + 2y。
二、方向导数的定义和计算方法方向导数是多元函数在某一点上沿着某个方向的变化率。
对于一个函数f(x1, x2, ..., xn),它的方向导数可以表示为∇f·u,其中∇f表示函数f的梯度,u表示方向向量。
方向导数的计算方法可以通过梯度向量和方向向量的点积来实现。
梯度向量∇f表示函数在某一点上的变化率最大的方向,它的计算方法为∇f = (∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn)。
例如,对于函数f(x, y) = x^2 + 2xy + y^2,在点(1, 2)处的方向导数可以表示为∇f(1, 2)·u,其中∇f(1, 2) = (4, 6)。
如果方向向量u为(1, 1),则方向导数为(4, 6)·(1, 1) = 10。
这表示在点(1, 2)处沿着方向(1, 1)的变化率为10。
三、偏导数和方向导数的应用偏导数和方向导数在实际问题中有广泛的应用。
以下是一些常见的应用场景:1. 最优化问题:偏导数可以用于求解多元函数的最大值和最小值。
多元函数求导法则公式
多元函数求导法则公式1.偏导数:偏导数是多元函数在其中一点上对其中一个自变量的导数,可以通过对该自变量求导来得到。
偏导数的计算方法与一元函数的导数计算类似,只需要将其他自变量视为常数。
记多元函数为f(x1, x2, ..., xn),则对第i个自变量的偏导数表示为∂f/∂xi。
具体的计算公式如下:- 对于常数函数:如果f(x1, x2, ..., xn) = C,则对任何xi,偏导数都是0。
- 对于一次多项式函数:如果f(x1, x2, ..., xn) = a1x1 + a2x2+ ... + anx_n,则对任何xi,∂f/∂xi = ai。
- 对于乘积函数:如果f(x1, x2, ..., xn) = g(x1, x2, ...,xn)h(x1, x2, ..., xn),则对任何xi,有∂f/∂xi = h(x1, x2, ..., xn) * (∂g/∂xi) + g(x1, x2, ..., xn) * (∂h/∂xi)。
2.全微分:全微分是多元函数在其中一点上沿所有自变量变化时的变化率,由偏导数组成的线性函数。
全微分的符号为df。
记多元函数为f(x1, x2, ..., xn),则全微分表示为df = ∂f/∂x1 dx1 + ∂f/∂x2 dx2 + ... + ∂f/∂xn dxn。
3.链式法则:链式法则是多元函数求导中经常使用的方法,用于计算复合函数的导数。
假设有两个函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数可以通过链式法则计算。
具体公式如下:dy/dx = (dy/du) * (du/dx)4.高阶偏导数:高阶偏导数指的是对多元函数的偏导数再次求导的过程。
对于二阶偏导数,可以通过对一级偏导数再次求导得到。
具体的计算方法为,先计算一级偏导数,然后对一级偏导数再次求导。
记二阶偏导数为∂²f/∂x²,则有∂²f/∂x²=∂/∂x(∂f/∂x)5.性质:多元函数的偏导数遵循以下性质:-对自变量求偏导,得到的结果是一个函数。
导数和偏导公式
导数和偏导公式
导数公式:
在微积分中,导数是描述函数变化率的重要概念。
给定函数f(x),其导数可以表示为:
$f'(x)=\lim\limits_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
其中,h是一个无限小的偏移量,表示x点处的邻域。
上式表示的是函数f(x)在x处的即时变化率。
偏导公式:
在多元函数中,偏导数是描述函数变化率的概念。
偏导数指的是当函数f(x1,x2,...,xn)在其中一个自变量上发生微小变化时,其因变量的变化率。
如果将x1固定,仅考虑x2,x3,...,xn的变化,那么f对x1的偏导数即为:
$\frac{\partial f}{\partial x_1}=\lim\limits_{h\rightarrow
0}\frac{f(x_1+h,x_2,...,x_n)-f(x_1,x_2,...,x_n)}{h}$
类似地,如果将其他变量固定,仅考虑某一个变量的变化,那么偏导数的计算方法也相同。
在多元函数中,偏导数可以表示为梯度向量的分量,即:
$\nabla f=(\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2},...,\frac{\partial f}{\partial x_n})$。
高等数学8-2偏导数
内容小结
1. 偏导数的概念及有关结论
• 定义; 记号; 几何意义
• 函数在一点偏导数存在
函数在此点连续
• 混合偏导数连续
与求导顺序无关
2. 偏导数的计算方法
先代后求
• 求一点处偏导数的方法 先求后代 利用定义
• 求高阶偏导数的方法
逐次求导法
(与求导顺序无关时, 应选择方便的求导顺序)
31
思考与练习 P73 题 5 , 6
d dy
f
(0,
y)
y
0
32
P73 题6
(1)
z x
x
1 y2
,
z y
x
2y y2
2z x2
(x
1 y2
)2
,
2z x y
(x
2y y2
)2
,
2z y2
2(x y2 ) (x y2)2
(2) z yx y1, z x y ln x
z f (x, y) 由一x 元 x函 数导
数的几何意义:
x
z
= tan
y
M
0
x =x0 (x , y )
.
