2017年温州中学自主招生数学试卷

合集下载

温州中学自主招生模拟考试数学试卷

温州中学自主招生模拟考试数学试卷

增加,而 SY+SW 在减少 (注意 X、 Y、Z、W 的面积之和是定值 πr2).因而,比值 SX SZ 增 SY SW
加.于是,当点 A 与点 C 重合时,它才有可能取到最大值 .
在图 7(c) 中, Rt△ ABD 的斜边 BD 是直径,则△ ABD 在 OA 为高时面积最大,此时, SZ 最
边长的三角形,求 k 的取值范围
数学答题卷 第 2 页 共 4 页
4 / 10
18. (本题满分 15 分) 设 1≤a1<a2<… <an≤ 21是 n 个任意的整数 .若其中总有 4 个不同的数 a 数 ai、 aj、ak、 am 满足 ai+am=aj+ak(1 ≤ i<j<k<m ≤,n则) 称数组 (a1, a2, …, an) 的阶数 n 为 “好数 ”. (1)n=7 是否为好数 ?说明理由 ; (2)n=8 是否为好数 ?说明理由 .
)
A
B
C
D E 数学试卷 第 1 页,共 2 页 ,
1 / 10
A.18 °
B.21
二. 填空题(本大题共 6 小题,每题 6 分,满分 36 分。)
9. 已 知 a 0 , b 0 , c 0 , 且 b2 4ac b 2ac , 则 b 2 4ac 的 最 小 值 为
6 / 10
卷三: 温州中学自主招生模拟考试数学答案
一. 选择题(每题 5 分,共 40 分)
题号 1
2
3
4
5
答案 C
C
D
C
A
二. 填空题(每题 6 分。共 36 分)
9._______4_______; 10.
______2 √6______;

(完整)自主招生数学试题及答案,推荐文档

(完整)自主招生数学试题及答案,推荐文档

2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数,关于的方程都有实数根,则实数的a x 0222=+--b a ax x b 取值范围是( )A ≤0B ≤C ≤D ≤-1b b 21-b 81-b 2、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE∥AC,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。

已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m ,则电线杆的高(AB)是( )A .mB .mC .mD .12m )344(+)434(-)326(+4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点。

A .53 B .12 C .43 D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数的图象上有一动点A ,连接AO 并延长交图象的另一支于xy 2-=点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数的图xky =象上运动,若tan∠CAB=2,则k 的值为( )A. 2B. 4C. 6D. 86、如图,O 是等边三角形ABC 内一点,且OA=3,OB=4,OC=5.将线段OB 绕点B 逆时针旋转600得到线段O′B,则下列结论:①△AO′B 可以由△COB 绕点B 逆时针旋转600得到;②∠AOB=1500;③6AOBO'S =+四边形6AOB AOCS S +=△△是( )A.②③④B.①②④C.①④D.①②③O'OCB A(第5题图) (第6题图)二、填空题(本大题共6小题,每小题5分,共30分)7、已知方程组,且,则的取值范围是 。

2017年温州市重点中学自主招生模拟试题

2017年温州市重点中学自主招生模拟试题

2017年温州市重点中学自主招生模拟试题数学试卷(考试时间120分钟,满分150分)一.选择题(每题5分,共50分) 1.下列数中不属于有理数的是( )A.1B.21C.22D.0.11132.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是( )A. B. C. D.3.如果把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正 方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A 、13 = 3+10 B 、25 = 9+16 C 、49 = 18+31 D 、36 = 15+214.a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限B 、第二象限C 、第三象限D 、第四象限5.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为23错误!未找到引用源。

, 则a 的值是( )A 、22错误!未找到引用源。

B 、22+错误!未找到引用源。

C 、23+2错误!未找到引用源。

D 、23+6.如图,在Rt△ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC,此时,点D 在AB 边 上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积 分别为( )A 、30,2B 、60,2C 、60,32D 、60,3 7.如图一个长为m 、宽为n 的长方形(m >n )沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大 正方形,则去掉的小正方形的边长为( ) A 、2m n - B 、m -n C 、2m D 、2n8.抛物线2x y =上有三点P 1、P 2、P 3,其横坐标分别为t ,t +1,t +3,则△P 1P 2P 3的面积为( ). A.1 B. 2 C. 3 D.4 9.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A.821+-=x yB.831+-=x y C.321+-=x y D.331+-=x y10.正五边形广场ABCDE 的边长为80米,甲、乙两个同学做游戏,分别从A 、C 两点处同时出发,沿A-B-C-D-E-A 的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时( ). A.甲在顶点A 处 B.甲在顶点B 处 C.甲在顶点C 处 D.甲在顶点D 处二.填空题(每题6分,共36分)11.分解因式:22242y xy x ++=________________.12.如图,在平面直角坐标系中,反比例函数)0,0(>>=k x xky的图象经过点A (1, 2),B (m ,n )(m >1),过点B 作 y 轴的垂线,垂足为C.若△ABC 面积为2,则点B 的坐标 为________.13.如右图,是一回形图,其回形通道的宽和OB 的长均 为1,回形线与射线OA 交于A 1,A 2,A 3,….若从O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2 点的回形线为第2圈,…,依次类推.则第11圈的长 为 .B /y xMOB AA 3A 2A 1BAO14.今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板a 的30º角的那一头插入三角板b 的圆洞内(如图2),则三角板a 通过三角板b 的圆洞的那一部分的最大面积为 cm 2(不计三角板的厚度,精确到0.1cm 2).15.如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合.现将正方形ABCD 在梯 形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶 点与Q 重合时,点A 所经过的路线与梯形MNPQ 的三边 MN 、NP 、PQ 所围成图形的面积是________.16.如图,在矩形ABCD 中,AB=2,BC=4,⊙D 的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O 重合,绕着O 点转动三角板,使它的一条直角边与⊙D切于点H ,此时两直角边与AD 交于E ,F 两点,则tan EFO ∠的值为 . 三.解答题(共6小题,分别为8,10,10,10,12,14分,共64分) 17.设数列 ,1,,12,1,,13,22,31,12,21,11kk k -,问:(1)这个数列第2010项的值是多少?(2)在这个数列中,第2010个值为1的项的序号是多少? 18.如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点,(Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. .19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:图1baA BD CEO消费金额w (元)的范围 200≤w <400 400≤w <500 500≤w <700 700≤w <900 … 获得奖券的金额(元)3060100130…根据上述促销方法,顾客在该商场购物可以获得双重优惠。

