分子遗传学_基因突变与染色体畸变
第九章-生化与分子遗传学(答案)

第九章生化与分子遗传学(答案)一、选择题(一)单项选择题1.基因突变对蛋白质所产生的影响不包括:A.影响活性蛋白质的生物合成B.影响蛋白质的一级结构C.改变蛋白质的空间结构D.改变蛋白质的活性中心E.影响蛋白质分子中肽键的形成2.原发性损害指:A.突变改变了protein的一级结构,使其失去正常功能B.突变改变了糖元的结构,使糖元利用障碍C.突变改变了脂肪的分子结构,使脂肪动员受阻D.突变改变了核酸的分子结构,使其不能传给下一代E.突变主要使蛋白质的亚基不能聚合*3.苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺乏导致:A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积D.代谢终产物缺乏E.代谢终产物堆积4.半乳糖血症Ⅰ型的发病机理是由于基因突变导致酶遗传性缺乏使:A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积D.代谢终产物缺乏E.代谢终产物堆积5.色氨酸加氧酶缺乏症的发病机理是由于基因突变导致:A.5-羟色胺增多B.色氨酸不能被吸收C.色氨酸吸收过多D.烟酰胺生成过多E.代谢终产物堆积6.下列何种疾病不属于分子病?A. 肝豆状核变性B. 先天性睾丸发育不全综合征C. 血友病D. 镰形细胞贫血E. 家族性高胆固醇血症7.关于苯丙酮尿症(PKU),下列哪项说法是不正确的?A.可进行新生儿筛查B. 可进行产前检查C. 不通过DNA分析不能确定出携带者D. 是一种表现为智力低下的常染色体隐性遗传病E. 是由于遗传性缺乏苯丙氨酸羟化酶所致8.人类珠蛋白基因包括:A. 位于16p13上的类α珠蛋白基因簇,包括α和ζ基因B. 位于llpl5上的类β珠蛋白基因簇,包括α、β、γ、ε和ζ等基因C. 位于llpl5上的类α珠蛋白基因簇D. 位于16p13上的类β珠蛋白基因簇E. 位于Xp21的STR序列*9.镰状细胞贫血是由于血红蛋白β链上的第6位氨基酸被下列哪种氨基酸替代?A. 脯氨酸B. 色氨酸C. 苏氨酸D. 缬氨酸E. 亮氨酸*10.正常HbA的α链为141个氨基酸,有一种称为Hb Constant Spring的突变型,其α链为172个氨基酸,推测可能发生了:A. 无义突变B. 终止密码突变C. 移码突变D.错义突变E. 同义突变11.一个溶血性贫血病人,经检查Hb A2为30%,肽链裂解后见有α、γ、δ三种肽链,其最可能被诊断为:A.α—地中海贫血B.β-地中海贫血C. HbS病D. 高铁血红蛋白病E.遗传性非球形红细胞贫血12.由于代谢中间产物缺乏而引起的代谢缺陷是:A. 半乳糖血症B.白化病C. 糖原累积病D. 苯丙酮尿症E.家族性高胆固醇血症13.以下五种血液病中,哪一种不是遗传病?A. 红细胞G6PD缺乏症B. 地中海贫血C. 血友病D. 血小板无力症E. 特发性血小板减少性紫癜14.缺乏3个α基因引起:A. 静止型α-地中海贫血B. 轻性α—地中海贫血C. HbH病D. HbBart’s胎儿水肿综合征E.β—地中海贫血15.关于肌营养不良的遗传方式,下列哪项说法是错误的?A. Duchenne型肌营养不良为X连锁隐性遗传B. Becker型肌营养不良为常染色体隐性遗传C. 面肩肱型肌营养不良为常染色体显性遗传D. 肢带型肌营养不良为常染色体隐性遗传E. 强直型肌营养不良为常染色体隐性遗传*16.下列哪项是肝豆状核变性的典型症状?A. 视乳头水肿B. 视网膜粟粒样结节C. 黄斑区樱桃红色D. 角膜色素环(K-F环)E. 角膜弓*17.进行性肌营养不良的典型体征是:A. 躯干性共济失调B. 肢体性共济失调C. 剪刀式步态D. 毛细血管扩张E. 迈步呈鸭步态,上楼困难18.先天性肾上腺皮质增生症的最主要原因是:A. 肾上腺皮质功能减退B. 常染色体显性遗传C. 常染色体隐性遗传D. 肾上腺皮质激素合成过程中所需要的酶先天性缺乏E.下丘脑的病变引起19.先天性肾上腺皮质激素合成过程在先天性酶缺陷中下列哪点最多见?A. 21羟化酶缺陷B. 17羟化酶缺陷C. 18羟化酶缺陷D. 3β羟类固醇脱氢酶缺陷E. 20,22碳链酶缺陷20.治疗糖原累积病的最有效方法是?A. 纠正高血脂B. 纠正酸中毒C. 静脉维持稳定血糖D. 增加餐次E. 食用淀粉和果糖21.下列哪一型粘多糖累积病属于X-连锁隐性遗传?A. 粘多糖Ⅰ型(Hurler综合征和Scheie综合征)B. 粘多糖Ⅱ型(Hurter综合征)D.多糖Ⅲ型(Sanfilippo综合征) D. 粘多糖Ⅳ型(Morquio综合征)E. 粘多糖Ⅵ型(Maroleaux-Lamy综合征)22.苯丙酮尿症(PKU)引起的智力低下一般多在:A. 生后4个月左右被发现B. 新生儿期即被发现C. 生后2个月左右被发现D. 生后1年左右被发现E.生后2~3岁被发现*23.苯丙酮尿症在哪个年龄组开始治疗?一般应持续治疗几年?A. 出生后1个月开始治疗,应持续治疗1~2年B. 出生后2~3个月开始治疗.应持续治疗2~3年C. 出生后3~4个月开始治疗,应持续治疗3~4年D. 出生后1个月开始治疗,应持续治疗4~6年E. 出生后5~6个月开始治疗,应持续治疗4~6年24.患儿10个月,近一周来有抽搐发作3~4次。
染色体畸变与基因突变