y
.
19
几何意义: 偏导数 f x ( x0 , y0 )就是曲面被平面 y y0所截得 的曲线在点M0处的切线M0Tx对 x轴的斜率. 偏导数 f y ( x0 , y0 )就是曲面被平面 x x0所截得 的曲线在点M0处的切线M0Ty对 y轴的斜率.
fx (x, y)
y
x4
4x2y2 (x2 y2)2
高数第二节:偏导数
fx (x, y)
y( x2 y2 ) 2x xy (x2 y2)2
y( y2 x2) ( x2 y2 )2 ,
由对称性得
fy(x, y)
x(x2 y2) ( x2 y2 )2 ,
xy
例5
设
f
( x,
y)
x
2
y2
0
求 f ( x, y)的偏导数.
( x, y) (0,0) ( x, y) (0,0)
考虑二元函数 z = f ( x , y ) 若将 y 固定(看作常量),则它成为一个关于 x 的 一元函数,可将其对 x 求导。
这个关于 x 的一元函数对 x 的导数,称为二元函数 z = f (x , y ) 关于 x 的偏导数
同理,可定义 z = f ( x , y ) 关于 y 的偏导数。
u beax sin by; y
2u x 2
a 2e ax
cos
by,
2u y2
b2eax
cos
by,
2u abeax sin by, 2u abeax sin by.
xy
yx
2u 2u xy yx
问题: 混合偏导数一定相等吗?
x3y
例
8
设
f
(
x,
y)
x2
y2
0
( x, y) (0,0) ( x, y) (0,0)
证
z yx y1,
x
z x y ln x, y
x z 1 z x yx y1 1 x y ln x
y x ln x y y
ln x
x y x y 2z.
原结论成立.
例 3 设 z arcsin x ,求 z , z .
2偏导数一、偏导数的定义及其计算
证
p
=
RT V
⇒
∂p ∂V
=
−
RT V2 ;
V = RT ⇒ ∂V = R; p ∂T p
T
=
pV R
⇒
∂T ∂p
=V; R
∂p ∂V
⋅
∂V ∂T
⋅
∂T ∂p
=
−
RT V2
⋅ R ⋅V = − RT p R pV
= −1.
注: 请同学们把上述结果与一元函数导数的 相应结果作一个比较.
=
3×1+ 2×2 =
7.
例 2 设z = x y ( x > 0, x ≠ 1), 求证 x ∂z + 1 ∂z = 2z . y ∂x ln x ∂y
证
∂z = yx y−1,
∂x
∂z = x y ln x, ∂y
x ∂z + 1 ∂z = x yx y−1 + 1 x y ln x
y ∂x ln x ∂y y
∂x
∂y
∂2z ∂x 2
=
6 xy2 ,
∂2z ∂y∂x = 6x2 y − 9 y2 − 1.
∂2z ∂x∂y = 6 x2 y − 9 y2 − 1,
∂2z ∂y 2
=
2x3
−
18 xy;
∂3z ∂x 3
=
6
y2,
例 7 设u = eax cos by ,求二阶偏导数.