2017年温州高中招生考试数学试卷

2017年温州高中招生考试数学试卷

2017年温州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.-6的相反数是()A.6B.1C.0D.-62.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有()某校学生到校方式情况统计图A.75人B.100人C.125人D.200人3.某运动会颁奖台如图所示,它的主视图是()4.下列选项中的整数,与最接近的是()A.3B.4C.5D.65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.我们知道方程x2+2x-3=0的解是x1=1,x2=-3.现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=-3C.x1=-1,x2=3D.x1=-1,x2=-39.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD 的面积为()A.12SB.10SC.9SD.8S10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作90°的圆弧,,,…得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…得到螺旋折线(如图).已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上点P9的坐标为()A.(-6,24)B.(-6,25)C.(-5,24)D.(-5,25)第Ⅱ卷(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:m2+4m=.12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.已知扇形的面积为3π,圆心角为120°,则它的半径为.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA'B'D与四边形OABD关于直线OD对称(点A'和A,B'和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A',B,则k的值为.16.小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A、出水口B和落水点C恰好在同一直线上,点A到出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱形水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:2×(-3)+(-1)2+;(2)化简:(1+a)(1-a)+a(a-2).18.(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”“魅力数独”“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数;(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图中画一个△P1AB,使点P1的横、纵坐标之和等于点A的横坐标;(2)在图中画一个△P2AB,使点P2,B横坐标的平方和等于它们纵坐标和的4倍.21.(本题10分)如图,在△ABC中,AC=BC,∠ACB=90°,☉O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作☉O的切线交AC于点F,延长CO交AB于点G,作ED∥AC 交CG于点D.(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(本题10分)如图,过抛物线y=x2-2x上一点A作x轴的平行线,交抛物线于另一点B,交y 轴于点C.已知点A的横坐标为-2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连接OP,作点C关于直线OP的对称点D.①连接BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(本题12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB∶BC=2∶3,区域Ⅱ四周宽度相等.①求AB,BC的长;②若甲、丙两种瓷砖单价之和为300元/m2,乙、丙两种瓷砖单价之比为5∶3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(本题14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D 分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点为C(点C在线段BD上),连接AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB;(3)在点P的运动过程中.①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得点G,当点G恰好落在MN上时,连接AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.答案全解全析:一、选择题1.A-(-6)=6.故选A.2.D100÷20%×40%=200(人).故选D.3.C由三视图的定义知从主视方向所观察到的图形为主视图.故选C.4.B因为<<,所以4<<5,又<=4.5,∴比较接近4.故选B.5.C生产7个零件的人数最多,所以众数是7个.故选C.6.B解法一:将x=-1代入y=3x-2,得y=-5,∴y1=-5;将x=4代入y=3x-2得y=10,∴y2=10,所以y1<0<y2.解法二:∵k=3>0,∴y随x的增大而增大,易知x=时,y=0,又-1<<4,∴y1<0<y2.故选B.7.A因为cosα=,且小车沿斜坡向上行驶13米,所以小车水平向前移动了13×=12米,由勾股定理得小车上升的高度是5米.故选A.8.D通过两个方程的形式进行整体代换.由题意可得2x+3=1或2x+3=-3.所以x1=-1,x2=-3.故选D.9.C如图,由题意知AN=NM,四个白色的四边形为全等的矩形,即AK+KN=EF+FQ,KN=FQ,∴AK=EF,∴BM=EF,因为AM=2EF,AB2=BM2+AM2,所以AB2=9EF2,所以S正方形ABCD=AB2=9EF2=9S.故选C.10.B根据图示规律可知,P9的横坐标是0-1+1+2-3-5+8+13-21=-6,P9的纵坐标是1-1-1+2+3-5-8+13+21=25,∴P9(-6,25).二、填空题11.答案m(m+4)解析m2+4m=m(m+4).12.答案 4.8或5或5.2解析∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为4.8或5或5.2.13.答案3解析由扇形的面积为3π,圆心角为120°,可知整圆的面积是9π,根据圆的面积公式S=πr2,得半径为3.14.答案=解析根据时间=工程量÷工效,甲、乙完成铺设任务的时间相同,可以列出方程=.15.答案解析∵四边形ABCO是矩形,AB=1,∴可设B(m,1)(m>0),∴OA=BC=m,∵四边形OA'B'D与四边形OABD关于直线OD对称,∴OA'=OA=m,∠A'OD=∠AOD=30°,∴∠A'OA=60°,过A'作A'E⊥OA于E,∴OE=m,A'E=m,∴A',∵反比例函数y=(k≠0)的图象恰好经过点A',B,∴m·m=m,∴m=(∵m>0),∴k=.16.答案24-8解析如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,在Rt△APM中,MP==8,故DQ=OG=MP=8,∴BQ=12-8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),∵水流所在抛物线经过点D(0,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线解析式,可得解得∴抛物线的解析式为y=-x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=-x2+x+24,解得x1=6+8,x2=6-8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30-(6+8)=24-8.即点E到洗手盆内侧的距离EH为(24-8)cm.三、解答题17.解析(1)原式=-6+1+2=-5+2.(2)原式=1-a2+a2-2a=1-2a.18.解析(1)证明:∵AC=AD,∴∠ACD=∠ADC.∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE.∵BC=ED,∴△ABC≌△AED(SAS).(2)由(1)得△ABC≌△AED,∴∠B=∠E,∵∠B=140°,∴∠E=140°.∵五边形ABCDE的内角和为540°,∴∠BAE=540°-2×(140°+90°)=80°.19.解析(1)480×=90(人).∴估计该校七年级480名学生选“数学故事”的人数为90.(2)画树状图如下:∴P(同班)==.20.解析(1)如图1或图2.(2)如图3或图4.图1图2图3图4 21.解析(1)证明:连接OE.∵AC=BC,∠AC B=90°,∴∠B=45°,∴∠COE=90°.∵EF与☉O相切,∴∠FEO=90°,∴∠COE+∠FEO=180°,∴EF∥CO.∵DE∥CF,∴四边形CDEF是平行四边形.(2)过点G作GH⊥CB于点H.∵∠ACB=90°,∴AC∥GH,∴∠FCD=∠CGH.在▱CDEF中,∠DEF=∠FCD,∴∠DEF=∠CGH,∴tan∠CGH=tan∠DEF=2,∴=2.∵∠B=45°,∴GH=BH,∴CH=2BH.∵BC=3,∴BH=GH=1,∴BG=.22.解析(1)对称轴是直线x=-=-=4.∵点A,B关于直线x=4对称,点A的横坐标为-2,∴点B的横坐标为10.当x=10时,y=5,∴点B的坐标为(10,5).(2)①如图,连接OD,OB.∵点C,D关于直线OP对称,∴OD=OC=5.∵OD+BD≥OB,∴BD≥OB-OD=5-5,∴当点D在线段OB上时,BD有最小值5-5.②如图,连接OD,设抛物线的对称轴交x轴于点F,交BC于点H.∵OD=5,OF=4,∴DF=3,∴D(4,3),DH=HF-DF=2.设CP=a,则PD=PC=a,PH=4-a,在Rt△PHD中,(4-a)2+22=a2,∴a=,∴P.设直线PD的函数表达式为y=kx+b(k≠0),∴解得∴直线PD的函数表达式为y=-x+.23.解析(1)由题意得300S+200(48-S)≤12000,∴S≤24,∴S的最大值为24.(2)①设AB=2a m,则BC=3a m,由题意得6-2a=8-3a,∴a=2,∴AB=4m,BC=6m.②解法一:设丙瓷砖的单价为3x元/m2,铺设乙瓷砖的面积为S1m2.由PQ∥AD得铺设甲瓷砖的面积为12m2,∴12(300-3x)+5xS1+3x(12-S1)=4800,∴x=.∵0<S1<12,∴x>50,∴3x>150.又∵3x<300,∴150<3x<300,∴丙瓷砖的单价大于150元/m2且小于300元/m2.解法二:设丙瓷砖的单价为x元/m2,铺设丙瓷砖的面积为S2m2.由PQ∥AD得铺设甲瓷砖的面积为12m2.由题意得12(300-x)+x(12-S2)+xS2=4800,∴x=.∵0<S2<12,∴x>150.又∵x<300,∴150<x<300.∴丙瓷砖的单价大于150元/m2且小于300元/m2.24.解析(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B.∵∠AP B=28°,∴∠B=76°.如图1,连接MD.∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴的度数为2∠MDB=56°.图1(2)证明:∵∠BAC=∠MDC=∠APB,∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB.∵∠BAP=∠B,∴∠B=∠ACB,∴AC=AB.(3)①如图2,记MP与圆的另一个交点为R,连接AR,CR.∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP.图2∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2.∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=.a.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=.b.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=.图3 c.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=.∵cos∠MPB==,∴PQ=,∴MQ=.图4 d.如图5,当∠AEQ=90°时,连接QD,由对称性得∠AEQ=∠BDQ=90°,∴MQ=.综上所述,MQ的值为或或.图5②.提示:如图6,∵DM∥AF,∴DF=AM=DE=1,可得△DEG为正三角形.易得∠GMD=∠GDM=15°,得MG=DG=1.作CH⊥AB于点H,由∠BAC=30°得CH=1=MG,CG=MH=-1,∴S△ACG=.∵S△DEG=,∴S△ACG∶S△DEG=.图6。