(1-2)(12- 21) 1/4是完全可育的正常个体(1,1
和2,2),2/4仍然是半不育的易位杂合体(1,12,
2,21),1/4是完全可育的易位纯合体(12,12,21
,21)
(四) 罗伯逊易位(Robertsonian translocation)
两个近端着丝粒染色体或端部着丝粒染色体,相互 易位,两条大的相互融合,两条小的相互融合(丢 失)。
(一)染色体组(genome)及其基本特征
– 二倍体种配子中具有的全部染色体。 – 染色体基数(x):一个物种染色体组的染色体数
基本特征:
– 不同属的染色体基数不同; – 染色体组内的各染色体间形态、结构和载有的基
因均彼此不同。
(二)整倍体(euploid)
1. 整倍体:染色体数目是x的整倍的生 物个体。
四重体“十”字形;
相互易位杂和体减数分裂粗线期联会形成1-12-221的“十”字形象十字形。
到了终变期,十字形因交叉端化而变为四个染色 体构成的“四体链”或“四体环”(相邻式),交 替式则变为“8”字形象。
易位杂合体的联会和分离
可育
不育
(三) 易位的遗传学效应
降低连锁基因的重组率。
改变基因连锁关系 进化意义
(三) 缺失的细胞学鉴定 无着丝粒断片;
最初发生缺失的细胞在分裂时可见无着丝粒断片。
缺失环;
中间缺失杂合体偶线期和粗线期出现;
二价体末端突出;
顶端缺失杂合体粗线期、双线期,交叉未完全端 化的二价体末端不等长。
较小的缺失往往并不表现出明显的细胞学特征; 缺失纯合体减数分裂过程也不表现明显的细胞学特征。
一倍体(monoploid, x) 二倍体(diploid, 2x) 三倍体(tripoid, 3x) 四倍体(tetraploid, 4x)
2011-3第三章基因突变

一、自发突变:自然突变 自发突变: 诱发突变: 二、诱发突变:诱导剂作用下而发生 诱导( 能诱发基因突变的物理、化学、 诱导(变)剂:能诱发基因突变的物理、化学、 生物因素等都称为诱导(变)剂。 生物因素等都称为诱导( 1.物理因素:紫外线 、电离和电磁辐射 物理因素: 物理因素 2.化学因素:羟胺类 、亚硝酸类化合物 、 2.化学因素: 化学因素 碱基类似物等 3.生物因素 生物因素: 3.生物因素:病毒 、细菌与真菌等
羟胺起的DNA碱基对的改变 羟胺起的DNA碱基对的改变 DNA
2.亚硝酸类化合物 2.亚硝酸类化合物 该类物质可引起碱基的脱氨基作用而造 成原有碱基分子结构及化学性质的改变。 成原有碱基分子结构及化学性质的改变。 例如, 例如,A被脱氨基后即衍生为次黄嘌呤 );H将不能与胸腺嘧啶( 正常配对, (H);H将不能与胸腺嘧啶(T)正常配对, 转而形成了与C的互补结合。如此一来, 转而形成了与C的互补结合。如此一来,经 DNA复制之后 复制之后, 由原来正常的T 过DNA复制之后,即由原来正常的T-A碱基 对变成了突变的C 对变成了突变的C-G碱基对
野生型:(Wild type) 野生型:(Wild type) :( 未突变Gene的细胞或个体,称为野生型。 未突变Gene的细胞或个体,称为野生型。 Gene的细胞或个体 突变热点 (Hot spots of mutation): mutation): DNA分子中某些部位的突变频率大大高于 DNA分子中某些部位的突变频率大大高于 平均数,这些部位称为突变热点。 平均数,这些部位称为突变热点。
生殖细胞突变:突变基因可通过有性生殖遗 生殖细胞突变:突变基因可通过有性生殖遗 传给后代,并存在于子代的每个细胞里, 传给后代,并存在于子代的每个细胞里,从 而使后代的遗传性状发生相应改变。 而使后代的遗传性状发生相应改变。 体细胞突变:突变基因可传递给由突变细胞 体细胞突变:突变基因可传递给由突变细胞 分裂所形成的各代子细胞, 分裂所形成的各代子细胞,在局部形成突变 细胞群而成为病变甚至癌变的基础。 细胞群而成为病变甚至癌变的基础。但不会 传递给后代。 传递给后代。
基因突变和染色体畸变的影响

