PLC锅炉减温水系统设计

合集下载

基于PLC的锅炉水温PID控制系统方案

基于PLC的锅炉水温PID控制系统方案

1 设计任务设计一个基于PLC的锅炉水温PID控制系统,要现锅炉水温为80度,稳态误差1度,最大超调1度。

当锅炉的水温低于或者高于80度时,可以通过外部端子的开关或者远程监控,使系统自动进行PID运算,保证最后锅炉的水温能够维持在80度左右。

2 系统硬件设计2.1 器件选择本温度控制系统采用德国西门子S7-200 PLC。

S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测与控制的自动化。

S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。

因此S7-200系列具有极高的性能/价格比。

S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。

此系统选用的S7-200 CPU226,CPU 226集成24输入/16输出共40个数字量I/O 点。

可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。

13K字节程序和数据存储空间。

6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。

2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。

I/O端子排可很容易地整体拆卸。

在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。

在这里我们选择西门子的EM235 模拟量输入/输出模块。

EM235 模块具有4路模拟量输入/一路模拟量的输出。

它允许S7-200连接微小的模拟量信号,±80mV围。

用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。

所有连到模块上的热电偶必须是一样类型。

基于PLC系统的锅炉内胆水温控制系统设计

基于PLC系统的锅炉内胆水温控制系统设计

基于PLC系统的锅炉内胆水温控制系统设计1.引言锅炉是工业生产和生活中常用的热能转化设备之一,用于产生蒸汽或热水。

为了确保锅炉运行安全可靠,以及能够满足不同工况下的需求,锅炉内胆水温控制系统的设计十分重要。

2.系统结构设计锅炉内胆水温控制系统主要由PLC控制器、传感器、执行器和人机界面组成。

2.1PLC控制器PLC控制器是系统的核心,用于获取传感器反馈的温度信号,并根据设定的控制策略调整执行器的工作状态。

PLC控制器具有良好的实时性、可靠性和通信能力。

2.2传感器传感器用于测量锅炉内胆水温度,并将其转化为电信号发送给PLC控制器。

常用的传感器有热电偶和温度传感器。

热电偶适用于高温环境,具有较高的测量精度;温度传感器则适用于一般工况,有多种类型可供选择。

2.3执行器执行器根据PLC控制器的指令,调节锅炉内胆的工作状态,以实现水温的控制。

常用的执行器有电动调节阀和电加热器。

电动调节阀通过改变水流量来调节水温;电加热器则通过加热元件加热水体。

2.4人机界面人机界面用于人机交互操作,显示当前的水温、设定温度和控制状态,以及提供参数调整和报警信息等功能。

一般使用触摸屏作为人机界面,操作简单直观。

3.系统控制策略设计锅炉内胆水温控制系统的控制策略可以根据实际需求进行优化设计。

常用的控制策略有比例控制、比例积分控制和模糊控制等。

3.1比例控制比例控制根据当前的温度误差大小,调节执行器的开度。

开度与误差成正比,以获得较好的稳态和动态响应。

3.2比例积分控制比例积分控制在比例控制基础上加入积分项,用于补偿比例控制的静差。

通过积分项的积累,使负反馈控制系统具有零静差特性。

3.3模糊控制模糊控制可以根据实际的工作状态,自适应地调整控制策略。

通过建立模糊规则库,根据当前温度误差和变化率等信息,确定输出控制量。

4.系统硬件设计根据设计需求,选择合适的硬件设备进行系统实现。

主要包括PLC控制器、传感器、执行器和人机界面等。

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统毕业设计

目录1 绪论 (1)1.1课题背景及研究目的和意义 (1)1.2国内外研究现状 (1)1.3项目研究内容 (2)2 PLC和组态软件基础 (3)2.1可编程控制器基础 (3)2.2组态软件的基础 (5)3 PLC控制系统的硬件设计 (7)3.1PLC控制系统设计的基本原则和步骤 (7)3.3系统整体设计方案和电气连接图 (9)3.4PLC控制器的设计 (10)4 PLC控制系统的软件设计 (13)4.1PLC程序设计的方法 (13)4.2编程软件STEP7--M ICRO/WIN概述 (13)4.3程序设计 (15)5组态画面的设计 (25)5.1组态变量的建立及设备连接 (25)5.2创建组态画面 (28)6系统测试 (32)6.1启动组态王 (32)6.2实时曲线观察 (32)6.3分析历史趋势曲线 (33)6.4查看数据报表 (35)6.5系统稳定性测试 (36)总结 (38)致谢 (39)参考文献 (40)摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。

