(遵义专版)2018年中考数学总复习 第一篇 教材知识梳理篇 第3章 函数及其图象阶段测评(精练)试题

合集下载

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第1章数与式第3节代数式及整式运算精讲试题20180108245

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第1章数与式第3节代数式及整式运算精讲试题20180108245

第三节 代数式及整式运算,遵义五年中考命题规律)纵观遵义近五年中考,每年都考查了整式的运算,以选择题或填空题呈然会在选择题中考查整式运算,也不排除在填空或计算题中考查,难度不,遵义五年中考真题及模拟)整式运算1.(2017遵义中考)下列运算正确的是( B )A .2a 6-3a 6=a 6B .a 7÷a 5=a 2C .a 2·a 3=a 6D .(a 2)3=a 52.(2016遵义中考)下列运算正确的是( D )A .a 6÷a 2=a 3B .(a 2)3=a 5C .a 2·a 3=a 6D .3a 2-2a 2=a 23.(2015遵义中考)下列运算正确的是( D )A .4a -a =3B .2(2a -b)=4a -bC .(a +b)2=a 2+b 2D .(a +2)(a -2)=a 2-44.(2014遵义中考)计算3x 3·2x 2的结果是( B )A .5x 5B .6x 5C .6x 6D .6x 95.(2014遵义中考)若a +b =22,ab =2,则a 2+b 2的值为( B )A .6B .4C .3 2D .2 36.(2013遵义中考)计算⎝ ⎛⎭⎪⎫-12ab 23的结果是( D )A .-32a 3b 6B .-12a 3b 5C .-18a 3b 5D .-18a 3b 67.(2015遵义中考)如果单项式-xyb +1与xa -2y 3是同类项,那么(a -b)2 015=__1__.用整式概括变化规律8.(2017遵义中考)按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是__299201__.9.(2016遵义中考)字母a ,b ,c ,d 各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,下表是三种组合与连接的对应表.由此可推断图形“—,△)“的连接方式为__a⊕c __.10.(2015遵义中考)按一定规律排列的一列数依次为:45,12,411,27,…,按此规律,这列数中的第10个数与第16个数的积是__1100__.11.(2014遵义中考)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 014次后,骰子朝下一面的点数是__3__.12.(2016遵义十一中二模)用同样大小的小圆按如图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需要3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n 个图形需要小圆__12n(n +1)__个.(用含n 的代数式表示),中考考点清单)代数式和整式的有关概念1.代数式:用运算符号(加、减、乘、除、乘方、开方)把__数__或表示__数的字母__连接而成的式子叫做代数式.2.代数式的值:用__数值__代替代数式里的字母,按照代数式里的运算关系,计算后所得的__结果__叫做代数式的值.3.代数式的分类代数式⎩⎨⎧有理式⎩⎨⎧整式⎩⎪⎨⎪⎧ 单项式 多项式分式无理式【温馨提示】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式; (2)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a ;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.整式的相关概念4. 单项式概念,由数与字母的__积__组成的代数式叫做单项式(单独的一个数或一个__字母__也是单项式). 系数,单项式中的__数字__因数叫做这个单项式的系数.次数,单项式中的所有字母__指数的和__叫做这个单项式的次数. 续表 多项式概念,几个单项式的__和__叫做多项式. 项,多项式中的每个单项式叫做多项式的项.次数,一个多项式中,__最高次__的项的次数叫做这个多项式的次数.整式,单项式与__多项式__统称为整式.同类项,所含字母__相同__并且相同字母的指数也__分别相同__的项叫做同类项.所有的常数项都是__同类__项.整式的运算5.类别,法则整式加减,(1)去括号;(2)合并__同类项__ 幂的运算,同底数幂相乘,a m·a n=__am +n__(m ,n 都是整数)幂的乘方,(a m )n=__a mn__(m ,n 都是整数) 积的乘方,(ab)n=__a n b n__(n 是整数) 同底数幂相除,a m÷a n=__a m -n__(a≠0,m ,n 都是整数)整式的乘法,单项式乘以多项式,m(a +b)=__am +bm__多项式乘以多项式,(a +b)(m +n)=__am +an +bm +bn__ 乘法公式,平方差公式,(a +b)(a -b)=__a 2-b 2__完全平方公式,(a±b)2=__a 2±2ab +b 2__【方法点拨】(1)在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为0;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式).合并同类项的关键:正确判断同类项.(2)同底数幂的除法与同底数幂的乘法互为逆运算,可用同底数幂的乘法检验同底数幂的除法是否正确.(3)遇到幂的乘方时,需要注意:当括号内有“-”号时,(-a m )n=⎩⎪⎨⎪⎧-a mn(n 为奇数), a mn (n 为偶数).求代数式值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析已知代数式与欲求代数式之间结构的异同,从整体上把握解题思路,寻求解题的方法.,中考重难点突破)列代数式【例1】(2017咸宁中考)由于受H 7N 9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg .设3月份鸡的价格为m 元/kg ,则( )A .m =24(1-a%-b%)B .m =24(1-a%)b%C .m =24-a%-b%D .m =24(1-a%)(1-b%)【解析】本题主要考查代数式的列法,主要是有关下降的百分率问题. 【答案】D【例2】(2017邵阳中考)如图所示,边长为a 的正方形中阴影部分的面积为( )A .a 2-π⎝ ⎛⎭⎪⎫a 22B .a 2-πa 2C .a 2-πaD .a 2-2πa【解析】阴影部分面积为正方形面积减去圆的面积. 【答案】A1.(2017岳麓校级一模)x 的2倍与y 的和的平方用代数式表示为( A )A .(2x +y)2B .2x +y 2C .2x 2+y 2D .2(x +y)2代数式求值【例3】(2017甘肃中考)若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( )A .-6B .6C .18D .30【解析】本题应先化简,再利用整体思想进行代换. 【答案】B2.(2017重庆中考)若x =-3,y =1,则代数式2x -3y +1的值为( B )A .-10B .-8C .4D .103.已知-a +2b +5=0,则2a -4b -3的值是( A )A .7B .8C .9D .104.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,……,第2 017次输出的结果为( A )A .3B .4C .6D .95.(2017岱岳中考模拟)若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代表式a2 015+2 016b +c2 017的值为( D )A .2 015B .2 016C .2 017D .0整式的概念及运算【例4】(2017常德中考)若-x 3y a与x by 是同类项,则a +b 的值为( )A .2B .3C .4D .5【解析】根据同类项的定义可知a =1,b =3,故a +b =4. 【答案】C6.(2017雁塔中考)在代数式x 2+5,-1,x 2-3x +2,π,x 2+1x ,x +13中,整式有( C )A .3个B .4个C .5个D .6个7.(2017裕安中考)已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( A )A .-5x -1B .0C .2x +3D .8x -78.(2017海曙中考)已知m -n =100,x +y =-1,则代数式(n +x)-(m -y)的值是( D )A .99B .101C .-99D .-1019.(2017长春中考)先化简,再求值:2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.解:原式=2x 2-[-x 2+2xy -2y 2]-(2x 2-2xy +4y 2) =2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2,当x =12,y =-1时,原式=-74.10.(2017东营中考)已知多项式A =3a 2-6ab +b 2,B =-2a 2+3ab -5b 2,当a =1,b =-1时,试求A +2B 的值.解:A +2B =3a 2-6ab +b 2+2(-2a 2+3ab -5b 2)=3a 2-6ab +b 2-4a 2+6ab -10b 2=-a 2-9b 2, 当a =1,b =-1 时原式=-12-9×(-1)2=-10.11.(2017鸡西中考)已知,当a =1,b =3时,求多项式4a 2b 2-a 2b -3-2(2a 2b 2-a 2b -b 2)-(a 2b -3b 2)的值.张强做题时把条件a =1错抄成了a =-1,而刘明没抄错题,但他们计算出来的结果都是一样的,你知道这是怎么回事吗?说明理由,同时计算出正确答案.解:原式=4a 2b 2-a 2b -3-4a 2b 2+2a 2b +2b 2-a 2b +3b 2=5b 2-3, 所以多项式与a 的值无关, 当b =3时,∴原式=5×32-3=42.。