解
∂u ∂x
=
ae ax
y)
=
⎪ ⎨
(
x
2
+
y2 )2
⎪⎩0
( x, y) ≠ (0,0) .
偏导数的运算公式大全
偏导数的运算公式大全偏导数是多元函数在某一点上对某个自变量的偏导数,其运算公式包括以下几种情况:1. 对于二元函数f(x, y),偏导数的计算公式为:∂f/∂x = lim(Δx→0) [f(x+Δx, y) f(x, y)] / Δx.∂f/∂y = lim(Δy→0) [f(x, y+Δy) f(x, y)] / Δy.2. 对于多元函数f(x1, x2, ..., xn),偏导数的计算公式为:∂f/∂xi = lim(Δxi→0) [f(x1, x2, ..., xi+Δxi, ..., xn) f(x1, x2, ..., xn)] / Δxi.3. 常见函数的偏导数运算公式包括:对于幂函数f(x, y) = x^n,有∂f/∂x = nx^(n-1),∂f/∂y = 0。
对于指数函数f(x, y) = e^x,有∂f/∂x = e^x,∂f/∂y = 0。
对于对数函数f(x, y) = ln(x),有∂f/∂x = 1/x,∂f/∂y = 0。
对于三角函数f(x, y) = sin(x),有∂f/∂x = cos(x),∂f/∂y = 0。
对于反三角函数f(x, y) = arcsin(x),有∂f/∂x =1/√(1-x^2),∂f/∂y = 0。
4. 链式法则是计算复合函数偏导数的重要工具,其公式为:若z=f(x, y),x=g(u, v),y=h(u, v),则∂z/∂u = (∂z/∂x)(∂x/∂u) + (∂z/∂y)(∂y/∂u)。
∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v)。
5. 混合偏导数的计算公式为:若f(x, y)具有连续的偏导数,那么∂^2f/∂x∂y =∂^2f/∂y∂x.以上是偏导数的运算公式的一些常见情况,希望可以帮助到你。
如果你有其他问题,欢迎继续提问。
导数四则运算法则
意义是曲线 y = f (x) 在点 (x0 , y0) 处切线的斜率, 而二元函数 z = f ( x , y ) 在点( x0 , y0) 处的偏导数, 实际上就是一元函数 z = f ( x , y0) 及 z = f (x0 , y ) 分别在点 x = x0 及 y = y0 处的导数.因此二元函 数 z = f (x , y) 的偏导数的几何意义 也是曲线切线 的斜率.
x 0 x
x 0 x x 0 x x 0
u (x )v (x ) u (x )v (x ).
推论 1 (cu(x)) = cu(x) (c 为常数).
推论 2
1 u( x)
u( x) u2(x) .
例 1 设 f (x) = 3x4 – ex + 5cos x - 1,求 f (x) 及 f (0).
第三章 函数的微分学
第二节 导数的四则运算法则
一、导数的四则运算 二、偏导数的求法
一、导数的四则运算
定理 1 设函数 u(x)、v(x) 在 x 处可导,
则它们的和、差、积与商 v(x) (u(x) 0) u(x)
在 x 处也可导,且
(u(x) v(x)) = u(x) v (x);
另外可求得
(arcsin x) 1 , 1 x2
(arccos x) 1 , 1 x2
(arctan
x)
1
1 x2
,
(arc
cot
x)
1
1 x2
.