基因突变和染色体畸变的影响基因突变和染色体畸变是遗传学中重要的概念,它们对生物体的发育和功能产生着深远的影响。
本文将就基因突变和染色体畸变的定义、分类以及对生物体的影响进行详细的讨论。
定义基因突变是指某个基因序列的发生变异,这种变异可能会影响基因的功能和表达。
而染色体畸变则是指染色体在结构和数量上的异常改变,导致基因组的不稳定性。
基因突变和染色体畸变都属于遗传物质发生改变的现象,但其具体表现形式和影响机制有所不同。
基因突变的影响基因突变能够对生物体的遗传信息产生重要的影响。
一些基因突变可能导致无法合成正常的蛋白质,从而影响生物体的正常功能。
例如,如果一个基因突变导致一个酶缺失,那么相关的代谢过程就会受到影响,进而引发某种疾病。
此外,基因突变还可能给生物体带来一些有利的性状变异,从而对进化和适应环境起到推动作用。
基因突变的分类基因突变可以按照多个维度进行分类。
按照发生的时间来看,基因突变可以分为生殖细胞突变和体细胞突变。
生殖细胞突变是指发生在生殖细胞中,可以通过遗传方式传递给下一代的突变。
而体细胞突变则是指发生在非生殖细胞中,只会影响个体自身,不会遗传给下一代。
染色体畸变的影响染色体畸变能够导致基因组结构和数量的异常改变,进而对生物体产生重要的影响。
染色体畸变的常见类型包括染色体缺失、染色体重复、染色体易位等。
这些畸变可能导致某些基因的丧失或者增加,进而对生物体的正常发育和生理功能产生重大影响。
染色体畸变的分类染色体畸变可以按照结构改变程度进行分类。
结构性畸变是指染色体发生断裂、重排、重复等结构性改变,如染色体易位、倒位等。
而数目性畸变则是指染色体数量的改变,如染色体缺失、倍性变化等。
这两种类型的染色体畸变都可能导致基因组的不稳定性,从而对生物体产生重要的影响。
结论基因突变和染色体畸变是遗传学中重要的概念,它们对生物体的发育和功能产生着深远的影响。
基因突变可能导致蛋白质合成异常,影响生物体的正常功能,而染色体畸变则会引起基因组结构和数量的异常改变,进而对生物体的发育和功能产生重大影响。
遗传育种课后重点及答案

第二章基因突变及其机制1.突变(Mutation):遗传物质核酸(DNA或病毒中的RNA)中的核苷酸序列突然发生了稳定的可遗传的变化。
2.突变型:由于突变体中DNA碱基序列的改变,所产生的新的等位基因及新的表现型称为突变型。
3.染色体畸变:染色体结构的改变,多数是染色体或染色单体遭到巨大损伤产生断裂,而断裂的数目、位置、断裂端连接方式等造成不同的突变。
包括染色体缺失、重复、倒位和易位等。
涉及到DNA分子上较大范围的变化,往往会涉及到多个基因。
4.基因突变;是指一个基因内部遗传结构或DNA序列的任何改变,包括一对或少数几对核苷酸的缺失、插入或置换,分为碱基置换(转换和颠换)和移码突变。
转换transition:DNA链中一个嘌呤(嘧啶)被另一个嘌呤(嘧啶)所置换。
颠换transversion:DNA链中一个嘌呤(嘧啶)被一个嘧啶(嘌呤)所置换。
5.错义突变missense mutation:由于突变后的密码子代表另一种氨基酸,从而造成个别碱基的改变导致多肽链上某个氨基酸为另一种氨基酸所取代。
6.同义突变:由于遗传密码的简并性,突变后的密码子编码的仍是同一种氨基酸。
碱基序列发生改变而氨基酸序列未发生改变的隐蔽突变。
7.无义突变:突变后的密码子变成终止密码子,是一类是引起遗传性状改变的突变。
8.移码突变frameshift mutation:在DNA序列中由于一对或少数几对核苷酸的插入或缺失,而使其后全部遗传密码的阅读框架发生移动,进而引起转录和转译错误的突变叫移码突变。
一般只引起一个基因的表达出现错误。
9.条件致死突变型:在某一条件下具有致死效应,而在另一条件下没有致死效应的突变型。
如:温度敏感突变型。
10.回复突变:突变基因通过再次突变回复到野生型基因的表型性状。
11.沉默突变:表型不发生改变的基因突变,包括同义突变和氨基酸序列发生改变而不影响蛋白质功能的错义突变。
12.突变率(mutation rate):每个细胞每一世代中发生突变的概率。
医学遗传学名词解释中英文