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第4节一元一次不等式组及应用精讲

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第4节一元一次不等式组及应用精讲

第四节一元一次不等式(组)及应用,遵义五年中考命题规律),遵义五年中考真题及模拟)一元一次不等式及其解法1.(2017遵义中考)不等式6-4x≥3x-8的非负整数解为(B)A.2个B.3个C.4个D.5个2.(2015遵义中考)不等式3x-1>x+1的解集在数轴上表示为(C),A) ,B),C) ,D)3.(2016遵义一中二模)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是(B)A.a-c>b-c B.a+c<b+cC.ac>bc D.ab<cb4.(2016遵义二中一模)若关于x的不等式(1-a)x>2可化为x<21-a,则a的取值范围是__a>1__.5.(2017改编)我们定义一种新运算:a⊗b=2a-b+ab.(等号右边为通常意义的运算)(1)计算2⊗(-3)的值;(2)解不等式:12⊗x>2,并在数轴上表示其解集.解:(1)∵a⊗b=2a-b+ab,∴2⊗(-3)=2×2-(-3)+2×(-3)=4+3-6=1;(2)由题意得2×12-x +12x >2,解得x <-2.在数轴上表示如图所示.不等式组及其解法6.(2014遵义中考)解不等式组⎩⎪⎨⎪⎧2x +1≥-1,①1+2x 3>x -1,②并把不等式组的解集在数轴上表示出来.解:-1≤x<4,解集在数轴上表示如图所示:列一元一次不等式(组)解应用题7.(2016遵义中考)三个连续正整数的和小于39,这样的正整数中,最大一组的和是(B )A .39B .36C .35D .348.(2013遵义中考)2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266 t 、副食品169 t 全部运到灾区.已知一辆甲种货车同时可装粮食18 t 、副食品10 t ;一辆乙种货车同时可装粮食16 t 、副食品11 t .(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1 500元,乙种货车每辆需付燃油费1 200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?解:(1)设租用甲种货车x 辆,租用乙种货车为(16-x)辆.根据题意,得⎩⎪⎨⎪⎧18x +16(16-x )≥266,①10x +11(16-x )≥169.②由①得x≥5.由②得,x ≤7, ∴5≤x ≤7.∵x 为正整数, ∴x =5或6或7. 因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆; 方案二:租甲种货车6辆,乙种货车10辆; 方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x 辆,租用乙种货车为(16-x)辆,设两种货车燃油总费用为y 元. 由题意,得y =1 500x +1 200(16-x)=300x +19 200. ∵300>0,∴当x =5时,y 有最小值,y 最小=300×5+19 200=20 700(元). ∴选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20 700元.,中考考点清单)不等式的概念及性质1.不等式:一般地,用不等号连接的式子叫做__不等式__.2.不等式的解:能使不等式成立的未知数的__值__叫做不等式的解;一个含有未知数的不等式的解的全体,叫做不等式的__解集__.3.不等式的基本性质:性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向__不变__;性质2:不等式两边同乘(或除)以一个正数,不等号的方向__不变__;性质3:不等式两边同乘(或除)以一个负数,不等号的方向__改变__.【温馨提示】不等式的基本性质是不等式变形的重要依据,性质3不等号的方向会发生改变这是不等式独有的性质.一元一次不等式的解法及数轴表示4.一元一次不等式:只含有__一个__未知数,且未知数的次数是__1次__的不等式,叫做一元一次不等式,其一般形式是__ax+b>0__或ax+b<0(a≠0).5.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)__合并同类项__;(5)系数化为1.6.一元一次不等式的解集在数轴上的表示.【温馨提示】 (1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)解决实际应用题:应紧紧抓住“至多”“至少”“不大于”“不小于”“不超过”“等于”“大于”“小于”等关键词.注意分析题中的不等关系,列出不等式(组),然后根据不等式(组)的解法,结合题意求解.一元一次不等式组的解法及数轴表示7.一元一次不等式组:含有相同未知数的若干个__一元一次__不等式所组成的不等式组叫做一元一次不等式组.8.一元一次不等式组的解集:一元一次不等式组中各个不等式的__解集__的公共部分.9.解一元一次不等式组的步骤(1)先求出各个不等式的__解集__;(2)再利用数轴找它们的__公共部分__;(3)写出不等式组的解集.10.几种常见的不等式组的解集(a<b,且a,b为常数):(如表)续表11.求不等式(组)的特殊解,一方面要先求不等式(组)的__解集__,然后在解集中找__特殊__解.列不等式(组)解应用题12.列不等式(组)解应用题的步骤(1)找出实际问题中的__不等__关系,设定未知数,列出不等式(组); (2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.,中考重难点突破)不等式的概念及性质【例1】已知a ,b ,c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是()A .a +c >b +cB .c -a <c -bC .a c2>b c2D .a 2>ab >b 2【解析】紧扣不等式的基本性质分析. 【答案】D1.(2017株洲中考)已知实数a ,b 满足a +1>b +1,则下列选项错误的是(D ) A .a >b B .a +2>b +2 C .-a <-b D .2a >3b一元一次不等式(组)的解法【例2】(2017黔东南中考)解不等式组⎩⎪⎨⎪⎧x -3(x -2)≥4,2x -15<x +12,并把解集在数轴上表示出来.【解析】分别解出两个不等式的解集,再利用数轴求交集. 【答案】解:由①得:-2x≥-2,即x≤1, 由②得:4x -2<5x +5,即x >-7, 所以-7<x≤1. 在数轴上表示为:2.(2017天门中考)解不等式组⎩⎪⎨⎪⎧5x +1>3(x -1),12x -1≤7-32x ,并把它的解集在数轴上表示出来. 解: 解不等式5x +1>3(x -1),得x >-2, 解不等式12x -1≤7-32x ,得x≤4,则不等式组的解集为-2<x≤4, 将解集表示在数轴上如下:3.(2017常德中考)求不等式组⎩⎪⎨⎪⎧4(1+x )3-1≤5+x2①,x -5≤32(3x -2)②的整数解.解: 解不等式①,得x≤135, 解不等式②,得x≥-47,∴不等式组的解集为:-47≤x≤135,∴不等式组的整数解是0,1,2.4.(2017东明中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2)①,2x -1+3x2≤1②,并写出它的非负整数解. 解:解不等式①,得x≥-1,解不等式②,得x≤3, 所以不等式组的解集为:-1≤x≤3, 所以不等式组的非负整数解为3,2,1,0.根据不等式组的整数解确定字母的取值范围【例3】(2017泰安中考)不等式组⎩⎪⎨⎪⎧2x +9>6x +1,x -k <1的解集为x <2,则k 的取值范围为()A .k >1B .k <12C .k ≥1D .k ≤1【解析】已知含参数不等式组的解集,先把参数当常数解出,再对比进行推理解决问题. 【答案】C5.(2017宿迁中考)已知 4<m <5,则关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,4-2x <0的整数解共有(B )A . 1个B . 2个C . 3个D . 4个6.(2017重庆中考)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a 有且仅有四个整数解,且使关于y 的分式方程a y -2+22-y=2有非负数解,则所有满足条件的整数a 的值之和是(B )A .3B .1C .0D .-37.(2017黄石中考)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1),12x ≤8-32x +2a 恰好有两个整数解,求实数a 的取值范围. 解:解5x +1>3(x -1),得x >-2,解12x≤8-32x +2a ,得x≤4+a. 则不等式组的解集是:-2<x≤4+a. 不等式组只有两个整数解,是-1和0. 根据题意得:0≤4+a <1. 解得-4≤a<-3.8.(2017绵阳中考)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5 400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷.根据题意,得⎩⎪⎨⎪⎧x +3y =1.4,2x +5y =2.5,解得⎩⎪⎨⎪⎧x =0.5,y =0.3. 答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10-m)台.根据题意,得w =300×2m+200×2(10-m)=200m +4 000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5 400元,∴⎩⎪⎨⎪⎧2×0.5m+2×0.3(10-m )≥8,200m +4 000≤5 400,解得5≤m≤7,∴有三种不同方案.∵w =200m +4 000中,200>0,∴w 值随m 值的增大而增大,∴当m =5时,总费用取最小值,最小值为5 000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5 000元.教后反思:________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________________ ________________________________________________________________________。