电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。

目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。

基于PLC的锅炉供暖监控系统设计

基于PLC的锅炉供暖监控系统设计

4、监控界面设计技术
4、监控界面设计技术
在上位机监控界面方面,我们采用了组态软件来设计监控界面。组态软件是 一种广泛使用的工业自动化监控软件开发工具,它支持多种图形元素和控件,可 以方便地实现实时数据展示、报警提示、历史数据查询等功能。我们根据锅炉的 实际运行情况,设计了相应的监控界面,并编写了相关的脚本代码,以实现对锅 炉运行数据的实时展示和报警提示等功能。
2、控制技术
2、控制技术
在控制方面,我们采用了PID(比例-积分-微分)控制算法来实现对锅炉的燃 烧和给水控制。PID控制是一种经典的连续控制系统,它通过比较设定值与实际 值之间的误差来计算控制量,实现对被控对象的精确控制。我们根据锅炉的实际 情况,对PID控制算法进行了相应的调整和优化,以实现对锅炉的燃烧和给水系 统的有效控制。
二、关键技术
1、数据采集技术
1、数据采集技术
在数据采集方面,我们采用了高精度传感器和PLC模拟量输入模块,实现了对 锅炉运行参数的实时监测。传感器包括温度传感器、压力传感器和水位传感器等, 它们将采集到的信号通过变送器转换为标准的电信号,再通过PLC模拟量输入模 块输入到PLC中进行数据处理。
一、系统需求与设计
一、系统需求与设计
锅炉供暖系统的主要任务是维持锅炉中水的温度在设定的范围内,同时也要 确保供暖设备的正常运行。因此,系统的需求主要包括:
一、系统需求与设计
1、实时监测锅炉的水温、压力等参数; 2、通过调节锅炉的燃烧器输出,控制水温; 3、保障供暖设备的稳定运行;
一、系统需求与设计
三、应用效果
3、提高了管理效率。通过远程监控锅炉的运行状态,可以在上位机上实现锅 炉的集中管理和监控,从而提高了管理效率。
谢谢观看

毕业设计基于PLC和组态技术的锅炉水温串级控制系统设计

毕业设计基于PLC和组态技术的锅炉水温串级控制系统设计

摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。

下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。

上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。

上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。

锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。

锅炉内胆与夹套构成串级控制。

由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。

串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。

综合以上得到一个品质比较高的控制系统。

关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。

基于PLC锅炉温度控制系统的设计报告.doc

基于PLC锅炉温度控制系统的设计报告.doc

基于PLC锅炉温度控制系统的设计报告.doc一、设计目的本设计旨在搭建一个基于PLC的锅炉温度控制系统,通过对锅炉水温度的检测和控制,实现锅炉水温度的稳定控制,提高锅炉的工作效率,确保锅炉的稳定运行,降低发生事故的概率,保证工业生产的平稳进行。

二、设计内容1、系统硬件设计2、系统软件设计3、系统调试与实验三、系统设计的可行性分析本系统采用PLC作为控制核心,辅以温度传感器,执行元件等辅助部件,相比于传统的控制方法,其具有反应速度快,可靠性高,维护方便等优点,所以具有高度的可行性。

四、系统工作流程1、温度传感器将温度信号传输给PLC控制器2、PLC控制器根据设定的温度值和实时检测的温度值进行比较,判断当前温度状态3、根据判断结果,控制PLC输出的控制信号,控制加热电源调整电压,使锅炉水温度达到设定值4、如温度达到设定值,系统返回到检测阶段,进行下一轮温度检测和控制,如温度未达到设定值,锅炉继续加热,直至达到设定值,系统返回到检测阶段。

五、系统设计的技术要点1、采用模拟信号采集电路;2、采用PID算法控制,通过比较设定值和实际值来调节加热元件输出;3、使用触摸屏界面设计,用户可以通过界面设置温度值和查询运行状态;4、前后台通信采用Modbus协议。