第二章基因1.反向重复序列:两个顺序相同的互补拷贝在同一 DNA链上呈反向排列构成。
2.基因:是编码RNA或一条多肽链所必需的全部核酸序列(通常指DNA序列)。
包括编码序列、两侧的侧翼序列及插入序列。
3.割裂基因(断裂基因):基因的编码序列在DNA上不是连续的,而是被不编码的序列隔开。
4.多基因家族(multigene famly)由一个祖先基因经过重复和变异所形成的一组基因。
5.假基因(pseudogene)在多基因家族中,某些成员在进化过程中获得一个或多个突变而丧失了产生蛋白产物的能力,这类基因称为假基因。
如:wZ、Wa、w06.突变(mutation):包括基因突变和染色体畸变7.基因突变(gene mutation):是指DNA分子中的核昔酸顺序发生改变,使遗传密码编码产生相应的改变,导致组成蛋白质的氨基酸发生变化,以致引起表型的改变。
8.自发突变或自然突变(spontaneous mutation):在没有人工特设的诱变条件下,由外界环境的自然作用或生物体内的生理和生化变化而发生的突变。
突变频率很低。
9.诱发突变(induced mutation):人工运用物理、化学或生物的方法所诱导的突变。
突变频率大大提高。
10.生殖细胞突变(germinal mutation)和体细胞突变(somatic mutation) 突变体(mutant):携带突变Gene的细胞或个体。
野生型(Wild type):未突变Gene的细胞或个体。
11.突变的分子基础碱基替换(base substitution)移码突变(frameshift mutation)动态突变(dynamic mutation)12.碱基替换(base substitution) 一种碱基被另一种碱基替换,又叫点突变(pointmutation)。
有两种形式:转换(transition): DNA分子中一个嘌吟被另一个嘌吟替代或一个嘧啶被另一个嘧啶所替代。
遗传学10 第10章 染色体畸变和突变(第一节)

• 出生时观察到6/1000的可见缺陷;
• 大约11%的不孕不育和6%的智力缺陷。
本部分将讨论染色体畸变的类型、 机制和遗传学效应及其应用。
本部分内容
染色体结构畸变
重复(duplication) 46, XY, dup(4)(q13)
缺失 (deletion) 倒位 (inversion) 46, XX, del(4)(q27) 46, XX, inv(4)(q13::q24)
(四) 疏松环
幼虫发育不同时期,基因在行使其特殊功能时出现的特殊形态 的泡状结构,称为puff,即染色体疏松结构。
疏松环是DNA纤丝 从正常包装状态解旋 松疏的结果,是基因 活跃转录的足迹 。 果蝇3次蜕皮,3次 大量转录蜕皮激素形 成3个疏松环,留下转 录足迹。
二、染色体结构变异的类型和机制
缺 失
1964年证实是第5号染色体短臂部分缺失。
核型:46,XY,5p猫叫样哭声,随年龄增长而消失
智力发育迟缓 眼距宽,外眼角下斜
腭弓高,下颌小
先天性心脏病(50%)
缺失例4:染色体缺失与肿瘤
1)染色体区段的缺失导致原癌基因表达调控区的 丢失,引起原癌基因的过度表达和激活(功能获得 性突变),导致癌基因的形成和肿瘤发生; 如:Burkitt’s 淋巴瘤中c-myc因负调控序列缺失 而过度表达。 2)染色体区段的缺失导致肿瘤抑制基因本身的丢 失(功能丧失性突变),诱导肿瘤发生; 如:视网膜母细胞瘤中的Rb基因的丢失。
易位 (translocation) 46, XY,t(4; 20)(q25; q12)
6 东北师范大学
一、唾腺染色体是遗传分析的理想材料
果蝇唾腺染色体
(salivary gland chromosome):双翅 目昆虫幼虫消化道、 唾液腺细胞有丝分裂 间期染色体,有4特点, 是染色体结构变异及 分子遗传研究的好材 料。
染色体畸变的类型和形成机理打印

通过研究染色体畸变,可以深入了解遗传病的发病机制和遗传特征。
染色体畸变的检测方法
常规染色体分析
通过显微镜观察染色体的数量和形态来检测染色体 畸变。
分子遗传学技术
利用PCR、FISH等技术检测染色体的结构和功能 异常。
染色体畸变治疗方法
针对染色体畸变导致的遗传病,目前尚无根治方法。治疗主要以症状缓解和 预防遗传病为主。
1
染色体非正常对分离
2
在染色体复制过程中出现异常ቤተ መጻሕፍቲ ባይዱ分离,
导致染色体畸变。
3
遗传突变
基因突变是染色体畸变的主要原因之一, 可以导致染色体结构或数量的改变。
自发性断裂-粘连再生
染色体断裂后再次连接,造成染色体结 构异常。
染色体畸变与遗传病关系
染色体畸变能引起遗传病
一些结构性的染色体畸变会导致遗传病的发生,如唐氏综合征和克里格尔综合征。
染色体数量的异常,包括染 色体增加或减少。
结构性染色体畸变
染色体的形态或结构异常, 包括染色体缺失、重复、断 裂、倒位等。
意义不明的畸变
一些染色体畸变的具体原因 和意义尚不明确。
常见的染色体畸变类型
1 单体染色体缺失 3 倍畸变 5 染色体倒位
2 染色体重复 4 染色体断裂 6 染色体颠倒
染色体畸变的形成机理
染色体畸变预防措施
为了预防染色体畸变和遗传病,建议进行遗传咨询和基因检测,并遵循医生的建议。
普及染色体畸变知识的重要性
了解染色体畸变对人们健康的影响及其防治方法,对于提高公众的健康意识 和遗传病预防具有重要意义。
染色体畸变的类型和形成 机理
染色体畸变是指染色体的结构或数量异常,是遗传学研究中的重要领域。本 报告将介绍染色体畸变的分类以及形成机理。
遗传学名词解释(1)