(以后补证)
一、偏导数的求法
例 6 求 函 zx数 23x y2y3 在点 (2 , 1) 处
偏导数的定义与计算方法
偏导数的定义与计算方法偏导数是微积分中的一个重要概念,用于计算多元函数在某一点上的变化率。
它是指在多元函数中,对某一变量求导时,将其他变量视为常数进行求导的过程。
一、偏导数的定义对于一个函数f(x1, x2, ..., xn),其中x1, x2, ..., xn为自变量,f为因变量,偏导数表示函数f对其中一个自变量的变化率。
用∂表示偏导数,∂f/∂xi表示f对第i个自变量的偏导数。
在一元函数中,偏导数即为常见的导数。
二、偏导数的计算方法1. 一元函数的偏导数对于只含有一个自变量的函数f(x),其偏导数即为一元函数的导数,计算方法为:∂f/∂x = lim(Δx->0) [f(x+Δx) - f(x)] / Δx在计算过程中,将除数Δx趋近于0,求出极限值即可得到偏导数的值。
2. 多元函数的偏导数对于含有多个自变量的函数f(x1, x2, ..., xn),计算偏导数时需要分别对每个自变量进行求导。
以两个自变量的情况为例,对于f(x, y),分别求取偏导数时,将另一个自变量视为常数。
具体计算方法为:∂f/∂x = lim(Δx->0) [f(x+Δx, y) - f(x, y)] / Δx∂f/∂y = lim(Δy->0) [f(x, y+Δy) - f(x, y)] / Δy同理,对于包含更多自变量的函数,按照类似的方法分别对每个自变量求取偏导数。
需要注意的是,在计算偏导数时,需要注意函数的可导性、连续性等数学性质,以保证计算的准确性。
三、偏导数的几何意义偏导数具有一定的几何意义,可以用来描述函数在某一点上的变化率和切线斜率。
对于二元函数f(x, y),若其中两个偏导数∂f/∂x和∂f/∂y均存在,则可得到函数在某一点上的切平面方程,该切平面的法向量为<∂f/∂x,∂f/∂y, -1>。
四、应用举例偏导数在许多领域中都有广泛的应用。
以下是一些常见的应用领域:1. 物理学中的运动学和力学:偏导数可以用于描述物体在空间中的运动轨迹和力学性质。
偏导数的定义及其计算法-PPT
ln x
例4例 4 求 r x2 y2 z2 的偏导数
解 解 r
x
x r
y
y
x x2 y2 z2 r y x2 y2 z2 r
例5 已知理想气体的状态方程为pV=RT(R为常数)
p V
V T
T p
1
证 证 因为 p RT V
p V
RT V2
V RT V R p T p
z x
x x0 y y0
f x
x x0 y y0
zx xx0 或 fx(x0 y0)
y y0
类似地 函数zf(xy)在点(x0y0)处对y的偏导数 >>>
一、偏导数的定义及其计算法
❖偏导数的定义
f x (x0,
y0)
lim
x0
f
(x0 x, y0) x
f (x0, y0)
❖偏导数的符号
z x
在区域 D 内连续
那么在该区域内这两个二阶混合偏导数必相等
例7例 7 验证函数 z ln
x2 y2
满足方程 2z x2
2z y2
0
证 证 因为 z ln x2 y2 1 ln( x2 y2) 所以 2
z x
x2
x
y2
z y
y x2 y2
2z x2
(x2 y2) x2x (x2 y2)2
证明函数 u
1 r
满足方程
2u x2
2u y2
2u z2
0
其中 r x2 y2 z2
证 证
u x
1 r2
r x
1 r2
x r
x r3
2u x2
1 r3
偏导数的定义与计算
偏导数的定义与计算偏导数是高等数学中一个重要的概念,用于研究多元函数的变化率。
在本文中,我们将介绍偏导数的定义以及如何计算它。
一、偏导数的定义对于一个多元函数,它可能是一个变量的函数,也可能是多个变量的函数。
当我们固定其他变量,只考虑其中一个变量的变化时,所得到的导数称为偏导数。
对于一个二元函数 f(x, y),我们可以定义其关于 x 的偏导数为∂f/∂x,关于 y 的偏导数为∂f/∂y。
偏导数表示了函数在某一变量上的变化率。