六、系统检测与调试本系统设计完成后,需要进行硬件和软件的实现,并进行整体的调试测试,工程师需严格按照设计流程,全面检查各个部件的连接情况和参数设置,确保系统能够正常稳定地运行,运行过程中出现问题要及时解决。

七、总结与展望本设计成功地搭建了基于PLC的锅炉温度控制系统,系统具有实时性强,稳定性高,调节精度高等优点,提高了设备工作效率,大大降低了工业生产过程中锅炉事故的发生可能性。

在未来的研究中,可以通过结合智能算法等技术,进一步优化系统设计,提升锅炉温度控制系统的性能和应用范畴。

基于plc的锅炉控制系统的设计方案

基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。

以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。

-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。

2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。

-压力传感器:监测锅炉的压力情况。

-液位传感器:监测水箱水位,确保水位在安全范围内。

-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。

3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。

-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。

4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。

-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。

5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。

-设置报警系统,当参数超出设定范围时及时警示操作员。

6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。

7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。

-测试程序逻辑,确保系统稳定可靠,符合设计要求。

以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。

在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

基于PLC的锅炉温度控制系统_毕业设计1 精品

基于PLC的锅炉温度控制系统_毕业设计1 精品

河南职业技术学院毕业设计(论文)题目PLC的锅炉温度控制系统系(分院)电气工程系学生姓名孔永婷学号11112036专业名称电气自动化指导教师徐瑞丽2013年11月8日目录摘要 (1)1.1课题背景 (1)1.2项目内容 (2)第二章 PLC和组态软件 (3)2.1可编程控制器基础 (3)2.1.1可编程控制器的产生和应用 (3)2.1.2可编程控制器的组成和工作原理 (3)2.1.3可编程控制器的分类及特点 (5)2.2组态软件的基础 (6)2.2.1组态的定义 (6)2.2.2组态王软件的特点和仿真的的基本方法 (6)第三章 PLC控制系统的硬件设计 (7)3.1 PLC控制系统设计的基本原则和步骤 (7)3.1.1 PLC控制系统设计的基本原则 (7)3.1.2 PLC控制系统设计的一般步骤 (7)3.1.3 PLC程序设计的一般步骤 (8)3.2 PLC的选型和硬件配置 (9)3.2.1 PLC型号的选择 (9)3.2.2 S7-200CPU的选择 (9)3.2.3 EM235模拟量输入/输出模块 (10)3.2.4 热电式传感器 (10)3.2.5 可控硅加热装置简介 (10)3.3 系统整体设计方案和电气连接图 (11)3.4 PLC控制器的设计 (11)3.4.1 控制系统数学模型的建立 (11)3.4.2 PID控制及参数整定 (12)第四章 PLC控制系统的软件设计 (14)4.1 PLC程序设计的方法 (15)4.2 编程软件STEP7--Micro/WIN 概述 (15)4.2.1 STEP7--Micro/WIN 简单介绍 (15)4.2.2 计算机与PLC的通信 (16)4.3 程序设计 (16)4.3.1程序设计思路 (16)4.3.2 PID指令向导 (16)4.3.3 控制程序及分析 (17)第五章组态画面的设计 (21)5.1组态变量的建立及设备连接 (21)5.1.1新建项目 (21)5.2创建组态画面和主画面 (22)5.2.2新建PID参数设定窗口 (23)5.2.3新建实时曲线 (23)5.2.5新建报警窗口 (24)第六章系统测试 (25)6.1启动组态王 (26)6.2实时曲线观察 (26)6.3查看数据报表 (27)6.4系统稳定性测试 (28)结束语 (29)参考文献 (30)基于PLC的锅炉温度控制系统摘要从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

基于PLC锅炉水温控制系统设计

基于PLC锅炉水温控制系统设计

基于PLC锅炉水温控制系统设计1. 引言1.1 背景锅炉是工业生产中常用的热能设备,用于产生蒸汽或热水,供应能量给生产过程中的各个环节。

在锅炉的运行过程中,水温是一个重要的参数,对于保证锅炉运行稳定、安全、高效具有重要意义。

传统的锅炉水温控制方法主要依靠人工操作,存在操作不准确、响应速度慢等问题。

因此,设计基于PLC(可编程逻辑控制器)的锅炉水温控制系统可以提高控制精度和响应速度。

1.2 目的本文旨在设计一个基于PLC锅炉水温控制系统,通过对传感器信号进行采集和处理,并通过PLC进行逻辑判断和控制输出信号,实现对锅炉水温进行精确可靠地控制。