浙江省温州市自主招生数学试卷

浙江省温州市自主招生数学试卷

浙江省温州市自主招生数学试卷一、选择题(本大题共5小题,共20.0分)1. 实数a ,b 在数轴上对应的点的位置如图,则必有( ) A. a b <0 B. ab >0 C. a −|b|>0 D. a +b >02. 无论m 为何实数,直线y =2x +m 与直线y =-x +3的交点都不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b>m (am +b )(m ≠1的实数).其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个4. 如果外切的两圆⊙O 1和⊙O 2的半径分别为2和4,那么半径为6,与⊙O 1和⊙O 2都相切的圆有( )A. 4个B. 5个C. 6个D. 7个5. 如图,从A 点沿线段走到B 点,要求每一步都是向右或向上,则走法共有( )A. 9种B. 16种C. 20种D. 25种二、填空题(本大题共4小题,共20.0分)6. 反比例函数y =3x ,当y ≤3时,x 的取值范围是______ .7. 圆的半径为13cm ,两弦AB ∥CD ,AB =24cm ,CD =10cm ,则两弦AB ,CD 的距离是______ .8. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为______.9. 对于实数a ,b ,c ,d ,规定一种数的运算:∣∣∣a b cd∣∣∣=ad -bc ,那么当∣∣∣24−3x ∣∣∣=10时,x = ______ .三、解答题(本大题共4小题,共40.0分)10. 已知:如图,在△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .(1)求证:AD =BD ;(2)求证:DF是⊙O的切线;,求DE的长.(3)若⊙O的半径为3,sin∠F=3511.如图,张大爷家有一块四边形的菜地,在A处有一口井,张大爷欲想从A处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分.请你为张大爷设计一种引水渠的方案,画出图形并说明理由.12.小亮早晨从家里出发匀速步行去上学,小亮的妈妈在小亮出发后10分钟,发现小亮的数学课本没带,于是她带上课本立即匀速骑车按小亮上学的路线追赶小亮,结果与小亮同时到达学校.已知小亮在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA-AB 所示.(1)试求折线段OA-AB所对应的函数关系式;(2)请解释图中线段AB的实际意义;(3)请在所给的图中画出小亮的妈妈在追赶小亮的过程中,她所在位置与家的距离S(千米)与小亮出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)13.已知梯形ABCD中,AD∥BC,且AD<BC,AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE 交直线BC于点E,同时交直线DC于点Q.①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;②当CE=1时,写出AP的长.(不必写解答过程)答案和解析1.【答案】A【解析】解:由数轴可得出:1>a>0,-1<b,A、<0,正确;B、ab<0,故此选项错误;C、a-|b|<0,故此选项错误;D、a+b<0,故此选项错误;故选:A.利用数轴分别得出1>a>0,-1<b,进而分析各选项得出即可.此题主要考查了实数与数轴,得出a,b的取值范围是解题关键.2.【答案】C【解析】解:由于直线y=-x+3的图象不经过第三象限.因此无论m取何值,直线y=2x+m与直线y=-x+3的交点不可能在第三象限.故选C.直线y=-x+3经过第一,二,四象限,一定不经过第三象限,因而直线y=2x+m 与直线y=-x+3的交点不可能在第三象限.本题考查了两条直线相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.3.【答案】A【解析】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=-1时图象在x轴上,则y=a-b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=-=1,则a=-b,而a-b+c=0,则-b-b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=-1时图象在x轴上得到y=a-b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=-=1得到a=-b,而a-b+c<0,则-b-b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=-,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.4.【答案】B【解析】解:如图所示:和⊙O1和⊙O2都外切的圆,可以画两个,和⊙O1内切,⊙O2外切的圆可以画一个,和⊙O2内切,⊙O1外切的圆可以画一个,和⊙O1,⊙O2都内切的圆可以画一个,共5个,故选B.所求圆与已知圆相切,分为内切和外切两种,根据本题情况,画出图形,求出所有可能的个数.本题考查了相切两圆的性质,勾股定理的逆定理,分类讨论思想是解题的关键.5.【答案】C【解析】解:从A到A右边一个点的走法数量为1+3+6=10种;从A到A上边一个点的走法数量为1+3+6=10种;故共有10+10=20种不同的走法.故选C.从A→B点的走法数量,等于从A到A右边一个点的走法数量+从A到A上边一个点的走法数量.本题考查了加法原理,解题的关键是按照题目的要求,渐次地寻找到达每一个点的不同走法的种数,并在相应的位置上记录下来.6.【答案】x≥1或x<0【解析】解:由图象可以看出y≤3所对应的自变量的取值为x≥1或x<0.故答案为x≥1或x<0.画出相应函数图象,找到直线y=3下方的函数图象所对应的自变量的取值即可.考查反比例函数的性质;利用数形结合的思想解决问题是解决本题的突破点.7.【答案】7cm或17cm【解析】解:第一种情况:两弦在圆心的同侧时,已知CD=10cm,∴由垂径定理得DE=5.∵OD=13,∴利用勾股定理可得:OE=12.同理可求OF=5,∴EF=7.第二种情况:只是EF=OE+OF=17.其它和第一种一样.故答案为:7cm或17cm.此题可以分两种情况,即两弦在圆心的一侧时和在两侧时,所以此题的答案有两个.本题考查的是垂径定理及勾股定理,解答此题时要注意分AB、CD在圆心的同侧和异侧两种情况讨论,不要漏解.8.【答案】727【解析】解:三辆车经过十字路口的情况有27种,至少有两辆车向左转的情况数为7种,所以概率为:.至少两辆车向左转,则要将两辆车向左转和三辆车向向左转的概率相加.或用1减去一辆车或没车向左转的概率.本题考查的是概率的公式,本题易错,要仔细分析可能出现的情况.