二、计算偏导数的方法1. 对于只含有一个变量的函数,例如 f(x),其偏导数就是普通的导数,可以使用常规的求导法则来计算。
2. 对于含有多个变量的函数,例如 f(x, y),可以逐个对各个变量求偏导数,其他变量视作常数。
具体计算方法如下:- 对于关于 x 的偏导数,将 f(x, y) 视为只是 x 的函数,即固定 y 不变,求 f(x, y) 对 x 的导数。
- 对于关于 y 的偏导数,将 f(x, y) 视为只是 y 的函数,即固定 x 不变,求 f(x, y) 对 y 的导数。
注:对于更多变量的函数,也可以使用类似的方法逐个求偏导数。
三、举例说明让我们通过一个例子来具体说明偏导数的计算过程。
例:考虑一个二元函数 f(x, y) = x^2 + 2xy + y^2。
我们首先计算关于 x 的偏导数:∂f/∂x = 2x + 2y接下来计算关于 y 的偏导数:∂f/∂y = 2x + 2y如此,我们就得到了 f(x, y) = x^2 + 2xy + y^2 的偏导数。
四、应用与意义偏导数在数学和物理学中都有着广泛的应用。
在数学中,偏导数用于研究多元函数的变化规律,帮助建立基础的微分方程。
在物理学中,偏导数则被用于描述各种物理量之间的关系,例如速度的导数就是加速度。
偏导数的计算也为我们提供了一种评估函数的斜率变化的方法,帮助我们更好地理解函数的行为模式和特点。
总结:本文介绍了偏导数的定义与计算方法,通过对多元函数中单个变量的变化率的研究,帮助我们更好地理解函数的性质和变化规律。
偏导数公式和求导法则
偏导数公式和求导法则让我们来了解一下偏导数的概念。
在多元函数中,我们通常会遇到多个自变量同时变化的情况。
偏导数就是用来描述这种情况下函数对于某个自变量的变化敏感程度的指标。
简单来说,偏导数就是函数沿着某个特定方向的变化率。
对于一个二元函数,例如z = f(x, y),我们可以用∂z/∂x来表示函数f对于变量x的偏导数,表示在y固定的情况下,函数z对于x的变化率。
同样地,我们可以用∂z/∂y来表示函数f对于变量y的偏导数,表示在x固定的情况下,函数z对于y的变化率。
那么,如何计算偏导数呢?对于一个简单的函数,我们可以直接利用求导法则来求解。
求导法则是微积分中常用的一组规则,可以帮助我们计算各种函数的导数。
常见的求导法则包括常数法则、幂法则、和法则、积法则和商法则等。
举个例子,假设我们有一个函数z = 3x^2 + 2xy + y^2,现在我们来计算∂z/∂x和∂z/∂y。
根据求导法则,我们可以先对函数中的每一项进行求导,然后再将结果相加。
对于3x^2,根据幂法则,我们可以将指数下降1,并将系数保留,得到6x。
对于2xy,根据和法则,我们可以将两个变量的导数相加,得到2y。
对于y^2,同样根据幂法则,我们可以得到2y。
因此,我们得到∂z/∂x = 6x + 2y,∂z/∂y = 2x + 2y。
除了使用求导法则,我们还可以通过几何的方法来理解偏导数。
对于函数z = f(x, y),我们可以将其表示为三维空间中的一个曲面。
在这个曲面上,我们可以选择一个点P,并画出曲面在这个点的切平面。
切平面与x轴和y轴的交线就是函数在该点的偏导数。
通过偏导数,我们可以研究函数在不同方向上的变化情况。
例如,在工程和物理学中,偏导数常常用来描述物理量之间的关系,如速度和加速度之间的关系。
在经济学中,偏导数可以用来描述边际效应,帮助我们理解经济中的决策和变化。
总结一下,偏导数是用来描述函数在多个自变量同时变化的情况下的变化率的指标。
偏导数概念及其计算方法
偏导数概念及其计算方法偏导数是微积分中的一个重要概念,用于描述多元函数在某一点上变化的快慢和方向。
在实际问题中,很多函数是由多个变量组成的,因此对于这样的函数,我们需要使用偏导数来计算其变化率。
本文将介绍偏导数的概念以及常见的计算方法。
一、偏导数的概念偏导数是多元函数在某一点上沿各个坐标轴方向的导数。
对于两个变量的函数,偏导数就表示函数在x 轴和y 轴方向的变化率。
一般地,如果一个函数由 n 个变量组成,那么它就有 n 个偏导数。
在计算偏导数时,我们将函数中的其他变量视为常数,仅关注一个变量的变化对函数的影响。