2. 锅炉工作原理及参数2.1 锅炉工作原理锅炉是通过将液体(通常是水)加热至蒸发状态以产生蒸汽或提供加热能量。

其主要部件包括:进水系统、燃烧系统、排烟系统、水循环系统等。

2.2 锅炉水温参数锅炉水温是指锅炉内部循环水的温度,它是锅炉运行稳定性和效率的重要指标。

在正常运行中,锅炉水温应在一定的范围内保持稳定。

过高或过低的水温都会对锅炉运行造成不利影响。

3. PLC控制系统设计3.1 PLC控制原理PLC是一种用于工业自动化控制的电子设备,它能够根据预设的程序和逻辑进行自动化控制。

PLC主要由处理器、输入/输出模块和编程设备等组成。

3.2 PLC应用于锅炉控制系统设计将PLC应用于锅炉控制可以实现自动化程度高、响应速度快等优点。

通过对传感器信号进行采集和处理,PLC可以实时监测并判断锅炉内部参数,并根据预设逻辑进行相应的输出信号,实现对锅炉水温的精确控制。

4. 系统硬件设计4.1 传感器选择选择适合的传感器对于准确获取锅炉水温至关重要。

常用的传感器包括热电偶、热电阻等。

在选择传感器时需要考虑其测量范围、精度和适应环境等因素。

4.2 PLC选型根据锅炉控制系统的需求,选择合适的PLC型号和规格。

需要考虑PLC的输入/输出点数、通信接口、运算速度等因素。

4.3 控制执行机构选型控制执行机构用于实现对锅炉水温的控制,常用的包括电动阀门、变频器等。

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计

基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。

锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。

整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。

PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。

它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。

2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。

它们与PLC之间通过信号线或总线进行连接。

4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。

它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。

5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。

它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。

6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。

这可以通过备用电源或UPS(不间断电源)来实现。

综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。

本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。

控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。

基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。

它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。

在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。

基于PLC的锅炉温度控制系统的设计-开题报告1

基于PLC的锅炉温度控制系统的设计-开题报告1
PLC技术在温度监控系统上的应用从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计,控制对象数学模型的建立、控制算法的选择和参数的整定、人机界面的设计等。论文通过对德国西门子公司的S7-200系列PLC控制器,温度传感器将检测到的实际炉温转化为电压信号,经过模拟量输入模块转换成数字信号送到PLC中进行PID调节,PID控制器输出转化为0-10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率。对于监控画面,利用亚控公司的组态软件“组态王“
2011年03月24日
教研室审查意见:
教研室主任(签字):
2011年03月25日
2
1
2011届本科毕业设计(论文)开题报告
3.进度安排
4月8日---4月27日系统分析与资料整理收集阶段
4月28日---5月18日系统设计阶段
5月19日---5月25日毕业设计说明书编写
5月26日---6月1日毕业设计说明书修改上交阶段。
指导教师意见:
(对本设计或论文的深度、广度及工作量的评价)
指导教师(签字):
华北科技学院
2011届本科毕业设计(论文)开题报告
1.设计背景或研究意义
电热锅炉的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏。目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
PLC的快速发展发生在上世纪80年代至90年代中期。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。[4]

基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计图书分类号:密级:基于PLC的锅炉加热温度控制系统设计DESIGN OF BOILER TEMPERATURE CONTROL SYSTEM学生学号学生姓名学院名称专业名称指导教师摘要本文主要介绍了工业温度控制的发展前景、S7-200系列PLC的基本知识以及锅炉温度控制系统的工作流程、基本原理和组成结构。

通过对锅炉温度控制系统设计要求的分析,给出锅炉温度控制系统的I/O口分配表和系统原理图并且以可编程控制器(PLC)为核心,根据系统的控制要求利用STEP 7编程软件设计系统的梯形图。