遗传学名词解释(1)1、遗传学:是研究⽣物遗传和变异的科学,是⽣物学中⼀门⼗分重要的理论科学,直接探索⽣命起源和进化的机理。
同时它⼜是⼀门紧密联系⽣产实际的基础科学,是指导植物、动物和微⽣物育种⼯作的理论基础;并与医学和⼈民保健等⽅⾯有着密切的关系。
2、变异:是指亲代与⼦代之间、⼦代个体之间存在着不同程度差异的现象。
如⾼秆植物品种可能产⽣矮杆植株,⼀卵双⽣的兄弟也不可能完全⼀样。
3、遗传:是指亲代与⼦代相似的现象。
如种⽠得⽠、种⾖得⾖。
4、冈崎⽚段:相对⽐较短的DNA链(⼤约1000核苷酸残基),是在DNA的滞后链的不连续合成期间⽣成的⽚段。
5、半保留复制:⼀种双链脱氧核糖核酸(DNA)的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。
6、半不连续复制:是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的,故称为半不连续复制。
7、联会:在减数分裂过程中,同源染⾊体建⽴联系的配对过程。
8、同源染⾊体:指形态、结构和功能相似的⼀对染⾊体,他们⼀条来⾃⽗本,⼀条来⾃母本。
9、减数分裂:是⽣物细胞中染⾊体数⽬减半的分裂⽅式。
性细胞分裂时,染⾊体只复制⼀次,细胞连续分裂两次,染⾊体数⽬减半的⼀种特殊分裂⽅式。
减数分裂不仅是保证物种染⾊体数⽬稳定的机制,同时也是物种适应环境变化不断进化的机制。
10、复等位基因:由同⼀基因位点经多⽅向突变产⽣的三个或三个以上的基因称为复等位基因。
⼀个基因座位内不同位点改变形成许多等位基因,即复等位基因。
复等位基因是基因内部不同碱基改变的结果。
11、复制⼦:在每条染⾊体上两个相邻复制终点之间的⼀段DNA叫做复制⼦。
12、共显性:是指双亲性状同时在F1个体上表现出来。
如⼈类的ABO⾎型和MN⾎型。
13、等位基因:位于同源染⾊体上,位点相同,控制着同⼀性状的基因。
14、上位作⽤:两对基因同时控制⼀个单位性状发育,其中⼀对基因对另⼀对基因的表现具有遮盖作⽤,这种基因互作类型称为上位作⽤。
遗传学 第八章 染色体畸变

第二节 染色体的数目变异
一、染色体的倍数性变异 二、非整倍体
一、染色体的倍数性变异
(一)染色体组及其整倍性 (二)同源多倍体 (三)异源多倍体 (四)多倍体的应用 (五)单倍体
一、染色体的倍数性变异
(一)染色体组及其整倍性
1.染色体组: 二倍体生物产生的配子中的全部染色体,维持生物体
生命活动所需的最低限度的一套基本染色体, 或称为基因组,以X 表示。
例: 玉米 2n=20 配子:n=10 染色体数:X=10 小麦:4X=28,n=14,X=7 小麦:3X=21,X=7
注:n是配子中染色体数 整倍体:合子染色体数以基数染色体整倍增加的个体。
整倍体根据含有基因组数不同: 一倍体:具有一个染色体组的生物体。如蜜蜂、蚊 子、同翅目的白蚁的雄性个体 单倍体:个体体细胞内只具有本物种配子染色体数 目的个体。 多倍体:具有三个或三个以上染色体组的生物体。 如:八倍体小黑麦的花粉植株
2.细胞学效应
形成倒位圈(倒位环)
倒位区段位于中间且长,则倒位部位联会,正常部位不能联会,如图: 倒位区段较小,倒位区段松散。
第一节 染色体结构的变异
减数分裂及结果 臂内倒位
第一节 染色体结构的变异
减数分裂及结果 臂间倒位
第一节 染色体结构的变异
遗传学效应
①引起不育。 ②倒位杂合体对交换有抑制作用。 ③因基因之间顺序与距离发生变化而改变遗传图,且可产生位置效 应。(如异染色质区转至常染色质区) ④倒位纯合体可以正常生活(产生新种),但不能与原种杂交。
2. 整倍体的同源性和异源性
1926年木原均和小野第一次提出了同源多倍体和异源多倍 体两个不同的概念。 (1)同源多倍体:指增加的染色体组来自同一物种;
医学遗传学名词解释及大题