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第1章数与式第1节实数的有关概念精讲试题20180108237

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第1章数与式第1节实数的有关概念精讲试题20180108237

第一章 数与式第一节 实数的有关概念,遵义五年中考命题规律)年份 题号题型考查点 分值 总分 2017 1,2 选择题,选择题实数的有关概念,科学记数法3,3 62016 3 选择题 科学记数法 3 32015 1,2 选择题,选择题实数的有关概念,科学记数法3,3 62014 3 选择题 科学记数法 3 320131,2 选择题,选择题实数的有关概念,科学记数法3,3 6命题规律纵观遵义近五年中考,实数的有关概念考查了3次,而科学记数法每年都考,属高频考点,均以选择题形式命题,难度不大,分值3~6分.预计2018年遵义中考,科学记数法必考,仍会以选择题形式出现,而实数的有关概念考查的可能性很大,应加强训练.,遵义五年中考真题及模拟)实数的有关概念1.(2017遵义中考)-3的相反数是( B )A .-3B .3C .13D .-132.(2016遵义十一中一模)如果x 与2互为相反数,那么|x -1|等于( D )A .1B .-2C .-3D .33.(2015遵义中考)在0,-2,5,14,-0.3中,负数的个数是( B )A .1B .2C .3D .44.(2013遵义中考)如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( B )A .+40 mB .-40 mC .+30 mD .-30 m5.(2017白云七中中考模拟)点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位长度到点B ,则点B 所表示的实数是( B )A .3B .-1C .5D .-1或36.(2017遵义二中一模)如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是__P__点.科学记数法7.(2017遵义中考)2017年遵义市固定资产总投资计划为2 580亿元,将2 580亿用科学记数法可表示为( A )A .2.58×1011B .2.58×1012C .2.58×1013D .2.58×1014,中考考点清单)实数的有关概念及分类1.整数和__分数__统称为有理数;__无限不循环小数__叫无理数;有理数和无理数统称为__实数__.2.分类 (1)按定义分类实,数)⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数:正整数、0、负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数负分数有限小数和 无限循环 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环 小数 (2)按正负分类实,数)⎩⎪⎨⎪⎧正实数: 正有理数 (正整数、正分数)、正无理数 零 负实数 :负有理数(负整数、负分数)、 负无理数3.数轴的三要素是:__原点__、__正方向__、__单位长度__;数轴上的点和__实数__是一一对应的.4.相反数(1)实数a 的相反数是__-a__(a 与b 互为相反数⇔a +b =__0__);(2)相反数的几何意义:在数轴上,表示相反数的两个点位于原点的__两侧__,且到原点的距离__相等__.5.绝对值(1)在数轴上表示一个数的点离原点的__距离__叫做这个数的绝对值;(2)|a|=⎩⎪⎨⎪⎧ a (a≥0), -a (a <0),即正数的绝对值是__它本身__,0的绝对值是__0__,负数的绝对值是它的__相反数__;(3)一个数的绝对值是__非负__数,即|a|__≥__0. 6.倒数(1)若两个非零数a ,b 的积为1,即__a·b=1__,则a 与b 互为倒数,反之亦然; (2)非零数a 的倒数为__1a__ ;__0__没有倒数.近似数和科学记数法7.科学记数法:把一个数写成__a×10n__的形式(其中__1__≤|a|<__10__,n 为整数),这种记数法称为科学记数法.例如574 000记作__5.74×105__,-0.000 737记作__-7.37×10-4__.8.精确度与近似数:近似数与准确数的接近程度通常用__精确度__表示:近似数一般由__四舍五入__取得,__四舍五入__到哪一位,就说这个近似数精确到哪一位,如 5.374 6精确到0.001或精确到千分位是__5.375__,4.46万是精确到__百__位.【方法点拨】用科学记数法表示一个数时,需要从两个方面入手,关键是确定a和n的值.(1)a值的确定:1≤|a|<10;(2)n值的确定:①当原数大于或等于10时,n等于原数的整数位数减1;②当原数大于0且小于1时,n是负整数,它的绝对值等于原数左起第一位非零数字前所有零的个数(含小数点前的零);③有计数(量)单位的数,先把数字单位转化为纯数字表示,再用科学记数法表示.常用的计数单位有:1亿=108,1万=104,计量单位有:1 mm=10-3 m,1 nm=10-9m等.,中考重难点突破)无理数的判断【例1】(2017荆门中考)在实数-722,9,π,38中,是无理数的是( )A.-722B.9 C.πD.38【解析】要把能化简的化简后再判断,-722,9,38是有理数,π是无理数.【答案】C1.(2017沭阳一模)在下列实数:π2,3,4,227,-1.010 010 001…中,无理数有( C)A.1个B.2个C.3个D.4个2.(2017福建中考)下列实数2,-34,0.32··,227,π3,(2-1)0,-9,0.101 001000 1…中,其中非无理数共有( C)A.2个B.3个C.4个D.5个3.(北京中考)写出一个比3大且比4小的无理数:__π(答案不唯一)__.实数的相关概念【例2】(2017遵义航中一模)-12的绝对值的相反数是( )A .12B .-12C .2D .-2【解析】紧扣绝对值及相反数的意义分两层来思考:①-12的绝对值是多少;②其绝对值的相反数是多少.【答案】B4.(2017贺州中考)-12的倒数是( A )A .-2B .2C .12D .-125.(2017黔东南中考)|-2|的值是( B )A .-2B .2C .-12D .12科学记数法【例3】(2017天水中考)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000 kg 的煤所产生的能量.把130 000 000 kg 用科学记数法可表示为( )A .13×107 kgB .0.13×108 kgC .1.3×107 kgD .1.3×108 kg【解析】将一个较大数表示成a×10n的形式,其中1≤|a|<10,n 的值为原数的整数位数减一.【答案】D6.(2017白银中考)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393 000 m 的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393 000用科学记数法表示为( B )A .39.3×104B .3.93×105C .3.93×106D .0.393×1067.(2017泰安中考)“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为( C )A .3×1014美元B .3×1013美元C .3×1012美元D .0.393×1068.(2017菏泽中考)生物学家发现了一种病毒,其长度约为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( C )A .3.2×107B .3.2×108C .3.2×10-7D .3.2×10-8。