该系统以电热锅炉加热管为被控对象,锅炉水温为被控参数同时兼顾锅炉内压力及水位等条件,以PLC为控制器,锅炉加热管通电时间为控制参数设计了一个温度控制系统。

其中调用了西门子公司PLC中自带的PID模块,以更简洁更方便的方法完成了锅炉温度的自动控制设计。

本文从系统的工作原理、系统硬件选型、系统软件编程以及组态监控画面设计等方面进行阐述。

关键词电热锅炉;温度控制;PLC;PID;固态继电器AbstractThis article focuses on the industrial development prospects of temperature control, basic knowledge of S7-200 series PLC as well as the boiler temperature control system made up of work processes, principles, and structure.Through the analysis of boiler temperature control system design, I/O port allocation table of temperature control system of the boiler,system schematics and a programmable logic controller (PLC) as the core, according to the control system requires the use of STEP 7 programming software system design of ladder diagram.The system to electric boiler heating tubes to a charged object, parameters of boiler water temperature to be controlled both the pressure and the water level in the boiler and other conditions, the PLC controller, boiler heating power parameter design of a temperature control system for control.Which is called the Siemens PLC comes with PID modules,and a more concise and more convenient way to complete the automatic control system design of the boiler temperature.This paper described the working principle of the system, system hardware selection, system software programming and configuration of the monitor screen design.Keywords Electric boiler Temperature control PLC PID Solid State Relays目录1 绪论 (1)1.1 课题背景及意义 (1)1.2 国内外研究现状 (1)1.3 本文研究内容 (2)2 温度控制系统设计 (3)2.1 温度控制系统工作原理 (3)2.2 PID控制及参数整定 (3)PID控制原理 (3)PID参数的整定 (4)3 系统硬件设计 (7)3.1 PLC的产生和特点 (7)PLC的产生与应用 (7)PLC的特点 (7)3.2 PLC控制系统设计的基本原则和步骤 (7)PLC控制系统设计的基本原则 (8)PLC控制系统设计的一般步骤 (8)3.3 系统整体设计方案 (9)3.4 PLC选型 (9)PLC的主机模块 (9)PLC的I/O扩展模块 (10)PLC的选择 (10)3.5 传感器选型 (10)温度传感器选型 (10)PT100温度变送器选型 (11)压力传感器选型 (11)液位传感器选型 (11)3.6 固态继电器 (12)3.6.1 固态继电器的原理分析 (12)3.6.2 固态继电器的组成 (12)固态继电器的优缺点 (13)3.7数码管 (13)3.8 系统工作流程及硬件接线 (14)3.8.1 系统工作流程 (14)3.8.3 系统主电路图 (14)3.8.4 系统控制电路图 (14)3.8.5 PLC硬件连接图 (15)3.8.6 I/O端口分配 (16)4 软件设计 (19)4.1 系统流程图 (19)4.2 PID控制器的参数整定 (19)4.3 PLC程序梯形图设计 (23)5 人机界面设计 (33)5.1 组态软件基础 (33)组态定义 (33)组态王软件的特点 (34)组态王软件仿真的基本方法 (34)5.2 组态变量的建立及设备连接 (34)新建项目 (34)新建设备 (35)新建变量 (36)变量与PLC的传输 (37)5.3 创建组态画面 (38)新建主画面 (38)新建PID参数设定窗口 (39)新建实时曲线 (39)新建历史曲线 (40)新建报警窗口 (40)6 系统仿真及测试 (42)6.1 系统运行 (42)6.2 运行结果 (42)参数设定画面 (42)实时趋势曲线 (43)历史趋势曲线 (43)报警窗口 (43)结论 (45)致谢.................................................................................................................. 错误!未定义书签。

基于PLC系统的锅炉内胆水温控制系统设计

基于PLC系统的锅炉内胆水温控制系统设计

基于PLC系统的锅炉内胆水温控制系统设计————————————————————————————————作者:————————————————————————————————日期:1 PLC构成及WinCC的组态采用WinCC组态技术设计多机联网运行的实时监控系统,核心思想是通过计算机超强的处理能力,以软件实现实际生产过程变化,把传统控制中进行人工操作或数据分析与处理、数据输出与表达的硬件,利用方便的PC机软硬件代替.建立WinCC组态监控系统.首先启动WinCC,建立一个单用户项目——添加通讯驱动程序--选择通道单元-—输入逻辑连接名,确定与S7—300端口的通讯连接。

