高考数学- 圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆
24.1圆的有关性质
24.1.1圆
知能演练提升
能力提升
1.下列说法错误的是()
A.直径是圆中最长的弦
B.长度相等的两条弧是等弧
C.面积相等的两个圆是等圆
D.半径相等的两个半圆弧是等弧
2.如图,在△ABC中,AB为☉O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()
A.50°
B.60°
C.70°
D.80°
3.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()
4.如图,AB是半圆O的直径,点P从点O出发,沿OA→→BO的路径运动一周.设OP为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是()
5.如图,A,B是☉O上两点,若四边形ACBO是平行四边形,☉O的半径为r,则点A与点B之间的距离为.
6.如图,O2是☉O1上的一点,以O2为圆心,O1O2为半径作☉O2,与☉O1交于点A,B,则∠AO1B的度数为.
(第5题图)
(第6题图)
7.如图,一根2 m长的绳子,一端拴在墙边,另一端拴着一只羊,画出羊的活动区域.
8.
如图,AB,AC为☉O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C,求证:CE=BF.
★9.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则a,b,c之间有什么关系?
10.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA,求证:∠C=∠AOE.
创新应用
★11.如图①,☉O的半径为r(r>0),若点P'在射线OP上,满足OP'·OP=r2,则称点P'是点P关于☉O的“反演点”.
如图②,☉O的半径为4,点B在☉O上,∠BOA=60°,OA=8.点A',B'分别是点A,B关于☉O的反演点,求A'B'的长.
图①
图②
知能演练·提升
能力提升
1.B
2.C
3.D连接OP,因为OP是Rt△AOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.
4.C当点P从点O向点A运动时,OP逐渐增大,当点P从点A向点B运动时,OP不变,当点P从点B向点O运动时,OP逐渐减小,故能大致地刻画s与t之间关系的是选项C中的图象.
5.r连接AB.∵OA=OB,
∴▱ACBO是菱形.
∴AB与CO互相垂直且平分.
∴AB=2-r.
6.120°连接AO2,BO2,由题意知☉O1与☉O2是等圆,所以△AO1O2与△BO1O2都为等边三角形.
所以∠AO1O2=∠BO1O2=60°,即∠AO1B=120°.
7.分析根据题意,羊的活动区域应是以O为圆心,以2 m为半径的半圆及其内部.
解如图,羊的活动区域是图中的阴影部分(包括半圆周).
8.证明∵OB,OC是☉O的半径,
∴OB=OC.
又∠B=∠C,∠BOE=∠COF,
∴△EOB≌△FOC(ASA).
∴OE=OF.∴CE=BF.
9.解连接OM,OD,OA,根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.
10.分析因为∠AOE是△COE的一个外角,且与∠C不相邻,
所以∠AOE=∠C+∠E.
现在要证明∠C=∠AOE,即∠AOE=3∠C,所以只要证得∠E=2∠C即可.
又由于OE为半径,而连接OD后OD也是半径,故OE=OD,所以∠ODE=∠E,从而可证结论成立.
证明如图,连接OD.
因为CD=OA=OD,
所以∠C=∠COD.
又OD=OE,
所以∠OED=∠ODE.
所以∠AOE=∠C+∠OED=∠C+∠ODE=∠C+∠COD+∠C=3∠C,即∠C=∠AOE.
创新应用
11.解因为☉O的半径为4,点A',B'分别是点A,B关于☉O的反演点,点B在☉O上,OA=8,所以OA'·OA=16,解得OA'=2.同理可知,OB'=4,所以点B的反演点B'与B重合.设OA交☉O于点M,连接B'M,因为∠BOA=60°,OM=OB',所以△OB'M为等边三角形,又OA'=A'M=2,所以A'B'⊥OM,所以在Rt△OB'A'中,根据勾股定理,得OB'2=OA'2+A'B'2,即16=4+A'B'2,解得A'B'=2.