二、偏导数的计算方法1. 求偏导数时,首先确定要关注的变量,其他变量视为常数。
2. 对于函数 f(x, y),以 x 为例,将函数对 x 进行求导,即对 x 进行求偏导数。
计算时将 y 视为常数。
3. 使用基本的求导法则进行计算,如常数法则、幂法则和求和法则等。
4. 将求导后的结果作为偏导数。
三、示例我们以一个简单的二元函数为例子来说明偏导数的计算方法。
假设有函数 f(x, y) = x^2 + 2xy + y^2,我们来计算函数在点 (1, 2) 处关于 x 和 y 的偏导数。
首先计算关于 x 的偏导数,将 y 视为常数。
根据求导法则,对于x^2,其导数为2x;对于2xy,则有2y;对于y^2,其导数为0。
因此,关于 x 的偏导数为 2x + 2y。
接下来计算关于 y 的偏导数,将 x 视为常数。
根据求导法则,对于x^2,其导数为0;对于2xy,则有2x;对于y^2,其导数为2y。
因此,关于 y 的偏导数为 2x + 2y。
所以,函数 f(x, y) = x^2 + 2xy + y^2 在点 (1, 2) 处的关于 x 和 y 的偏导数分别为 6 和 6。
四、结论偏导数是多元函数中的重要概念,通过偏导数的计算,可以帮助我们了解函数在某一点上的变化情况。
求偏导数的方法主要是通过使用基本的求导法则来进行计算。
多元函数的偏导数与全导数的概念及计算方法
多元函数的偏导数与全导数的概念及计算方法一、多元函数的偏导数概念及计算方法多元函数的偏导数是指在多元函数中,固定其他变量而对某一个变量求导的结果。
偏导数的计算方法可分为两种:使用基本的导数法则以及使用偏导数的定义。
1. 使用基本的导数法则计算偏导数假设有一个多元函数f(x1, x2, ..., xn),则可以通过以下导数法则来计算它的偏导数:a. 对于一个与x1有关的函数,固定其他变量而对x1求导,得到偏导数∂f/∂x1。
对于每一个变量,都可以类似操作。
b. 对于一个与x1和x2有关的函数,固定其他变量而对x1和x2分别求导,得到偏导数∂f/∂x1和∂f/∂x2。
c. 继续对函数的其他变量进行相同的操作,直到计算得到所有的偏导数。
2. 使用偏导数的定义计算偏导数使用偏导数的定义计算偏导数需要先确定一个变量为自变量,其他变量为常数。
然后根据函数的定义,求出对应自变量的导数。
例如,对于一个二元函数f(x, y),其偏导数可以表示为∂f/∂x和∂f/∂y。
计算时,我们先固定y为常数,然后将f(x, y)看作只是关于x的函数,使用基本的导数法则计算∂f/∂x。
接着,我们再固定x为常数,将f(x, y)看作只是关于y的函数,使用基本的导数法则计算∂f/∂y。
二、多元函数的全导数概念及计算方法多元函数的全导数是指对于一个多元函数中的每个自变量,都求出对应的偏导数。
全导数的计算方法与偏导数的计算方法类似。
假设有一个多元函数f(x1, x2, ..., xn),则可以通过以下步骤来计算它的全导数:1. 计算所有的偏导数固定每个变量,分别对其求偏导数∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn。
这一步的计算方法可以使用上述的偏导数的计算方法。
2. 组合所有的偏导数将所有的偏导数组合在一起,形成一个向量,即全导数的结果。
如果函数有n个自变量,全导数可以表示为向量(d1f, d2f, ..., dnf)。
需要注意的是,全导数不同于偏导数的一个重要特点是可以通过向量的方式来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3.10 求下列函数的偏导数: y y z x 1. z1 arctg ( ) 2. 2
解: 输入命令:
x
syms x y; diff(atan(y/x)) 得结果: ans=-y/x^2/(1+y^2/x^2). 输入命令: diff(atan(y/x), y). 得结果: ans=1/x/(1+y^2/x^2). 输入命令: diff(x^y, x). 得结果: ans=x^y*y/x.