然后在驱动程序连接下建立结构类型和元素,给过程变量分配一个在PLC中的对应地址(地址类型与通讯对象相关),给除二进制变量外的过程变量和内部变量设定上限值和下限值(当过程值超出上限值和下限值的范围时,数值将变为灰色,并且不可以再对其进行任何处理).接着创建和编辑主导航画面、单台空压机组态画面、远程监控画面、分析诊断画面、数据归档画面、报警显示画面、报警在线限制值画面、报表打印画面、用户登录方式画面等.对画面中添加的按钮、窗口和静态文本等,进行组态变量连接、状态显示设置等等.再对远程控制画面中的启动/停止按钮进行变量连接,设置手动控制和自动控制两种方式,并且手动控制为高级控制方式。

通过设置随变量值的变化范围而改变颜色的比功率棒图进行故障诊断分析;通过对过程值的归档,建立历史和当前的表格与曲线两种状态的监控界面;利用报警和报表打印等,实现信息上报、及时反馈的功能,实现最佳的生产状态监测控制。

还可通过用户管理权限的设置,为不同级别的用户设置权限和等待空闲时间,以更好地安全防护。

1。

1 PLC控制柜的组成(1)电源部分(2) CPU模块西门子S7-300PLC,型号为CPU315-2 DP,它集成了MPI接口,可以很方便的在PLC站点、操作站OS、编程器PG、操作员面板建立较小规模的通讯。

基于PLC的锅炉温度控制系统设计.

基于PLC的锅炉温度控制系统设计.

毕业设计(论文)任务书
1、主要内容
利用三菱PLC实现锅炉温度的自动控制。

2、基本要求
1、掌握电热锅炉控制系统的工作原理。

以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以三菱PLC为控制器,实现锅炉温度的自动控制。

3、使用组态软件进行监控。

4、有必要的参数显示、故障检测和保护环节。

1、设计应贯彻最新国家标准;
2、根据控制选择PLC型号,分配I/O端口;
、设计I/O电路,选择电器元件;
4、绘制各信号灯工作时序图,电气控制系统图,梯形图,绘制用户程序短语表并模拟调试;
5、编制元件清单;
、编写设计、使用说明书。

四、应收集的资料及参考文献
[1]《小型可编程序控制器原理与实践》辽宁科技出版社
[2]《可编程控制器应用技术》机械工业出版社
[3]《建筑电气控制技术》窦晓霞高等教育出版社
[4]《现代建筑电气控制技术应用》陈志新机械工业出版社
五、进度计划
准备、搜集资料、开题报告第 1-2周
分析、确定方案第 3-4周
系统软硬件设计、模拟调试第5-10周
整理、撰写、编辑论文(打印)第11-15周
答辩第16周
tdppspan2、pspan三、主要技术指标(或研究方法)pspan3pspan6
题目基于PLC的锅炉温度控制系统设计
学生姓名学号




承担指导任务单位导师
姓名




教研室主任签字时


月日。

基于PLC控制的热水锅炉控制系统设计

基于PLC控制的热水锅炉控制系统设计

引言目前我国供暖锅炉以燃煤链条锅炉为主,燃用的主要是中低质煤,而且锅炉房管理水平不高,一直沿用间断运行方式,锅炉技术含量低,锅炉的自动化控制技术落后,造成了严重的浪费和环境污染,据了解我国目前拥有工业锅炉50万台,每年消耗的燃煤占全国原煤产量的三分之一约4亿吨,锅炉每年排放烟尘约620万吨,CO2约510万吨,此外还有大量的NO2有害气体,成为我国大气烟煤型污染的主要来源之一,尤其是燃煤排放的CO2气体所引起的温室效应,早已引起国际关注,所以使用清洁能源已势在必行。

中国的锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的永恒产业,且在中国还是一个不断发展的产业。

20世纪80年代以后,中国的经济发生了突飞猛进的变化,锅炉行业更加突出,全国锅炉制造企业增加近二分之一,并形成了独立开发研制一代又一代新产品的能力,产品的技术性能已接近发达国家水平。