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】-1【解析】解:由题意得,2x+12=10,解得x=-1.故答案为:-1.先根据:=ad-bc得出关于x的一元一次方程,求出x的值即可.本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解答此题的关键.10.【答案】(1)证明:如图,连接CD,(1分)∵BC是直径,∴∠BDC=90°,即CD⊥AB.(2分)∵AC=BC,∴AD=BD.(3分)(2)证明:连接OD,(4分)∵∠A=∠B,∠AED=∠BDC=90°,∴∠ADE=∠DCO.∵OC=OD,∴∠DCO=∠CDO.∴∠CDO=∠ADE.由(1)得∠ADE+∠CDE=90°,∴∠CDO+∠CDE=90°.(5分)即∠ODF=90°.∴DF是⊙O的切线.(6分)(3)解:在Rt△DOF中,∵sin∠F=35=3OF,∴OF=5.(7分)∵OC=3,∴CF=5-3=2.由(2)得∠DEA=∠ODF=90°,∴OD∥AC.∴△CEF∽△ODF.(9分)∴EF DF =CFOF.(10分)即4−DE4=25.∴DE=125.(11分)【解析】(1)连接CD,由圆周角定理易得CD⊥AB,又有AC=BC,故AD=BD.(2)连接OD,根据三角形中角的互余关系可得∠ODF=90°,故DF是⊙O的切线.(3)根据三角函数的定义,可得sin∠F=,进而可得CF=5-3=2,再根据比例的关系,代入数据可得答案.本题考查切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.11.【答案】解:连接AC,过D作AC的平行线交BC的延长线于E,取BE的中点F,连接AF,则AF即为所引水渠,连接AE,∵DE∥AC,∴S△CDE=S△ADE,∴S△CEG=S△ADG,∴S四边形ABCD=S△ABE,∵F是BE的中点,∴S△ABF=S四边形AFCD.【解析】连接AC,过D作AC的平行线交BC的延长线于E,取BE的中点F,连接AF,则AF即为所引水渠,再连接AE,得出S△CEG=S△ADG,再由F是BE的中点,即可得出结论.本题考查的是面积及等积变换,能根据题意作出辅助线,构造出面积相等的三角形是解答此题的关键.12.【答案】解:(1)设线段OA所在直线的解析式为y=kx,.将x=12,y=1代入得:12k=1,解得:k=112t(0≤t≤12)线段OA对应的函数关系式为:s=112线段AB对应的函数关系式为:s=1(12<t≤20).(2)图中线段AB的实际意义是:小亮出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟.(3)小亮的妈妈在追赶小亮的过程中,她所在位置与家的距离S(千米)与小亮出发后的时间t(分钟)之间函数关系的图象如图中折线段CD-DB所示.根据题意可知:小亮从家到学校用时20分钟,妈妈用时10分钟,故妈妈的速度是小亮的2倍,故此妈妈从C到D妈妈用时6分钟中,从D到B用时4分钟.故此可画出函数图象.【解析】(1)设线段OA所在直线的解析式为y=kx,将x=12,y=1代入可求得OA的解析式;(2)小亮距离家的距离不变,且没有停止运动,故小亮在以家为圆心,半径为1千米的圆弧上运动;(3)根据题意可知:妈妈的速度是小亮的2倍,故此可求得点D,B的坐标从而画出图象.本题主要考查的是一次函数的应用,根据题意得出得出线段AB的实际意义以及妈妈的速度是小亮的2倍是解题的关键.13.【答案】解:(1)∵ABCD是梯形,AD∥BC,AB=DC.∴∠A=∠D∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A∴∠ABP=∠DPC,∴△ABP∽△DPC∴AP CD =ABPD,即:AP2=25−AP解得:AP=1或AP=4.(2)①由(1)可知:△ABP∽△DPQ∴AP DQ =ABPD,即:x2+y=25−x,∴y=−12x2+52x−2(1<x<4).②当CE=1时,∵△PDQ∽△ECQ,∴CE PD =CQDQ,1 5−x =yy+2或15+x=yy−2,∵y=−12x2+52x−2,解得:AP=2或3−√5(舍去).【解析】(1)当∠BPC=∠A时,∠A+∠APB+∠ABP=180°,而∠APB+∠BPC+∠DPC=180°,因此∠ABP=∠DPC,此时三角形APB与三角形DPC相似,那么可得出关于AP,PD,AB,CD的比例关系式,AB,CD的值题中已经告诉,可以先用AP表示出PD,然后代入上面得出的比例关系式中求出AP的长.(2)①与(1)的方法类似,只不过把DC换成了DQ,那么只要用DC+CQ就能表示出DQ了.然后按得出的关于AB,AP,PD,DQ的比例关系式,得出x,y 的函数关系式.②和①的方法类似,但是要多一步,要先通过平行得出三角形PDQ和CEQ 相似,根据CE的长,用AP表示出PD,然后根据PD,DQ,QC,CE的比例关系用AP表示出DQ,然后按①的步骤进行求解即可.本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.第11页,共11页。

温州中学自主招生模拟试题数学

温州中学自主招生模拟试题数学

温州中学自主招生模拟试题数学试卷(120分) 一试一. 选择题:本大题共8小题,每小题4分,满分32分。

1. 设0a b >>, 那么21()a b a b +-的最小值是( )A.2B.3C.4D.52. 已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5Sx x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S2;②平均数为2;③平均数为4;④方差为4S2。

其中正确的说法是( )A .①②B .①③C . ②④ D.③④3. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba aab b+的值为( )A.23B.23-C.2-D.13- 4. 如果x 和y 是非零实数,使得3=+y x 和3=+x y x ,那么x+y 等于( )A.3B.13C.2131-D.134-5. 如果对于不小于8的自然数n ,当3n+1是一个完全平方数是,n+1都能表示成个k 完全 平方数的和,那么k 的最小值为( ) A.1 B.2 C.3 D.46. 已知24b ac -是一元二次方程20ax bx c ++= (a ≠0)的一个实数根,则ab 的取值范围为( )A.18ab ≥B.18ab ≤C.14ab ≥D.14ab ≤7. 在四边形ABCD 中,边AB=x ,BC=CD=4, DA=5,它的对角线AC=y ,其中x,y 都是整数,∠BAC=∠DAC,那么,x=( )A.4B.5C.4或5D.非以上答案8. 设二次函数()20y ax bx c a =++≠满足:当01x ≤≤时,1y ≤.则a b c ++的最大值是( ).A.3;B.7;C.12;D.17. 二.填空题:本大题共6小题,每小题5分,满分30分。