得结果: a= [1/2/(x^2-2*x+5)^(1/2)*(2*x-2),2*sin(x^2)*x-4*sin(2*x), 4^sin(x)*cos(x)*log(4), 1/x/log(x)]. dy1_dx=a(1). dy1_dx=1/2/(x^22*x+5)^(1/2)*(2*x-2). dy2_dx=a(2). dy2_dx=-2*sin(x^2)*x-4*sin(2*x). dy3_dx=a(3). dy3_dx=4^sin(x)*cos(x)*log(4). dy4_dx=a(4). dy4_dx=1/x/log(x). 注: 由本例可以看出,matlab函数是对矩阵或向量进行操作的, a(i)表示向量a的第i个分量.
得结果: 可知
ans=1. f’(0)=1.
导数的几何意义是曲线的切线斜率.
例3.2 画出 f(x)=ex 在 x=0 处(P(0,1))的切线及若 干条割线,观察割线的变化趋势. 解: 在曲线 y=ex上另取一点M (h, eh),则PM的方程
y 1 eh 1 eh 1 , 即 y x 1 x0 h0 h
例4 求符号矩阵的逆、行列式及特征值和特征向 量。
解:输入命令 syms a b c d A=[a,b;c,d]; njz=inv(A) hls=det(A) [tzxl,tzz]=eig(A); tzxl’ diag(tzz) 执行结果:
njz = [ d/(a*d-b*c), -b/(a*d-b*c)] [ -c/(a*d-b*c), a/(a*d-b*c)] hls = a*d-b*c ans = [ -conj((1/2*d-1/2*a-1/2*(d^2-2*a*d+ a^2+4*b*c)^(1/2))/c), 1] [ -conj((1/2*d-1/2*a+1/2*(d^2-2*a*d+ a^2+4*b*c)^(1/2))/c), 1] ans = 1/2*d+1/2*a+1/2*(d^2-2*a*d+a^2+ 4*b*c)^(1/2) 1/2*d+1/2*a-1/2*(d^2-2*a*d+a^2+ 4*b*c)^运算功能,符号 运算工具箱(Symbolic Math Toolbox)则扩充了Matlab这方面的 功能。 这个工具箱在Matlab安装的 Toolbox/Symbolic子文件夹下。
符号变量与符号表达式
新的数据类型----符号变量
1. 用sym函数来定义一个符号或符号表达式
3.用findsym来确认符号表达式中的符号
例:
4. 表达式化简
Matlab提供的对符号表达式化简的函数有:
simplify(S) 应用函数规则对S进行化简。 simple(S) 调用MATLAB的其他函数对 表达式进行综合化简,并显示化简过程。
例1 .(1)执行下面命令:
f=sym(‘cos(x)^2-sin(x)^2’); f=simple(f)
2 z 2 z 2 z , 2, 2 x y xy
2.导数概念. 导数是函数的变化率,几何意义是曲线在 一点处的切线斜率. 点导数是一个极限值.
例3.1 设 f(x)=ex,用定义计算f’(0). 解: f(x)在某一点的导数定义为极限:
f ( x0 x) f ( x0 ) lim x 0 x
我们记 h=△x,输入命令: syms h; limit((exp(0+h)-exp(0))/h,h,0)
例3。simple和simplify的区别。
>> syms x >> f=cos(x)^2+sin(x)^2 ; >> simple(f) simplify: convert(tan): 1 (1-tan(1/2*x)^2)^2/(1+tan(1/2*x)^2)^2 radsimp: +4*tan(1/2*x)^2/(1+tan(1/2*x)^2)^2 cos(x)^2+sin(x)^2 collect(x): combine(trig): cos(x)^2+sin(x)^2 1 mwcos2sin: factor: 1 cos(x)^2+sin(x)^2 ans = expand: 1 cos(x)^2+sin(x)^2 >> simplify(f) combine: ans = 1 1 convert(exp): (1/2*exp(i*x)+1/2/exp(i*x))^2-1/4*(exp(i*x)-1/exp(i*x))^2 convert(sincos): cos(x)^2+sin(x)^2
例 1. 2. 3. 4.