锅炉是经济发展时代不可缺少的商品,未来将如何发展,是非常值得研究的。

关键词:锅炉燃气燃烧机自动化PLC 温度控制触摸屏目录1概述................................................................... (01)1.1 燃气热水锅炉特点 (03)1.2锅炉自动化的意义 (03)2.锅炉PLC自动控制系统设计........................................................04~28 2.1 锅炉外观示意图. (04)2.2 锅炉控制流程图 (05)2.3 热水锅炉控制要求.......................................................06~08 2.4 PLC、模块、触摸屏的选型. (09)2.5 硬件分配表 (10)2.6 I/O地址分配表 (11)2.7 PLC接线图 (12)2.8 PLC程序说明...........................................................................12~22 2.9 触摸屏说明...............................................................................23~28 3小结.. (29)4 参考文献 (30)5附件说明 (31)1概述1.1燃气热水锅炉特点燃油燃气锅炉不同于燃煤锅炉,它需要使用燃烧器将燃料喷入锅炉炉膛,采用火室燃烧而无须使用炉排设施。

基于PLC控制的锅炉供热控制系统设计设计说明

基于PLC控制的锅炉供热控制系统设计设计说明

基于PLC控制的锅炉供热控制系统设计1 引言1.1 技术综述自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。

在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表,在各行业广泛应用。

目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。

温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。

目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。

成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。

现在,我国在温度等控制仪表业与国外还有着一定的差距。

温度控制系统大致可分别用3种方式实现,一种是用仪器仪表来控制温度,这种方法控制的精度不高。

另一种是基于单片机进行PID控制,然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC 在这方面却是公认的最佳选择。

随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能。

因此本设计选用西门子S7-300PLC来控制加热炉的温度。

1.2 系统工作原理加热炉温度控制系统基本构成如图1-1所示,它由PLC主控系统、固态继电器、加热炉、温度传感器等4个部分组成。

PLC主控系统图1-1 加热炉温度控制系统基本组成加热炉温度控制实现过程是:首先温度传感器将加热炉的温度转化为电压信号,PLC主控系统内部的A/D将送进来的电压信号转化为西门子S7-300PLC可识别的数字量,然后 PLC将系统给定的温度值与反馈回来的温度值进行比较并经过PID运算处理后,给固态继电器输入端一个控制信号控制固态继电器的输出端导通与否从而使加热炉开始加热或停止加热。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要: (2)关键词: (2)1.1电厂减温水系统介绍 (4)1.1.1火力电厂系统简介 (4)1.1.2电厂汽水控制级简介 (5)1.1.3西门子plc系统——西门子S7 300H PLC (6)1.1.4电厂辅控网组成 (6)1.2火电厂水汽系统 (7)1.3减温水系统原理 (7)2.1上位机系统设计 (9)2.1.1上位机硬件 (9)2.1.2软件设计 (9)2.2下位机PLC控制系统设计 (11)2.2.1下位机控制系统硬件配置 (12)2.2.2硬件系统的冗余设计 (20)2.3系统时钟设计 (26)2.4电源设计 (27)3.1现场总线应用及其安全可靠性的提高 (27)3.1.1现场总线的发展与应用 (27)3.1.2 Profibus现场总线通信协议。

(28)3.1.3系统实时性研究 (30)3.1.3.1冗余设计 (30)3.1.3.2自诊断功能 (31)3.1.3.3缩短主站循环扫描时间 (32)3.1.3.4通信优先级设置 (33)3.2工业以太网实时性问题及解决方案。

(33)3.2.1工业以太网通信原理 (33)3.2.2工业以太网实时性问题的研究 (34)总结和展望 (36)致谢: (37)参考文献: (37)PLC锅炉减温水系统的设计摘要:要问现在是什么时代,现在既不是蒸汽时代也不是原子能时代,而是电气时代,也就是说绝大多数的能量是以电能的形式传输到用户的手中。