2018中考数学知识点总结(精简版)

2018中考数学知识点总结(精简版)

中考数学复习资料第一章实数考点一、数的观点及分1、数的分(3 分)数有理数正有理数零有理数正无理数有限小数和无穷循小数无理数无穷不循小数无理数2、无理数在理解无理数,要抓住“无穷不循” 一之,起来有四:( 1)开方开不尽的数,如7,32 等;( 2)有特定意的数,如周率π,或化后含有π的数,如π+8等;3(3)有特定构的数,如 0.1010010001 ⋯等;(4)某些三角函数,如 sin60o等考点二、数的倒数、相反数和1、相反数(3分)数与它的相反数一数(只有符号不一样的两个数叫做互相反数,零的相反数是零),从数上看,互相反数的两个数所的点对于原点称,假如 a 与 b 互相反数,有a+b=0, a=—b,反之亦成立。

2、一个数的就是表示个数的点与原点的距离,|a|≥0。

零的它自己,也可当作它的相反数,若 |a|=a, a≥0;若 |a|=-a, a≤0。

正数大于零,数小于零,正数大于全部数,两个数,大的反而小。

3、倒数假如 a 与 b 互倒数,有ab=1,反之亦成立。

倒数等于自己的数是考点三、平方根、算数平方根和立方根(3—10 分)1 和-1。

零没有倒数。

1、平方根假如一个数的平方等于a,那么个数就叫做 a 的平方根(或二次方跟)一个数有两个平方根,他互相反数;零的平方根是零;数没有平方根。

正数 a 的平方根做“ a ”。

2、算平方根正数 a 的正的平方根叫做 a 的算平方根,作“ a ”。

正数和零的算平方根都只有一个,零的算平方根是零。

a ( a)a0a 2a;注意 a 的两重非性:- a(a <0)a03、立方根假如一个数的立方等于a,那么个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个数有一个的立方根;零的立方根是零。

注意: 3a3a ,这说明三次根号内的负号能够移到根号外面。

考点四、科学记数法和近似数(3—6 分)1、有效数字一个近似数四舍五入到哪一位,就说它精准到哪一位,这时,从左边第一个不是零的数字起到右边精准的数位止的全部数字,都叫做这个数的有效数字。