第二章基因1.反向重复序列:两个顺序相同的互补拷贝在同一DNA链上呈反向排列构成。
2.基因:是编码RNA或一条多肽链所必需的全部核酸序列(通常指DNA序列)。
包括编码序列、两侧的侧翼序列及插入序列。
3.割裂基因(断裂基因):基因的编码序列在DNA上不是连续的,而是被不编码的序列隔开。
4.多基因家族(multigene famly)由一个祖先基因经过重复和变异所形成的一组基因。
5.假基因(pseudogene)在多基因家族中,某些成员在进化过程中获得一个或多个突变而丧失了产生蛋白产物的能力,这类基因称为假基因。
如:ψζ、ψα、ψβ6.突变(mutation):包括基因突变和染色体畸变7.基因突变(gene mutation):是指DNA分子中的核苷酸顺序发生改变,使遗传密码编码产生相应的改变,导致组成蛋白质的氨基酸发生变化,以致引起表型的改变。
8.自发突变或自然突变(spontaneous mutation):在没有人工特设的诱变条件下,由外界环境的自然作用或生物体内的生理和生化变化而发生的突变。
突变频率很低。
9.诱发突变(induced mutation):人工运用物理、化学或生物的方法所诱导的突变。
突变频率大大提高。
10.生殖细胞突变(germinal mutation)和体细胞突变(somatic mutation)突变体(mutant):携带突变Gene的细胞或个体。
野生型(Wild type):未突变Gene的细胞或个体。
11.突变的分子基础碱基替换(base substitution) 移码突变(frameshift mutation) 动态突变(dynamic mutation)12.碱基替换(base substitution)一种碱基被另一种碱基替换,又叫点突变(pointmutation)。
有两种形式:转换(transition):DNA分子中一个嘌呤被另一个嘌呤替代或一个嘧啶被另一个嘧啶所替代。
遗传学 基因突变

导致遗传编码发生改变。 产生无功能的蛋白。
2.3 缺失(deletion) 插入(insertion)突变
3. 诱变因素与作用机理
自发突变 化学诱变 物理诱变
3.1 自发突变(spontaneous mutation)
自发突变
在自然状态下未经诱变剂处理而出现的突变 原因: DNA复制错误
1.2 自然界基因突变现象
自然界基因突变广泛存在
白化
Connie Chiu
果蝇眼色变异
猫的眼色变异
四条腿的鸡
蜜蜂绿眼变异
1.3 基因突变发生的时期
生物个体发育的任何时期均可发生突变 体细胞和性细胞均可发生突变 种系突变(germinal mutation)
性细胞突变 性细胞突变经受精卵传至后代
突变型基因也可以通过突变成为原来的野生型状态, 即回复突变(back mutation)。
回复突变的频率远低于正突变频率 突变的可逆性是区别基因点突变与染色体畸变 的重要标志
1.5.3 突变的多向性与复等位基因
多向性:一个基因可以向多个不同方向突变, 即可以突变为一个以上的等位基因。
MC1R 复等位基因(Multiple allele):在群体中位 基因座 于同 源染色体相同位置两个以上的等位基因。 多个等 位基因 对鸡羽 色的影 响
脱氨基(deamination)
胞嘧啶脱氨基转换成尿嘧啶
C-U-A-T,C///G-A//T
m5C-T-A,m5C///G-A//T
5-甲基胞嘧啶脱氨基转换成胸腺嘧啶
医学遗传学中的染色体异常和基因突变分析

医学遗传学中的染色体异常和基因突变分析遗传学是研究生物遗传的学科,而医学遗传学则更注重与人类疾病相关的基因、染色体异常等问题,为医学诊断、预防、治疗疾病提供有力依据。
其中染色体异常和基因突变分析成为医学遗传学中的重要内容。
一、染色体异常分析染色体异常,是指染色体变异发生后所引起的染色体数目、形状或结构上的改变,常有染色体缺失、染色体重复、染色体易位、染色体畸变等表现。
通过分析染色体异常,可以确定遗传病变异的机制。
其中以下三种染色体异常较为常见:1、染色体数目异常。
在正常情况下,人类的体细胞核内有46条染色体(包括44条自体体染色体和两条性染色体)。
若因染色体分离不平衡等原因,导致染色体数目增多或减少,就称为染色体数目异常。
常见的染色体数目异常疾病有唐氏综合征(21三体综合征)、爱德华氏综合征(18三体综合征)、帕塔综合征(13三体综合征)等,这些疾病的产生和染色体分离不平衡有所关联。
2、染色体结构异常。
染色体结构异常是指染色体的某些区域发生了缺失、重复、易位、倒位等结构上的变异。
染色体结构异常常见于家族性遗传病,如克拉宾综合症、唐式综合征等。
3、染色体畸变。
染色体畸变是指染色体在长度和形状上的不正常变化,如某一特定断点上的断裂、变形等。
染色体畸变也是导致一部分遗传病变的原因之一,如微小删除综合征、第二型自体隐性多囊等。
二、基因突变分析基因突变是指基因序列发生了拼写错误导致遗传物质某处发生了单个核苷酸(即DNA基因词汇中最小的单位)的改变,这种改变可能对基因功能造成不同程度的影响,从而导致人类遗传病的发病。
基因突变是遗传病的重要原因之一,如新生儿遗传病中的苯丙酮尿症、肌萎缩性脊髓侧索硬化症、多囊肾等都属于基因突变导致的。
因此,对基因突变进行分析,有助于确定疾病的遗传方式并提供精准的治疗手段。
在疾病基因研究中,现已知的基因有两种突变类型,分别是点突变和结构变异。
点突变即单核苷酸变异,可以分为错义、无义、等位基因、剪切位点等类型。
染色体变异与基因突变