9. 在边长为2的正方形A B C D 的四边上分别取点E 、F 、G 、H .四边形E F G H 四边的平方和2222EF FG GH HE +++最小时其面积为_____.10. 已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .11. △ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为 .12. 关于x ,y 的方程22208()x y x y +=-的所有正整数解为 . 13. n 个正整数12na a a ,,,满足如下条件:1212009n a a a =<<<= ;且12na a a ,,,中任意n -1个不同的数的算术平均数都是正整数.则 n 的最大值为___________.14. 如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,A EA D= .温州中学自主招生模拟试题数学答题卷(120分) 一试一.选择题:本大题共8小题,每小题4分,满分32分。

2017温州中学选拔试卷答案(详解)

2017温州中学选拔试卷答案(详解)

C2017温州中学保送生招生综合素质测试数学试题一、选择题(本题有6小题,每小题5分,共30分)1. 已知一次函数y=ax+b 的图象经过一、二、三象限,且与x 轴交于点(-2,0),则不等式ax>b 的解集为( )A. x>-2B. x<-2C. x<2D. x>2 D2. 已知AB 为圆O 的直径,AB=1,延长AB 到点C ,使得BC=1,CD 是圆O 的切线,D 是切点,则ABD ∆的面积为( )B.D.C解:依据切割线定理可以得到:2CD CB CA CD =⋅⇒=因为可以得到BD CD CD CBD A AD AC∆⇒=∆∽因此有2BD AD ==。

因为AB 为圆O 的直径,所以ABD ∆时直角三角形。

依据勾股定理有222221133AB BD AD BD BD =+⇒=⇒=。

而21226ABD S BD AD BD ∆=⋅== 3.设a 、b 、c 是三角形的三边长,满足c b a ≤≤,且它们都为整数,若取n b =,则满足条件的三角形个数为( )A 、n 个B 、12+-n n 个 C 、2)1(+n n 个 D 、2)1(-n n 个 C4.已知x ,y 为实数,且满足2244x xy y -+=,记224u x xy y =++的最大值为M ,最小值为m ,则M m +=( )A .403B .6415C .13615D .315C解:由2244x xy y -+=,得2244x y xy +=+,22424u x xy y xy =++=+。

∵ 22254(44)(2)44xy xy x y x y =++-=+-≥-,当且仅当2x y =-,即x =,y =x =,y =时等号成立。

∴ xy 的最小值为45-,22424u x xy y xy =++=+的最小值为125,即125m =。

∵ 22234(44)4(2)4xy xy x y x y =-+-=--≤,当且仅当2x y =,即3x =,3y =或3x =-,3y =-时等号成立。

浙江省2017自主招生数学模拟试卷(二)及答案

浙江省2017自主招生数学模拟试卷(二)及答案

浙江省2017自主招生数学模拟试卷(二)姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106C.61.2×105D.612×1042.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2 3.如图所示的几何体,其左视图是()A.B.C.D.4.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.65.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5x 中自变量x的取值范围为()6.函数y=1A.x≥0B.x≥-1 C.x>-1 D.x≥17.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有( )A . 1个B . 2个C . 3个D . 4个8.在长方形ABCD 中AB =16,如图所示裁出一扇形ABE ,将扇形围成一个圆锥(AB 和AE 重合),则此圆锥的底面半径为( )A .4B . 16C . 4D . 89.如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2=( )A .30°B . 35°C . 36°D . 40°10.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( ) A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇; D .这次比赛的全程是28千米11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )O 14 12 1096 86 66 30 x /分y /千米 A BC D乙甲A .64B .77C .80D .8512.已知一次函数y 1=ax +c 和反比例函数y 2=的图象如图所示,则二次函数y 3=ax 2+bx +c 的大致图象是( )A .B .C .D .二 、填空题(本大题共6小题,每小题4分,共24分)13.如果互为,a b 相反数,,x y 互为倒数,则()20142015a b xy +-的值是__________。

2017年温州中学自主招生选拔考试数学试卷(答案)

2017年温州中学自主招生选拔考试数学试卷(答案)

2017年温州中学三位一体提前招生选拔考试数学试卷考生须知:1.全卷分试题卷和答题卷。

试题卷共6页,有3大题,19个小题。

满分为150分,考试时间为120分钟。

2.请将学校、班级、姓名、座位号分别填写在试题卷和答题卷的规定位置上。

3.答题时,将试题卷答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷各题目规定区域内作答,做在试题卷上或超出答题区域书写的答案无效。