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精讲试题20

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第1节一次方程组及应用精讲试题20

第一节 一次方程(组)及应用,遵义五年中考命题规律)填空题,解答的解法,还牵涉到列,遵义五年中考真题及模拟)一元一次方程及其解法1.(2017遵义中考)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有__46__两.(注:明代时1斤=16两,故有“半斤八两”这个成语)2.(2016遵义中考)六一期间,小明、小亮等同学随家长一同到某公园游玩,如图是购买门票时,小明与他爸爸的对话,设去了x 个成人,则根据图中的信息,下面所列方程中正确的是( A )A .40x +20(12-x)=400B .40(12-x)+20x =400C .24(12-x)+20x =400D .24x +12(12-x)=4003.(2016遵义十一中一模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =49二元一次方程组及其解法4.(2016遵义二中二模)小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△, 2x -3y =5时,解得⎩⎪⎨⎪⎧x =4, y =⊗,则△和⊗代表的数分别是( B )A .△=1,⊗=5B .△=5,⊗=1C .△=-1,⊗=3D .△=3,⊗=-15.(2013遵义中考)解方程组:⎩⎪⎨⎪⎧x -2y =4,① 2x +y -3=0.②解:由①得x =2y +4.将x =2y +4代入②,得2(2y +4)+y -3=0.解得y =-1.∴x=2y +4=2×(-1)+4=2.∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.6.(2016遵义二中三模)某地为了打造风光带,将一段长为360 m 的河道整治任务交由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m ,乙工程队每天整治16 m .求甲、乙两个工程队分别整治了多长的河道.解:设甲工程队整治河道x m ,则乙工程队整治河道(360-x)m .由题意,得x 24+360-x16=20,解得x =120.当x =120时,360-x =240.答:甲工程队整治河道 120 m ,乙工程队整治河道240 m .7.(2017改编)已知关于x ,y 的二元一次方程ax +by =10(ab≠0)的两个解分别为⎩⎪⎨⎪⎧x =-1, y =2和⎩⎪⎨⎪⎧x =-2,y =-4,求1-a 2+4b 2的值.解:把⎩⎪⎨⎪⎧x =-1, y =2代入方程ax +by =10中,得-a +2b =10,把⎩⎪⎨⎪⎧x =-2,y =-4代入方程ax +by =10中,得-a -2b =5,∴(-a +2b)(-a -2b)=a 2-4b 2=50,∴1-a 2+4b 2=1-50=-49.一元一次方程组的应用8.(2017遵义中考)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A ,B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A ,B 两型自行车各50辆,投放成本共计7 500元,其中B 型车的成本单价比A 型车高10元,A ,B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1 000人投放a 辆“小黄车”,乙街区每1 000人投放8a +240a 辆“小黄车”,按照这种投放方式,甲街区共投放1 500辆,乙街区共投放1 200辆,如果两个街区共有15万人,试求a 的值.解:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x +10)元.依题意,得 50x +50(x +10)=7 500, 解得x =70,∴x +10=80,答:A 、B 两型自行车的单价分别是70元和80元; 问题2:由题意可得1 500a ×1 000+1 2008a +24a×1 000=150 000,解得a =15.经检验,a =15是所列方程的解.故a 的值为15.9.(2016遵义中考)上网流量、语音通话是手机通信消费的两大主体.日前,某通信公司推出消费优惠新招——“定制套餐”.消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.0.[小提示:阶梯定价收费计算方法,如600 min 语音通话费=0.15×500+0.12×(600-500)=87元] (1)甲定制了600 MB 的月流量,花费48元;乙定制了2 GB 的月流量,花费120.4元.求a ,b 的值;(注:1GB =1 024 MB )(2)甲的套餐费用为199元,其中含600 MB 的月流量;丙的套餐费用为244.2元,其中包含 1 GB 的月流量.二人均定制了超过1 000 min 的每月通话时间,并且丙的语音通话时间比甲多300 min ,求m 的值.解:(1)由题意,得⎩⎪⎨⎪⎧100a +(500-100)×0.07+(600-500)b =48,100a +(500-100)×0.07+(1 024×2-500)b =120.4, 解得⎩⎪⎨⎪⎧a =0.15, b =0.05;(2)设甲每月定制x(x >100)min 通话时间,则丙定制(x +300)min 通话时间,丙定制了1 GB 月流量套餐需花费100×0.15+(500-100)×0.07+(1 024-500)×0.05=69.2(元),由题意得⎩⎪⎨⎪⎧48+500×0.15+(1 000-500)×0.12+(x -1 000)m =199,69.2+500×0.15+(1 000-500)×0.12+(x +300-1 000)m =244.2. ∴m =0.08.,中考考点清单)方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4.性质1:等式两边同时加上(或减去)同一个数或同一个式子,所得的结果仍__相等__.如果a =b ,那么a±c __=__b±c.性质2:等式两边同时乘以(或除以)同一个数(除数不为0),所得结果仍__相等__,如果a =b ,那么ac =bc(c≠0),a c =bc(c≠0).一次方程(组)5.概念与解法 (1)一元一次方程概念:含有__一个__未知数且未知数的次数是__1__,这样的方程叫做一元一次方程.解法:解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1. (2)二元一次方程概念:含有两个__未知数__,并且含有未知数的项的__次数__都是1的方程叫做二元一次方程. 解法:一般需找出满足方程的整数解即可. (3)二元一次方程组概念:两个__二元一次方程__所组成的一组方程,叫做二元一次方程组.解法:解二元一次方程组的基本思路是__消元__.基本解法有:__代入__消元法和__加减__消元法. (4)三元一次方程组概念:三个一次方程组成的含有三个未知数的一组方程叫三元一次方程组. 解法:解三元一次方程组的基本思想是:三元――→转化二元――→转化一元一次方程. 【温馨提示】(1)解一元一次方程去分母时,常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤6.(1)审:审清题意,分清题中的已知量、未知量;(2)设:设__未知数__,设其中某个量为未知数,并注意单位,对含有两个未知数的问题,需设两个未知数; (3)列:弄清题意,找出__相等关系__;根据__相等关系__,列方程(组); (4)解:解方程(组);(5)验:检验结果是否符合题意; (6)答:答题(包括单位).【方法点拨】一次方程(组)用到的思想方法:(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破)一元一次方程及解法【例1】(1)(2017瑞安中考模拟)关于x 的方程2x -m3=1的解为2,则m 的值是( )A .2.5B .1C .-1D .3 (2)(河池中考)解方程:2x +13-5x -16=1.【解析】(1)把x =2代入方程,得4-m3=1,解得m =1.(2)按去分母→去括号→移项→合并同类项→系数化为1来解.【答案】(1)B ;(2)x =-3.1.(2017滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项、合并同类项,得7x =7, 系数化为1,得x =1.二元一次方程组及解法【例2】(2017宝安中考)若方程mx +ny =6的两个解是⎩⎪⎨⎪⎧x =1, y =1和⎩⎪⎨⎪⎧x =2,y =-1,则m ,n 的值为( )A .⎩⎪⎨⎪⎧m =4, n =2B .⎩⎪⎨⎪⎧m =2, n =4C .⎩⎪⎨⎪⎧m =-2, n =-4D .⎩⎪⎨⎪⎧m =-4,n =-2 【解析】此题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 【答案】A2.(2017天门中考)已知⎩⎪⎨⎪⎧x =2, y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8, nx -my =1的解,则2m -n 的算术平方根是( B ) A .4 B .2 C . 2 D .±23.(2017乐山中考)二元一次方程组x +y 2=2x -y3=x +2的解是__⎩⎪⎨⎪⎧x =-5, y =-1__.一次方程(组)的应用【例3】(2017宁阳中考)某服装店用6 000元购进A ,B 两种新式服装,按标价售出后可获得毛利润3 800元(毛利润=售价-进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A 种服装按标价的八折出售,B 种服装按标价的七折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【解析】(1)设A 种服装购进x 件,B 种服装购进y 件,由总价=单价×数量,利润=售价-进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据少收入的利润=总利润-打折后A 种服装的利润-打折后B 种服装的利润,求出其解即可.【答案】解:(1)设A 种服装购进x 件,B 种服装购进y 件.由题意,得⎩⎪⎨⎪⎧60x +100y =6 000, (100-60)x +(160-100)y =3 800, 解得⎩⎪⎨⎪⎧x =50,y =30.答:A 种服装购进50件,B 种服装购进30件; (2)由题意,得3 800-50(100×0.8-60)-30(160×0.7-100) =3 800-1 000-360 =2 440(元).答:服装店比按标价售出少收入2 440元.4.(2017新泰中考模拟)某商场经销一种商品,由于进货时价格比原进价降低了 6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是__17__%.(注:利润率=销售价-进价进价×100%)5.(安顺中考)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满,求该校的大小寝室每间各住多少人.解:设该校大寝室每间住x 人,小寝室每间住y 人.由题意,得⎩⎪⎨⎪⎧55x +50y =740, 50x +55y =730,解得⎩⎪⎨⎪⎧x =8, y =6. 答:该校大寝室每间住8人,小寝室每间住6人.。