向一致。
反接重复:增加的染色体片断带有的基因顺序与染色体的线性方
向相反。 重复杂合体:同源染色体中仅一条有重复的个体。 重复纯合体:两条同源染色体重复了相同区段的个体。 重复的形成—同源染色体非姐妹染色单体间的不等交换而造成
16
重复的类别 顺接重复
反接重复
17
重复的形成
18
2.重复的细胞学鉴定
生球茎大麦(2n=2x=14)→杂种,在胚发育过程中,两 物种染色体的行为不协调,导致球茎大麦的染色体逐 渐丢失,获得大麦的单倍体植株。
59
花 药 培 养 获 得 单 倍 体
60
染色体消减获得单倍体大麦
61
(3)单倍体的特征(与二倍体相比)
n ①细胞、组织、器官和生物个体均较小
n ②高度不育性。
56
二、整倍性变异
1.整倍体(euploid)——指体细胞(2n)内具有完整的染色体组的个体。
计算染色体数目时,体细胞—2n,配子—n, 2.整倍体变异——指体细胞中染色体数目,在正常染色体数的基础上,
以染色体组(x)为基数成倍数性增加或减少的现象。
n单倍体(n):指体细胞中含有本物种配子染色体数目的个体。 单倍体:蚕豆 n=1x=6 ;人 n=1x=23 ;小麦 n=3x=21。 n二倍体(2n=2x):指体细胞中含有两个染色体组的生物个体。 n三倍体(2n=3x):指体细胞中含有三个染色体组的生物个体。 n多倍体(2n=mx,m≥3):指体细胞中含有三个或三个以上染色体组的生物 个体。
减数分裂过程也不表现明显的细胞学特征。
7
微核、染色体桥
8
缺失的细胞学特征及缺失染色体的联会
9
玉米缺失杂合体粗线期缺失环
基因突变及其效应