电能是清洁能源,具有传输方便,可控和易于控制的特点。

所以发电厂自然是当今社会不可缺少的一部分,承担着供应社会能量的主要责任。

现在主要的发电厂分为:核能发电厂、水力发电厂、风力发电厂、太阳能发电厂、火力发电厂等。

但是有一个问题不得不提出,水力、风力、太阳能发电厂的负荷受到天气的制约,近期以来因为福岛核电站的事故,国内的核能发电场纷纷下马。

在现在这个历史时期乃至以后一个相当长的历史时期内,火力发电厂在承担符合的工作中起着相当大的作用。

在火力发电厂中,水汽品质是一项重要指标。

好的水汽品质可以提高热力设备的性能,延长设备的使用寿命,节约能源,减少事故发生率。

反之水汽品质的失调将会给电厂的热工设备造成不同程度的损伤,给机组的安全和电厂稳经济运行带来隐患。

所以过、再热器减温水系统是电厂热工过程的重要环节。

本文根据水汽采样的工艺特点,从硬件和控制算法两方面着手设计火力发电厂过、再热器减温水系统控制系统,采用上位机和下位机相结合的系统。

上位机用工业计算机和组态软件构成友好的人机界面,方便了系统的操作;下位机采用西门子S7 300H PLC进行数据采集和过、再热器减温水系统控制。

用工业以太网构成管理层,负责上位机和下位机之间、本系统和电厂其它系统之间的通信。

现场总线构成现场设备的控制层,负责现场设备和PLC间的数据传输。

关键词:PLC 锅炉减温水系统火力发电厂西门子上位机Summary:Want to ask now is what ages, now since not is a steam ages also not is an atomic ages, but electricity ages, also be say that the energy of great majority delivers the customer's hand by the form of electric power.The electric power is to sweep energy, have to deliver convenience, can control and be easy to the characteristics of control.So the power plant nature is one part of social indispensability nowadays, undertake to supply the main responsibility of social energy.The main power plant is divided into now:Nuclear energy power plant, hydraulic power plant, wind power factory, solar energy power plant, and thermal power plant...etc..But have a problem have to put forward, the burden of the water power, wind force and solar energy power plant is subjected to check and supervision of the weather, in the near future give or get an electric shock a station because of pit in the blessing island of trouble, the local nuclear energy generates electricity a field to dismount in succession.BE going to during this history period of now a later very long inside the history period, thermal power plant at undertake to match of there isvery big function in the work.In the thermal power plant, water vapor quality is an important index sign.The good water vapor quality can raise the function of thermodynamic energy equipments and prolong the service life of equipments, economy energy, reduce a trouble incidencerate.Contrarily the maladjustment of water vapor quality will give the hot work equipments of power station result in the harm of different degree, give machine set of safety and power station the steady economy movement bring concealed suffer from.So lead, again hot machine's reducing Water’s temp's system is a power station hot the important link of the work process.This text begins to design thermal power plant to lead from the hardware and the control calculate way both side according to the craft characteristics of water vapor sample, again the hot machine reduce Water’s temp system control system, adopt the place of honor machine and next machine to combine together of system.The place of honor machine is constituted with industrial calculator and set Tai software friendly of man-machine interface, convenience the operation of system;The next machine adopts Siemens S7300 H PLC to carry on a data to collect and leads, again the hot machine reduce Water’s temp system control.Constitute a management layer with the industrial ether net, be responsible for the correspondence of of the , this system and power station other systems of place of honor machine and next machine.On the scene the total line constitutes the spot the control layer of the equipments, be responsible for the spot equipments and the data of PLC deliver.Keyword:The PLC boiler reduces water’s temp the system thermal power plant Siemens place of honor machine1.1电厂减温水系统介绍1.1.1火力电厂系统简介火电工艺介绍火电厂的三大系统 之一燃烧系统包括输煤、磨煤、锅炉与燃烧、风烟系统、灰渣系统等环节。

火电厂的三大系统 之二汽水系统由锅炉, 汽轮机, 凝汽器, 除氧器, 加热器等构成主要包括: 给水系统 冷却水系统 补水系统输煤皮带自输煤系统火电厂的三大系统之三电气系统1.1.2电厂控制级功能简介:厂级管理工作站的功能:管理全厂的运行自动化。

即全厂经济管理(EDC);自动发电控制(AGC);自动电压控制(AVC);事故分析及事故处理;历史数据保存及检索管理;系统授权管理;运行报表打印等。

操作员工作站 操作员工作站是全厂集中监视和控制的中心及人机接口,用来实现火力电厂的实时图形显示、各种事件的发布、各种报表显示、报警和复归的显示、系统自诊断信息的显示、设备的实时控制操作和调节、系统配置等各种操作处理。

相关文档
最新文档