(完整word)2018年中考数学总复习知识点总结(最新版),推荐文档

(完整word)2018年中考数学总复习知识点总结(最新版),推荐文档

中考数学复习资3 2第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数零 有限小数和无限循环小数实数负有理数 正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1) 开方开不尽的数,如 7, 等;π(2)有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等; 3 (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a= - b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则 a≥0;若|a|=-a ,则 a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。

倒数等于本身的数是 1 和-1。

零没有倒 数。

a a aa 考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“ ± ”。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a ( a ≥ 0) ≥ 0= a =;注意 的双重非负性:- a ( a <0)a ≥ 03、立方根如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

(遵义专版)2018年中考数学总复习 第一篇 教材知识梳理篇 第1章 数与式 第5节 二次根式(精练)试题

(遵义专版)2018年中考数学总复习 第一篇 教材知识梳理篇 第1章 数与式 第5节 二次根式(精练)试题

第五节 二次根式1.(2017遵义航中二模)如果ab>0,a +b<0,那么下面各式正确的是( B ) ①a b =a b ;②a b ·b a =1;③ab ÷a b=-b. A .①② B .②③ C .①③ D .①②③2.(2017绵阳中考)使代数式1x +3+4-3x 有意义的整数x 有( B ) A .5个 B .4个 C .3个 D .2个3.(2017荆州中考)下列根式是最简二次根式的是( C )A .13B .0.3C . 3D .20 4.(2017枣庄中考)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( A )A .-2a +bB .2a -bC .-bD .b5.(2017眉山中考)下列运算结果正确的是( A ) A .8-18=- 2 B .(-0.1)2=-0.01C .⎝ ⎛⎭⎪⎫2a b 2÷b 2a =2a bD .(-m)3m 2=-m 6 6.(2017东营中考)下列运算正确的是( B ) A .(x -y)2=x 2-y 2 B .|3-2|=2- 3 C .8-3= 5 D .-(-a +1)=a +17.(2017滨州中考)下列计算:(1)(2)2=2;(2)(-2)2=2;(3)(-23)2=12;(4)(2+3)(2-3)=-1,其中结果正确的个数为( D ) A .1 B .2 C .3 D .48.(2017连云港中考)关于8的叙述正确的是( D )A .在数轴上不存在表示8的点B .8=2+ 6C .8=±2 2D .与8最接近的整数是39.(2017咸宁中考)8的立方根是__2__.10.(2017常德中考)计算:|-2|-38=__0__.11.(2017青岛中考)计算:⎝ ⎛⎭⎪⎫24+16×6=__13__.12.(1)(2017南充中考)|1-5|+(π-3)0=;(2)(2017山西中考)418-92=.13.(2017鄂州中考)若y =x -12+12-x -6则xy =__-3__. 14.(2017遵义升学三模)计算:2+(-2)2=__4__.15.(怀化中考)计算:2 0160+2|1+sin 30°|-⎝ ⎛⎭⎪⎫13-1+16.解:原式=1+2×⎪⎪⎪⎪⎪⎪1+12-3+4 =1+2×32+1 =1+3+1=5.16.(荆州中考)计算:|-2|+9×⎝ ⎛⎭⎪⎫12-1-4×12-(π-1)0. 解:原式=2+3×2-2×22-1 =2+6-2-1=5.17.(2018原创)如果(2+2)2=a +b 2(a ,b 为有理数),那么a +b 等于( D ) A .2 B .3 C .8 D .1018.(2017曲靖中考)若整数x 满足|x|≤3,则使7-x 为整数的值是__-2(或3)__.(只需填一个)19.(2017西宁中考)先化简,再求值:⎝ ⎛⎭⎪⎫n 2n -m -m -n ÷m 2,其中m -n = 2. 解:原式=⎣⎢⎡⎦⎥⎤n 2n -m -(m +n )·1m 2 =n 2-n 2+m 2n -m ·1m2 =1n -m , ∵m -n =2,∴n -m =-2, 则原式=1-2=-22.。

遵义专版中考数学高分一轮复习第一部分教材同步复习第三章函数课时13二次函数的综合与应用课件

遵义专版中考数学高分一轮复习第一部分教材同步复习第三章函数课时13二次函数的综合与应用课件
• 【注意】由二次函数y=ax2+bx+c(a≠0)的函数值 y>0(或y<0),即可得到一元二次不等式ax2+bx+ c>0(或ax2+bx+c<0),此时确定不等式的解集就转 化为求抛物线位于x轴上方(或下方)时对应点的横坐
标的取4 值范围.
• 【夯实基础】
• 1那.么小关兰于画x的了方一程个x函2+数aDyx=+xb2+=a0x的+解b是的图象如图( 所示) ,
代入解析式即可求得;(2)根据旋转的性质可得旋转
后C点的坐标为(3,1),由抛物线解析式可知抛物线y =x2-3x+2过点(3,2),∴将原抛物线沿y轴向下平 移1个单位后过点C,即可得平移后的函数关系式; (3)首先14 求得点B1,D1的坐标,根据图形分别求得即
【解答】(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2), ∴02==10++b0++cc,, 解得bc==2-,3, ∴抛物线的解析式为y=x2-3x+2.
2
b2-4ac的符号
b2-4ac②__>__ 0 b2-4ac③_=___0 b2-4ac④___<__0
抛物线y=ax2+bx+c 与x轴的交点的个数
两个交点
⑤___一___个交点
无交点
一元二次方程ax2+bx ⑥__两___个不相等 两 个 相 等 的 实 数
+c=0实数根的情况 的实数根

没有实数根
2019/5/26
最新中小学教学课件
thank
you!
2019/5/26
最新中小学教学课件
20
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第2节一元二次方程及应用精