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的的四个选项中,只有一项是符合题目要求的.请将你认为正确的答案填在答题卷的相应位置)1. 已知p 、q 是有理数,x =215-满足x 3+px +q =0,则p +q 的值等于( ) A 、-1 B 、1 C 、-3 D 、32.如图,无盖无底的正方体纸盒ABCD EFGH -,P ,Q 分别为棱FB ,GC 上的点,12,2FP PB GQ QC ==,若将这个正方体纸盒沿折线AP PQ QH --裁剪并展开,得到的平面 图形是( )A .一个六边形B .一个平行四边形C .两个直角三角形D . 一个直角三角形和一个直角梯形HG解:依题意可知,BP= BF=DH,CQ=CG=DH,又∵PB∥CQ∥DH,∴△APB∽△AQC∽△AHD,∴A、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选B .3. 使得 是完全平方数的正整数 有 ( )A. 0个B. 1个C. 2个D. 3个解 当4n ≤时,易知381n+不是完全平方数.故设4n k =+,其中k 为正整数,则38181(31)n k +=+.因为381n+是完全平方数,而81是平方数,则一定存在正整数x ,使得231k x +=,即231(1)(1)k x x x =-=+-,故1,1x x +-都是3的方幂.又两个数1,1x x +-相差2,所以只可能是3和1,从而2,1x k ==.因此,存在唯一的正整数45n k =+=,使得381n+为完全平方数.故选(B ).381n +n4.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(A)(B) 4 (C)(D)4.5解:如图,以CD为边作等边△CDE,连接AE.(第4题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.5.在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.6. 设三位数abc n =,若以c b a ,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数有( )A 、45个B 、81个C 、165个D 、216个7. 在△ABC 中,c b a ,,是三角形的三边,且211a b c=+,则A ∠ ( ) A.一定是直角 B.一定是锐角 C.一定是钝角 D.锐角、直角、钝角都有可能 8. 已知二次函数2(1)y x =+,若存在实数t ,当1x m ≤≤时,2(1)y x t =++的图象总在直线y x =下方,则实数m 的最大值是( )A.1B.2C.3D.4提示:由图象右移知,当3t =-时,即右移3个单位时,m 可取到最大值4.故选D.二、填空题(本大题共6小题,每小题6分,共36分.请将答案填在答题卷的相应位置)9. 由方程|1||1|1x y -+-=确定的折线所围成的图形的面积是.10.有两枚质地均匀的正方体骰子,每枚骰子六个面上的数字分别是1,2,3,4,5,6.同时掷这两枚骰子,把这两枚骰子朝上的面的数字分别记为m 、n ,当x 取全体实数,代数式2x mx n ++的值恒为正的概率为 . 11. 已知n 多边形123(4)n A A A A n >L 的所有内角都是15︒的整数倍,且123285A A A ∠+∠+∠=︒,其余的内角都相等,那么n 等于_________.提示:7(2)18028515(3)(3)1243,123n k n n k n k n -⨯=+-⇒-=-∴=-- 37,3 1.10,4n n n n ∴-=-=∴==(舍).12. 直线1y kx b =+经过点P (3,4)且与直线23y x =和3y x =分别交于A ,B 两点,O 为坐标原点,当AOB △的面积取得最小值时,k+b=______.13. 如图,四边形ABCD 内接于⊙O ,AB 是直径,AD = DC . 分别延长BA ,CD ,交点为E . 作BF ⊥EC ,并与EC 的延长线交于点F . 若AE = AO ,BC = 6,则CF 的长为 .解:如图,连接AC ,BD ,OD .第13题图 第14题图(第13题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O 的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此. 因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.14. 在平面直角坐标系中,点A 的坐标为(,点B 是x 轴上的一动点,以AB 为边作等边△ABC ,当C (x ,y )在第一象限时,y 与x 的函数关系是___________.2(0)y x =+>解析:作A 关于x 轴的对称点A ′(1)-, 由BC =BA =BA ′知A ′、A 、C 在点B 为圆心的圆上, 再由圆心角与圆周角的关系知:∠AA ′C =12∠ABC =30º,2(0)y x =∴+>. 2017年温州中学三位一体提前招生选拔考试数学答题卷一、选择题:(本大题共8小题,每小题5分,共40分).二、填空题(本大题共6小题,每小题6分,共36分).9. ; 10. ; 11. ;12. ; 13. ; 14. ; 三、解答题:(本大题共5小题,15、16题12分, 17、18题各15分,19题20分,共74分.解答应写出文字说明,证明过程或演算步骤) 15、当a 取什么整数时,方程0)2(222=-++-+-x x a x x x x x 只有一个实根,并求此实根。

2017年温州中学自主招生数学试卷

2017年温州中学自主招生数学试卷

2017年温州中学⾃主招⽣数学试卷2017年温州中学⾃主招⽣数学试卷⼀、选择题(本⼤题共8题,每⼩题5分,共40分):1. A2. B3.B.4. B5.B6. C7. B 8. D⼆、填空题(本⼤题共6题,每题6分,共36分) 9.2 10.173611. 1012. 直线y 1=kx+b 经过点P (3,4)且与直线y 2=3x 和y 3=x 分别交于A ,B 两点,O 为坐标原点,当三⾓形AOB 的⾯积取得最⼩值时,k+b=______.13.14.2(0)y x =+> 三、解答题:学校_____________ 班级_____________ 姓名___________ 座位号____________ ………………………………装………………………………订…………………………………线………………………………15、当a 取什么整数时,⽅程0)2(222=-++-+-x x a x x x x x 只有⼀个实根,并求此实根解原⽅程化为0)2(4222=-++-x x ax x(1)若0422,202=++-≠≠a x x x x 则且∵原分式⽅程恰有⼀个实根,∴△=0,即△=,0828)4(24)2(2=--=+??--a a 则27-=a 于是2121==x x 但a 取整数,则舍去(2)若⽅程04222=++-a x x ,有⼀个根为x=0,则a=-4 这时原⽅程为0)2(4222=--+-+-x x x x x x x ,去分母得0222=-x x ,解得x=0,x=1 显然x=0是增根,x=1是原分式⽅程的根(3)若⽅程04222=++-a x x ,有⼀个根为x=2,则a=-8 这时,原⽅程为0)2(8222=--+-+-x x x x x x x ,去分母,得04222=--x x 解得x=2,x=-1 显然x=2是增根,x=-1是原分式⽅程的根经检验当a=-4时,原⽅程恰有⼀个实根x=1;当a=-8时,原⽅程恰有⼀个实根x=-116、若满⾜不等式2)1(2)1(22-≤+-a a x 的x 值也满⾜不等式0)13(2)1(32≤+++-a x a x ,求a 的取值范围解:2)1(2)1(22-≤+-a a x 等价于2)1(2)1(2)1(222-≤+-≤--a a x a ,解得122+≤≤a x a0)13(2)1(32≤+++-a x a x ,可化为0)]13()[2(≤+--a x x观察132)13(-=-+a a (1)当31<a 时3a+1<2;则3a+1《x 《2则由题意,可得+≥≤+122132a a a 解得a=-1(2)当31=a 时,3a+1=2,解得x=2 则由题意,可得2212==+a a ,这与31=a ⽭盾(3)当31>a 时,3a+1>2解得2《x 《3a+1 则由题意可得+≥+≤113222a a a解得1《a 《3 综上所述a 的取值范围是131-=≤≤a a 或已知:O 是坐标原点,()P m,n (m >0)是函数ky x=(k >0)上的点,过点P 作直线PA OP ⊥于P ,直线PA 与x 轴的正半轴交于点()0A a, (a >m ). 设△OPA 的⾯积为s ,且414n s =+.(1)当1n =时,求点A 的坐标(4分);(2)若OP AP =,求k 的值(5分);(3) 设n 是⼩于20的整数,且42n k ≠,求2OP 的最⼩值(5分).DC在等腰Rt△ABC 中,AC=BC ,点D 在BC 上,过点D 作DE⊥AD,过点B 作BE⊥AB 交DE 于点E ,DE 交AB 于F.(1)求证:AD=DE ;(2)若BD=2CD ,求证:AF=5BF 。

2017年温州市重点中学自主招生模拟数学试题含答案 (2).docx

2017年温州市重点中学自主招生模拟数学试题含答案 (2).docx

2017 年温州市重点中学自主招生模拟数学试题含答案2017 年温州市重点中学自主招生模拟试题数学试卷(考试时间120 分钟,满分 150 分)一 . 选择题(每题 5 分,共 50 分)1. 下列数中不属于有理数的是()12A.1B.2C.D.0.111322.如图,在矩形中截取两个相同的圆作为圆柱的上.下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和 x,则 y 与 x 的函数图象大致是()A. B. C. D.3. 如果把 1、3、6、10 ,这样的数称为“三角形数”,而把1、4、9、16 ,这样的数称为“正方形数”.从图中可以发现,任何一个大于 1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A、 13 = 3+10B、 25 = 9+16C、 49 = 18+31D、 36 = 15+214. a、b、c 均不为 0,若x yyz z x abc 0 ,则 p(ab,bc) 不可能在()a b cA 、第一象限B、第二象限C、第三象限D、第四象限5. 如图,在平面直角坐标系中,⊙P的圆心是(2, a)( a> 2),半径为 2,函数 y=x 的图象被⊙P 截得的弦AB的长为2 3 错误!未找到引用源。