(-)点突变
碱基替换
同义突变 错义突变 无义突变 终止密码突变 剪切位点突变 调控序列突变
小的插入/缺失
(二)片段突变
缺失 重复 重排
(一)碱基替换
➢ 碱基替换 : 指一个碱基对被另一个不同的 碱 基 对 所 替 换 , 为 DNA 分 子 中 单个碱基的改变。
转换(transition):同类碱基之间的替换,即 嘌呤取代嘌呤、嘧啶取代嘧啶。
DNA 链: TTC mRNA 链: AAG
赖
ATA GTG AUU UAU CAC UAA
酪 组 终止
DNA 链: TTC ATT GTG mRNA 链: AAG UAA
赖 终止
AUU
( 4 )终止密码突变 ( termination codon mutation )
当DNA分子中的一个终止密码发生突变,成 为编码氨基酸的密码子的时候,多肽链的合成将 继续进行下去,肽链的延长直至遇到下一个终止 密码子方才停止,因而形成了延长的异常肽链, 这种突变称为终止密码突变。
基因突变及其 效应
第一节 基因突变
1 、突变 ( mutution )
突变是指遗传物质(DNA序列)发生了改变。 广义的突变可以分为两类:
(1) 染色体畸变(chromosome aberration),即染色体结构和数目的改变;
(2) 基因突变 (gene mutation)。
狭义的突变,仅指一般的基因突变。 基因突变是指基因的核苷酸顺序、种类和 数目发生改变,仅仅涉及DNA 分子中的单个碱 基改变者称为点突变( point mutation );涉 及多个碱基的还有缺失,重复和插入。
6 . 致死突变。导致死胎、自然流产或者出生后 夭折等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)染色体不分离:染色体的两条单体在细胞分 裂后期不能正常分开,而同时进入子细胞,导致一 个细胞增多一条,而另一细胞减少一条。 (2)染色体丢失:由于纺锤体形成不完全或着丝 粒受损,使个别染色体在细胞分裂后期移动滞留,
没有进入子细胞并随后丢失,导致子细胞中减少一
条染色体。
4.3染色体结构异常的机理 染色体断裂和重排的错误是结构异常的主要机理。
2. 糖基酶酶修复途径
不能剪切磷酸二酯键,但可以剪切N-糖苷键。 偶联AP酶进行修复 3. GO系统
二、复制后修复 (一)错配修复 有些修复途径能够识别DNA复制中出现 的错配,这种系统叫做错配修复(mismatch
repair)
(二)重组修复 有些修复途径能够识别DNA复制中出现 的错配,这种系统叫做错配修复(mismatch repair)
Chapter 6
Mutation&Chromsomal abberation
基因突变与染色体畸变
Section 1 Mutation 基因突变
基因突变的概念:
遗传物质的各种遗传性改变称基因突变 (mutation),其实质是核苷酸的增添、缺失、替 代、颠倒和转位。
自然条件 人为干预
自发突变 诱发突变
(五)烷基的转移
鸟嘌呤甲基转移酶,可在低剂量烷化剂的作用下
诱导
二、切除修复 (一)一般切除修复
短-补丁修复(short-patch repair) 长-补丁修复(long-patch repair)
(二)特殊切除修复途径 1. AP核酸内切酶修复途径
有一种核酸内切酶附着在自发丢失了单
个嘌呤或嘧啶的位点上,这个无嘌呤或嘧啶 的位点就叫做AP位点
插入 Insertion
• Two types of base substitutions碱基置换
– Transition转换
• Pyrimidine changed to another pyrimidine
– e.g., C T
• Purine changed to another purine
(三)SOS修复系统
这种修复是为了保命,管不了修补的片段是 否正确
Section 3 染色体畸变 Chromsomal abberation
染色体的数目与结构 染色体数目和结构的异常称染色体病,或染 色体畸变(chromsomal aberration)。
1、染色体数目异常:
染色体数目偏离正常,称染色体数目畸变。
– Translation is prematurely terminated
• Truncated polypeptide is formed
– Protein function is generally affected
Common features
1.是普遍存在的 2.是随机发生的
3.突变频率很低
携带突变的生物个体或群体称为
突变体(mutant)
一、突变的命名和表示方法
赖氨酸
色氨酸 苯丙氨酸 蛋氨酸 苏氨酸 异亮氨酸 亮氨酸 缬氨酸
Wild type & Mutant type 野生型&突变型
二、基因突变的种类和特点
碱基置换Base substitution
移码突变Frameshift mutation 基因突变 缺失Deletion
4. 染色体畸变机理
4.1多倍体产生机理 (1)双雄受精:同时有2个精子入卵受精; (2)双雌受精:减数分裂时,极体与卵核再结 合,形成两倍体卵子;
(3)核内再复制:染色体已复制而核膜未分裂, 在完整的胞膜内形成多倍化现象,称核内再复制 (endoreduplication)。
4.2 非整倍体产生机理
• Deletion缺失突变
------编码某种氨基酸的密码子经碱基缺 失以后,变成编码另一种氨基酸地密 码子,从而使多肽链的氨基酸种类和 序列发生改变
• Insertion插入突变
------一个基因的DNA中如果插入一段外 来的DNA,那么它的结构便被破坏 而导致突变 IS,当转入某一基因中时,便使这一基
4.大多数基因突变对生物体是有害的 5.不定向
三、基因突变的机制 (一)、基因突变诱发机制 1.碱基置换突变的诱发
(1).类似物的参入:5-溴尿嘧啶(BU)是
胸腺嘧啶的结构类似物。
(2).药物或射线引起的化学变化:
2.移码突变的诱发 移码突变的诱变剂种类较少,主要是吖啶类 燃料
3.定向诱变 利用重组DNA技术使DNA分子在指定位 置上发生特定的变化,从而收到定向的诱变
3、染色体结构异常
染色体异常的常见类型:
缺失(deletion)染色体部分丢失
倒位(invertion)如果两次断裂形成的片段倒转 180°重新接合,虽然没有染色体物质的丢失,但 基因顺序颠倒 重复(duplication)染色体上各别区段多出一份
易位(translocation)染色体片段位置的改变 等臂染色体(isochromosome)一次染色体断裂如 果发生在着丝粒区,使着丝粒横断,则两个臂的姐 妹染色单体可分别互相连接,结果形成两条与短臂 和长臂相应的等臂染色体。
效果
核酸内切酶+连接酶etc
4.自发诱变
背景辐射和环境诱变
生物自身所产生的诱变物质的作用
碱基的异构互变效应
(二)、影响基因突变的因素 1.内在因素
前诱变剂:一些没有诱变作用的物质也
可以因为细胞中的酶的活化作用而使该物质 转变为诱变剂
诱变剂
DNA损伤
阻碍复制
无误修复 使DNA恢复原状, 但不带来突变
易误修复 使DNA复制继续进 行,但也常带来基 因突变
2.外界因素 ① 温度
② பைடு நூலகம்养基成分
③ 抗变剂和助变剂
能够促进另一诱变剂的作用的物质称 为助变剂 能够降低自发或诱发突变率的物质称 为抗变剂
Section 2 DNA修复 Repair of DNA damage
一、直接修复 (一)通过DNA聚合酶校正修复 原核:DNA聚合酶3’ →5’外切酶活性 真核:DNA聚合酶α 3’ →5’外切酶活性
2、染色体数目异常类型: 2.1 整倍体: 染色体组倍数超过整2倍(3n,4n),称多 倍体(polyploid)整倍体(euploid)。
2.2 非整倍体:
少于或多于2倍体(2n)的染色体组, 如单 体型(monosomy,2n-1),三体型
(trisomy,2n+1)。 2.3 嵌合体:
一个个体存在2种或2种以上不同核型的 细胞系,称嵌合体。
– e.g., A G
– Transversion颠换
• Purines and pyrimidines are interchanged
– e.g., A C
• More rare than transitions
• Frameshift mutaion移码突变
------一对或少数几对邻接的核苷酸的增 加或减少,造成这一位置以后的一 系列编码发生移位错误的突变。
(二)光复活反应
对UV诱发的胸苷二聚体的修复,这个系统叫做光 复活(photoreactivation)或光修复(light repair) 催化光复活反应的酶叫做光裂合酶(photolyase)
(三)单链断裂的重接
DNA连接酶(ligase)
(四)碱基的直接插入
DNA链上嘌呤的脱落造成无嘌呤位点,能被DNA 嘌呤插入酶(insertase)识别结合
• Missense mutations
– Amino acid sequence is altered
• e.g., GAA GTA (glu val)
• Nonsense mutations
– Normal codon is changed into a stop codon
• e.g., AAG UAG (lys stop)
因发生突变
按照遗传信息的改变方式,突变又可分为:
错义突变 Missense mutations 一对碱基的改变而使某一氨基酸的密码子 变为另一氨基酸的密码子 简并性 不一定带来氨基酸的改变 同义突变(samesense mutation)
无义突变 Nonsense mutations 一对碱基的改变而使某一氨基酸的密码子 变为一个终止密码子