遵义专版2018年中考数学总复习第一篇教材知识梳理篇第2章方程组与不等式组第2节一元二次方程及应用精

第二节一元二次方程及应用,遵义五年中考命题规律)年份题号题型考查点分值总分2017 9 选择题一元二次方程根的判别式3 32016 15 填空题一元二次方程根与系数的关系4 42015 15 填空题一元二次方程的实际应用4 42014 14 填空题一元二次方程根的判别式4 42013 15 填空题一元二次方程根与系数的关系4 4纵观遵义近五年中考,都以选择题或填空题的形式呈现,从不同角度考命题规律查了一元二次方程的有关知识,3~4分,难度中等,具有考查点不重复的特点.预计2018年遵义中考,有可能考一元二次方程的解法,也有可能重复上述考查点考查,注意全面复习,有效训练.,遵义五年中考真题及模拟)一元二次方程的应用1.(2015遵义中考)2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1 585亿元,经过连续两年增长后,预计2015年将达到2 180亿元.设平均每年增长的百分率为x,可列方程为__1__585(1+x)2=2__180__.一元二次方程根的判别式2.(2016红花岗一模)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是(C)A.a>2 B.a<2C.a<2且a≠1D.a<-23.(2016红花岗二模)关于x的一元二次方程(a-6) x2-8x+6=0有实数根,则整数a 的最大值是(C)A.6 B.7 C.8 D.94.(2014遵义中考)关于x的一元二次方程x2-3x+b=0有两个不相等的实数根,则b9 的取值范围是__b<__.4一元二次方程根与系数的关系15.(2013遵义中考)已知x=-2是方程x2+mx-6=0的一个根,则方程的另一个根是__3__.1 16.(2016遵义中考)已知x1,x2是一元二次方程x2-2x-1=0的两根,则+=__-x1 x22__.7.(2016遵义一中二模)已知关于x的一元二次方程x2-2 2x+m=0,有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x21+x -x1x2的值.2解:(1)由题意,得Δ=8-4m>0,∴m<2,故实数m的最大整数值为1;b c(2)∵m=1,∴此一元二次方程为:x2-2 2x+1=0,∴x1+x2=-=2 2,x1x2==a a1,∴x21+x2-x1x2=(x1+x2)2-3x1x2=(2 2)2-3=8-3=5.a2-ab(a ≥b),8.(2017改编)对于实数a,b,定义新运算“*”:a*b={ab-b2(a<b),)例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x1,x2是一元二次方程x2-5x+6=0的两个根,求x1*x2的值.解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6;(2)方程x2-5x+6=0的两根为2或3;①2*3=2×3-32=-3;②3*2=32-2×3=3.,中考考点清单)一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax2+bx+c=0(a≠0)__.【温馨提示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开平方法,这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,2即形如(x+m)2=n (n>0)的方程.配方法,配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.-b ±b2-4ac公式法,求根公式为__x=(b2-4ac≥0)__,适用于所有的一元二次方2a程.因式分解法,因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x的一元二次方程ax2+bx+c=0(a≠0)的解法:c(1)当b=0,c≠0时,x2=-,考虑用直接开平方法;a(2)当c=0,b≠0时,用因式分解法;(3)当a=1,b为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根的情况可由__b2-4ac__来判定,我们将__b2-4ac__称为根的判别式.4.判别式与根的关系(1)b2-4ac>0⇔方程有__两个不相等__的实数根;(2)b2-4ac<0⇔方程没有实数根;(3)b2-4ac=0⇔方程有__两个相等__的实数根.【温馨提示】(1)一元二次方程有实数根的前提是b2-4ac≥0;(2)当a,c异号时Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)作结论.6.一元二次方程应用问题常见的等量关系:(1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用,利润率=利润÷进货价.【方法点拨】利用方程根的意义,把方程的根代入方程中,是解决一元二次方程有关问题的一种重要方法,我们可以把这种方法称为让根回家.,中考重难点突破)一元二次方程的概念及解法【例1】(1)(六盘水中考)已知x1=3是关于x的一元二次方程x2-4x+c=0的一个根,则方程的另一个根x2=______;3(2)(2017大连中考)解方程:x2-6x-4=0.【解析】(1)本题考查了一元二次方程的根,根据方程有一个根为3,将x=3代入方程求出c的值,确定方程,即可求出另一根;(2)本题考查一元二次方程的解法,可用公式法或配方法求解.【答案】(1)1;(2)移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=± 13,∴x1=3+13,x2=3-13.1.若一元二次方程ax2-bx-2 016=0有一根为x=-1,则a+b=__2__016__.2.(2017遵义一中二模)解方程:(1)x2-3x+2=0;(2)x2-1=2(x+1).解:(1)x1=1,x2=2;(2)x1=-1,x2=3.一元二次方程根与系数的关系和判别式【例2】(2017烟台中考)若x1,x2是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,则m的值为()A.-1或2 B.1或-2 C.-2 D.1【解析】此题考查根与系数之间的关系.【答案】D93.(2017齐齐哈尔中考)若关于x的方程kx2-3x-=0有实数根,则实数k的取值范4围是(C)A.k=0 B.k≥-1或k≠0C.k≥-1 D.k>-14.(2017乐山中考)已知m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,则(m+2)(n+2)的最小值是(D)A.7 B.11 C.12 D.165.(2017孝感中考)已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得m≤5,∴m的取值范围为m≤5;(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.4∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.一元二次方程的应用【例3】(2017高邮中考)水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1 元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是________斤;(用含x的代数式表示)(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?【解析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【答案】解:(1)(150+300x);(2)根据题意得:(6-4-x)(150+300x)=450,1 解得:x=或x=1,21 1当x=时,销售量是150+300×=300<360;2 2当x=1时,销售量是1 50+300=450(斤).∵每天至少售出360斤,∴x=1.答:张阿姨需将每斤的售价降低1元.6.(2017庆阳中考)如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是(A)A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57057.(2016遵义十一中三模)某商店购进600个旅游纪念品,进价为每个6元,第1周以每个10元的价格售出200个,第2周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1 250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意,得200×(10-6)+(10-x-6)(200+50x)+(4-6)[(600-200)-(200+50x)]=1 250,整理,得x2-2x+1=0,解得x1=x2=1,∴10-1=9.答:第二周每个旅游纪念品的销售价格为9元.8.(2017嘉祥中考)贵阳市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100 m2的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?解:(1)设平均每次下调的百分率为x.由题意,得6 000(1-x)2=4 860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%;(2)由题意,得方案①优惠:4 860×100×(1-0.98)=9 720(元),方案②优惠:80×100=8 000(元).∵9 720>8 000,∴方案①更优惠.