3.7 求下列函数的导数.
y1 x 2 2 x 5 y2 cos x 2 2cos 2 x y3 4sin x
y4 ln ln x
解: 输入命令: syms x; a=diff([sqrt(x^2- 2*x+5), cos(x^2)+2*cos(2*x),4^(sin(x)), log(log(x))]).
求导数和偏导数
matlab求导命令diff调用格式:
diff(函数 f(x)),求 f(x) 的一阶导数 f’(x) ;
diff(函数 f(x), n), 求 f(x) 的n阶导数 f(n)(x)(n 是具体整数); diff(函数 f(x,y),变量名 x),求 f(x,y) 对x的偏导 数 f ;
执行结果为:
f=cos(2*x)
(2)执行下面命令:
g=sym(‘x^3+3*x^2+3*x+1’); g=simple(g) 执行结果为: g=(x+1)^3
例2 验证三角公式:sin(x-y)=sinxcosycosxsiny. 解:输入命令: syms x y; f=simple(sin(x)*cos(y)cos(x)*sin(y)) 执行结果为: f=sin(x-y)
例3.5 求y=(x2+2x)20的导数. 解: 输入命令 syms x; dy_dx=diff((x^2+2*x)^20) 得结果: dy_dx=20*(x^2+2*x)^19*(2*x+2)
注意输入 2x 时应为2*x.
例3.6 求y=xx的导数. 解: 输入命令: syms x; dy_dx=diff(x^x). 得结果: dy_dx =x^x*(log(x)+1). 利用matlab 命令diff一次可以求出若干个函数的 导数.
5.求高阶导数或高阶偏导数.
例3.11 设 f (x)=x2e2x,求 f (20)(x).
解: 输入指令: syms x; diff(x^2*exp(2*x),x,20). 得结果: ans = 99614720*exp(2*x)+20971520*x*exp( 2*x+1)048576*x^2*exp(2*x)
例3.12 设
z=x6-3y4+2x2y2
,求
解:输入命令: syms x y; diff(x^6-3*y^4+2*x^2*y^2,x,2) 可得到 2 z x 2 : ans=30*x^4+4*y^2. 将命令中最后一个x换为y得 2 z y 2 : ans=-36*y^2+4*x^2. 输入命令: diff(diff(x^6-3*y^4+2*x^2*y^2, x),y) 可得 2 z xy : ans=8*x*y
sym函数用来建立单个符号量,例如,a=sym(‘a’) 建立符号变量a,此后,用户可以在表达式中使用变 量a进行各种运算。
2. syms函数定义多个符号
syms函数的一般调用格式为: syms var1 var2 … varn 函数定义符号变量var1,var2,…,varn等。 用这种格式定义符号变量时不要在变量名上 加字符分界符(‘’),变量间用空格而不要用逗 号分隔。
x
diff(函数 f(x,y),变量名 x,n),求 f(x,y) 对x的n阶 n 偏导数 f n
x
matlab求雅可比矩阵命令jacobian, 调用格式:
jacobian([函数 f(x,y,z);函数 g(x,y,z); 函数
g(x,y,z)], [x,y,z])给出矩阵:
f x g x h x f y g y h y f z g z h z
作出 y=ex 在x=0 处的切线 y=x+1 plot(x,x+1,’r’)
从图上看,随着M与P越来越接近,割线PM越来越 接近曲线的割线.
3.求一元函数的导数. y=f(x) 的一阶导数;
例3.3 求 y=sin(x)/x 的导数.
解: 打开matlab指令窗,输入指令: syms x; dy_dx=diff(sin(x)/x). 得结果: dy_dx=cos(x)/x-sin(x)/x^2. matlab的函数名允许使用字母、空格、下划线 及数字,不允许使用其他字符,在这里我们用 dy_dx表示 yx
syms t a; dx_dt=diff(a*(t-sin(t)),t); dy_dt=diff(a*(1-cos(t))); dy_dx=dy_dt/dx_dt. 得结果: dy_dx=sin(t)/(1-cos(t)).