,则 a 的值是()A、2 2 错误!未找到引用源。

B 、2 2 错误!未找到引用源。

C、2 3 +2错误!未找到引用源。

D 、236. 如图,在Rt△ABC中,∠ ACB=90o,∠ A=30o,BC=2,将△ ABC绕点 C按顺时针方向旋转n 度后,得到△ EDC,此时,点 D 在 AB边上,斜边 DE交 AC边于点 F,则 n 的大小和图中阴影部分的面积分别为()A、30, 2B、60,2C、60,3D 、 60,3 27.如图一个长为 m、宽为 n 的长方形( m> n)沿虚线剪开,拼接成图 2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为()m nB 、 m- n m nA、 C 、 D 、2228. 抛物线y x 2 上有三点1、 2、3,其横坐标分别为t , t+1, t,则△ 1 2 3的面积为().P P P+3P P PA.1B.2C . 3D .49. 已知直线4x y y y x8 与轴、轴分别交于点A和点B M是3BOB 上的一点,若将△ABM 沿 AM 折叠,点B恰好落在x轴上的点 B 处,则直线AM 的函数解析式是( ) A. y 1 x8 B.y 1 x823C. y 1 x3D.y 1 x323MB/O A x10.正五边形广场 ABCDE的边长为 80 米,甲、乙两个同学做游戏,分别从 A、C 两点处同时出发,沿 A-B-C-D-E-A的方向绕广场行走,甲的速度为50 米 / 分,乙的速度为 46 米/ 分,则两人第一次刚走到同一条边上时().A . 甲在顶点 A 处B.甲在顶点B处C. 甲在顶点 C 处D.甲在顶点D处二 . 填空题(每题 6分,共 36 分)11.分解因式: 2x 24xy 2 y2=________________.12.如图,在平面直角坐标系中,反比例函数y k( x 0, k 0 ) x的图象经过点A(1, 2 ), B( m , n)( m> 1),过点B 作y 轴的垂线 , 垂足为 C. 若△ ABC面积为2,则点 B 的坐标为________.13.如右图,是一回形图,其回形通道的宽和 OB的长均为 1,回形线与射线 OA交于 A1, A2, A3,, .若从 OB点到 A 点的回形线为第 1 圈(长为 7),从 A 点到 A A112点的回形线为第 2 圈, , ,依次类推.则第11 圈的长A 3 A 2 A 1O为.14. 今有一副三角板(如图1),中间各有一个直径为4cm 的圆洞,现将三角板 a 的30o角的那一头插入三角板 b 的圆洞内(如图2),则三角板 a 通过三角板 b 的圆洞的那一部分的最大面积为cm2(不计三角板的厚度,精确到0.1cm2).ab图115.如图,等腰梯形 MNPQ的上底长为 2,腰长为 3,一个底角为 60°.正方形 ABCD的边长为 1,它的一边 AD在MN上,且顶点 A与 M重合.现将正方形 ABCD在梯形的外面沿边 MN、 NP、 PQ进行翻滚,翻滚到有一个顶点与 Q重合时,点 A 所经过的路线与梯形 MNPQ的三边MN、 NP、 PQ所围成图形的面积是________.16.如图,在矩形 ABCD中, AB=2, BC=4,⊙D的半径为 1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点 H,此时两直角边与AD交于 E, F 两点,则tan EFO的值为.三 . 解答题(共 6 小题,分别为8,10,10,10,12, 14 分,共 64 分)17. 设数列1,1,2,1,2,3,,1, 2 ,,k,,1 2 1 3 2 1k k11问:( 1)这个数列第 2010项的值是多少?( 2)在这个数列中,第2010 个值为 1 的项的序号是多少?D C18. 如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,E(Ⅰ)求AOD 的度数;O(Ⅱ)若 AO8 cm, DO 6 cm,求的长.A BOE.19.请设计三种方案:把一个正方形剪两刀,使剪得的三块图形能够拼成一个三角形,并且使拼成的三角形既不是直角三角形也不是等腰三角形,画出必要的示意图,并附以简要的文字说明.20.某商场在促销期间规定:商场所有商品按标价的 80%出售,同时,当顾客在该商场内消费满一定金额后,可按如下方案获得相应金额的奖券:消费金额 w(元)的范围200≤w< 400400≤w< 500500≤ w< 700700≤ w< 900 ,获得奖券的金额(元)3060100130,根据上述促销方法,顾客在该商场购物可以获得双重优惠。