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段测评(三) 函数及其图象(时间:45分钟 分数:100分)一、选择题(每题4分,共32分)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m )与时间t(min )的大致图象是( C ),A ),B ),C ),D )2.已知点A(-1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( B ),A ) ,B ) ,C ) ,D )3.抛物线y =-35⎝⎛⎭⎪⎫x +122-3的顶点坐标是( B )A .⎝⎛⎭⎪⎫12,-3 B .⎝⎛⎭⎪⎫-12,-3C .⎝ ⎛⎭⎪⎫12,3 D .⎝ ⎛⎭⎪⎫-12,34.已知抛物线y =x 2-2mx -4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( C )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)5.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB ,得到线段A′B′,已知A′的坐标为(3,-1),则点B′的坐标为( B )A .(4,2)B .(5,2)C .(6,2)D .(5,3)6.若点A(m ,n)在一次函数y =3x +b 的图象上,且3m -n>2,则b 的取值范围为( D )A .b>2B .b>-2C .b<2D .b<-27.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx (x <0)的图象经过顶点B ,则k 的值为( C )A .-12B .-27C .-32D .-36(第7题图)(第8题图)8.二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列四个结论:①4ac-b 2<0;②3b+2c <0;③4a +c <2b ;④m(am+b)+b <a(m≠-1),其中结论正确的个数是( C )A .1B .2C .3D .4二、填空题(每题4分,共20分)9.当x =__1__时,二次函数y =x 2-2x +6有最小值__5__.10.如图,若抛物线y =ax 2+bx +c 上的P(4,0),Q 两点关于它的对称轴直线x =1对称,则Q 点的坐标为__(-2,0)__.(第10题图)(第11题图)11.函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y =y 1+y 2的结论:①函数的图象关于原点中心对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是__①③__.12.如图,四边形ABCO 是平行四边形,OA =2,AB =6,点C 在x 轴的负半轴上,将▱ABCO 绕点A 逆时针旋转得到▱ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点D 在反比例函数y =kx (x<0)的图象上,则k 的值为.13.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1,A 2,A 3…在直线y =x +1上,点C 1,C 2,C 3…在x 轴上,则A n 的坐标是__(2n -1-1,2n -1)__.三、解答题(共48分)14.(10分)已知抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4.(1)求y 1的解析式;(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式.解:(1)∵抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4.∴B(-1,1)或(-1,9),∴-m 2×(-1)=-1,4×(-1)n -m24×(-1)=1或9,解得m =-2,n =0或8,∴y 1的解析式为y 1=-x 2-2x 或y 1=-x 2-2x +8;(2)①当y 1的解析式为y 1=-x 2-2x 时,抛物线与x 轴的交点是(0,0)和(-2,0), ∵y 1的对称轴与y 2交于点A(-1,5), ∴y 1与y 2都经过x 轴上的同一点(-2,0),把(-1,5),(-2,0)代入得⎩⎪⎨⎪⎧-k +b =5,-2k +b =0,解得⎩⎪⎨⎪⎧k =5,b =10,∴y 2=5x +10;②当y 1=-x 2-2x +8时, 解-x 2-2x +8=0得x =-4或2,∵y 2随着x 的增大而增大,且过点A(-1,5), ∴y 1与y 2都经过x 轴上的同一点(-4,0),把(-1,5),(-4,0)代入得⎩⎪⎨⎪⎧-k +b =5,-4k +b =0,解得⎩⎪⎨⎪⎧k =53,b =203;∴y 2=53x +203.综上所述,y 2=5x +10或y 2=53x +203.15.(10分)在平面直角坐标系中,一次函数y =kx +b(k ,b 都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y 的取值范围;(2)已知点P(m ,n)在该函数的图象上,且m -n =4,求点P 的坐标. 解:(1)设解析式为y =kx +b ,将(1,0),(0,2)代入,得⎩⎪⎨⎪⎧k +b =0,b =2,解得⎩⎪⎨⎪⎧k =-2,b =2,∴这个函数的解析式为y =-2x +2;把x =-2代入y =-2x +2,得y =6, 把x =3代入y =-2x +2,得y =-4, ∴y 的取值范围是-4≤y<6. (2)∵点P(m ,n)在该函数的图象上, ∴n =-2m +2, ∵m -n =4, ∴m -(-2m +2)=4, 解得m =2,n =-2, ∴点P 的坐标为(2,-2).16.(14分)某商店分两次购进A ,B 两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:,购进所需费用(元) 第一次,30,40,3 800第二次,40,30,3 200(1)求A ,B 两种商品每件的进价分别是多少元?(2)商场决定A 种商品以每件30元出售,B 种商品以每件100元出售.为满足市场需求,需购进A ,B 两种商品共1 000件,且A 种商品的数量不少于B 种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题意,得⎩⎪⎨⎪⎧30x +40y =3 800,40x +30y =3 200,解得⎩⎪⎨⎪⎧x =20,y =80.答:A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)设购进B 种商品m 件,获得的利润为w 元,则购进A 种商品(1 000-m)件, 根据题意,得w =(30-20)(1 000-m)+(100-80)m =10m +10 000. ∵A 种商品的数量不少于B 种商品数量的4倍, ∴1 000-m≥4m, 解得m≤200.∵在w =10m +10 000中,k =10>0, ∴w 的值随m 的增大而增大,∴当m =200时,w 取最大值,最大值为 10×200+10 000=12 000,∴当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12 000元.17.(14分)如图,矩形AOCB 的顶点A ,C 分别位于x 轴和y 轴的正半轴上,线段OA ,OC 的长度满足方程|x -15|+y -13=0(OA >OC),直线y =kx +b 分别与x 轴、y 轴交于M ,N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D 处,且tan ∠CBD =34.(1)求点B 的坐标; (2)求直线BN 的解析式;(3)将直线BN 以每秒1个单位长度的速度沿y 轴向下平移,求直线BN 扫过矩形AOCB 的面积S 关于运动的时间t(0<t≤13)的函数关系式.解:(1)∵|x-15|+y -13=0, ∴x =15,y =13,∴OA =BC =15,AB =OC =13, ∴B(15,13);(2)如图①,过D 作EF⊥OA 于点E ,交CB 于点F , 由折叠的性质可知BD =BC =15,∠BDN =∠BCN=90°, ∵tan ∠CBD =34,∴DF BF =34,且BF 2+DF 2=BD 2=152, 解得BF =12,DF =9, ∴CF =OE =15-12=3, DE =EF -DF =13-9=4,∵∠CND +∠CBD=360°-90°-90°=180°, 且∠ONM+∠CND=180°, ∴∠ONM =∠CBD, ∴OM ON =34,∵DE ∥ON , ∴ME DE =OM ON =34,且OE =3,∴OM -34=34,解得OM =6, ∴ON =8,即N(0,8), 把N ,B 的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧b =8,15k +b =13,解得⎩⎪⎨⎪⎧k =13,b =8,∴直线BN 的解析式为y =13x +8;(3)设直线BN 平移后交y 轴于点N′,交AB 于点B′, 当点N′在x 轴上方,即0<t≤8时,如图②,由题意可知四边形BNN′B′为平行四边形,且NN′=t , ∴S =NN′·OA=15t ;当点N′在y 轴负半轴上,即8<t≤13时,设直线B′N′交x 轴于点G ,如图③, ∵NN ′=t ,∴可设直线B′N′解析式为y =13x +8-t ,令y =0,可得x =3t -24, ∴OG =3t -24, ∵ON =8,NN ′=t , ∴ON ′=t -8, ∴S =S 四边形BNN′B′-S △OGN ′ =15t -12(t -8)(3t -24)=-32t 2+39t -96;综上可知,S 与t 的函数关系式为 S =⎩⎪⎨⎪⎧15t (0<t≤8),-32t 2+39t -96(8<t≤13).。

相关文档
最新文档