浙江省2017自主招生数学模拟试卷(一)及答案

浙江省2017自主招生数学模拟试卷(一)及答案

浙浙江省2017自主招生数学模拟试卷(一)姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A.2×10﹣4B.0.2×10﹣5C.2×10﹣7D.2×10﹣62.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C. D.3.下列计算正确的是()A.(a4)3=a7B.3﹣2=﹣32C.(2ab)3=6a3b3D.﹣a5•a5=﹣a104.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k的大致图象是()A. B.C.D.5.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()6.下列命题中,真命题的个数是()①同位角相等; ②经过一点有且只有一条直线与这条直线平行;③长度相等的弧是等弧; ④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个7.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.59.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:其中正确的个数是( ).A.1个B.2个C.3个D.4个11.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文的26个字母a、b、c,…,z依次对应1、2、3,…,26这26个自然数(见表格),当明码对应的序号x为奇数时,密码对应的序号;当明码对应的序号x为偶数时,密码对应的序号.按上述规定,将明码“bird”译成密码是()A.bird B.nove C.sdri D.nevo12.已知函数y=,则下列函数图象正确的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.﹣1的相反数是__________,倒数是__________.14.若x<2,化简+|3﹣x|的正确结果是.15.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有 人.16.已知在平面直角坐标系中,点A (﹣3,﹣1)、B (﹣2,﹣4)、C (﹣6,﹣5),以原点为位似中心将△ABC 缩小,位似比为1:2,则点B 的对应点的坐标为 . 17.如图,正方形ABCD 的边长为1,分别以A .D 为圆心,1为半径画弧BD 、AC ,则图中阴影部分的面积__________________18.如图,在▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处.若△FDE 的周长为5,△FCB 的周长为17,则FC 的长为__________.三 、解答题(本大题共8小题,共78分) 19.计算:60sin 32)2(201593⨯+-++20.先化简22522()443x x x x x x +++⨯+++,然后选择一个你喜欢的数代入求值.21.某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)23.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.24.观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为________,第4格的“特征多项式”为__________,第n格的“特征多项式”为________________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16.①求x,y的值;②在此条件下,第n个特征多项式是否有最小值?若有,求出最小值和相应的n值.若没有,请说明理由.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DA B.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.答案解析一、选择题1.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 002=2×10﹣6;故选:D.2.分析:根据轴对称图形与中心对称图形的概念求解.解:A.不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.3. 分析:根据幂的乘方法则:底数不变,指数相乘可得(a4)3=a12;根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得3﹣2=;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得(2ab)3=8a3b3,根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得﹣a5•a5=﹣a10.解答:解:A.(a4)3=a12,故原题计算错误;B、3﹣2=,故原题计算错误;C、(2ab)3=8a3b3,故原题计算错误;D、﹣a5•a5=﹣a10,故原题计算正确;故选:D.4. 分析:首先根据一元二次方程有两个不相等的实数根确定k的取值范围,然后根据一次函数的性质确定其图象的位置.解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k+1)>0,即k>0,∴一次函数y=kx﹣k的图象位于一、三、四象限,故选B.5. 分析:设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.6. 分析:根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.7. 分析:直接根据方差的意义求解.解:∵S>S>S>S,∴四个班体考成绩最稳定的是甲班.故选A.8. 分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.9. 分析:分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.10. 分析: ①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.11. 分析:根据明码与密码的对应关系,分别求出bird四个字母所对应的密码字母,即可得解.解:b对应2,y=+13=14,对应的密码是n,i对应9,y==5,对应的密码是e,r对应18,y=+13=22,对应的密码是v,d对应4,y=+13=15,对应的密码是o,所以,明码“bird”译成密码是nevo.故选D.12. 分析:y=x2+1在x≥﹣1时的性质和y=在x<﹣1时的性质,选出正确选项即可.解:y=x2+1,开口向上,对称轴是y轴,顶点坐标是(0,1),当x≥﹣1时,B、C、D正确;y=,图象在第一、三象限,当x<﹣1时,C正确.故选:C.二、填空题13. 分析:根据相反数与倒数的概念解答即可.解:∵﹣1的相反数是1,∵﹣1=﹣,∴﹣1倒数是﹣.故答案为:1,﹣.14. 分析:先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.解:∵x<2,∴x﹣2<0,3﹣x>0;∴+|3﹣x|=﹣(x﹣2)+(3﹣x)=﹣x+2+3﹣x=5﹣2x.15.分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解答:解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.16. 分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).17. 分析:过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF﹣S△ADF可得出其面积,再根据S阴影=2(S扇形BAF﹣S弓形AF)即可得出结论.解:如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为1,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF﹣S△ADF=﹣×1×=﹣,∴S阴影=2(S扇形BAF﹣S弓形AF)=2(﹣+)=2(﹣+)=﹣.故答案为:﹣.18. 分析:根据翻折变换的性质、平行四边形的性质证明AB +BC =11,此为解题的关键性结论;运用△FCB 的周长为17,求出FC 的长,即可解决问题. 解:如图,∵四边形ABCD 为平行四边形, ∴AD =BC ,AB =DC ; 由题意得:AE =FE ,AB =BF ;∵△FDE 的周长为5,△FCB 的周长为17, ∴DE +DF +EF =5,CF +BC +BF =17, ∴(DE +EA )+(DF +CF )+BC +AB =22, 即2(AB +BC )=22,∴AB +BC =11,即BF +BC =11; ∴FC =17﹣11=6, 故答案为6.三 、解答题19. 分析:根据0指数幂、二次根式的化简、特殊角的三角函数值、负指数幂的定义解答 解:原式=3+1﹣8+2×=﹣1. 20.解:原式2522[]2(3)(2)x x x x x x ++=+⨯+++225222(3)(3)(2)x x x x x x x x x +++=⨯+⨯++++2(2)5(3)(2)(3)(2)x x x x x x x x ++=+++++ 3(3)(3)(2)x x x x +=++3(2)x x =+ 当1x =时,原式311(12)==⨯+(x 不能取0,,21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即(10,20)、(10、50)、(20,50),并且它们出现的可能性相等。

温州中学自主招生面试数学试卷(转载)

温州中学自主招生面试数学试卷(转载)

温州中学自主招生面试数学试卷(转载)1、苏步青是我校校友,他在中学时期做了一万多道数学题,后来成为数学家。

做数学题和成为数学家有什么联系吗?2、闻名数学家陈省身说:“数学好玩”,你认为数学好玩吗?谈谈你的看法。

3、到目前为止,在所有敎过你的数学老师中,你最钦佩谁?什么缘故?4、你认为你所学过的最优美的数学公式是什么?什么缘故?5、你认为学了数学有什么用?谈谈你的方法。

6、什么缘故锅盖是圆形的?7、你参加面试的这幢楼的高度是否有50米?什么缘故?8、闻名数学家华罗庚说:“苦干猛攻埋头干,熟能生出百巧来。

勤能补拙是良训,一分辛劳一分才”。

谈谈你对数学学习的看法。

9、在数学学习方面有让你佩服的同学吗?谈谈你的理由。

10、竞赛用的乒乓球台的面积是否达到20m2?什么缘故?11、三角形具有稳固性,什么缘故桌子通常是四条腿而不是三条腿?12、假如要你去测量操场上旗杆的高度,你预备如何做?13、请你构造一个一元二次方程,使得一个根是另一个根的两倍。

语文课本中的文章差不多上精选的比较优秀的文章,还有许多名家名篇。

假如有选择循序渐进地让学生背诵一些优秀篇目、杰出段落,对提高学生的水平会大有裨益。

现在,许多语文教师在分析课文时,把文章解体的支离破裂,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的干洁净净。

造成这种事倍功半的尴尬局面的关键确实是对文章读的不熟。

常言道“书读百遍,其义自见”,假如有目的、有打算地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便能够在读中自然领会文章的思想内容和写作技巧,能够在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、制造和进展。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

2017年度温州中学自主招生考试真卷

2017年度温州中学自主招生考试真卷

OOOOaaaaSSSS2017年温州中学保送生招生综合素质测试数学试题(本试卷满分150分,考试时间120分钟)一、选择题(本题共6个小题,每小题5分,共30分)1.设a <b ,代数式()2b a aa ba--的化简结果是( )A .aB .a -C .a -D .a --2.已知a ,b 为整数,且方程20x ax b ++=的一个根为23-,则另一个根为( )A .23-+B .23+C .23--D .23- 3.如图,在正方体1111ABCD A B C D -中,AB =2,M 是棱1CC 的中点,P 为四边形1111A B C D 所在平面上的动点,Q 为四边形11BDD B 所在平面上的动点,设△MPQ 的 周长为c ,若c k >恒成立,则k 的最大值为( )A .22B .23C .221+D .231+4.已知x ,y ,z 为实数,且5x y z ++=,3xy yz zx ++=,若z 的最大值为M ,最小值为m ,则M +m 的值为( ) A .73 B .83 C .3 D .1035.如图,已知△ABC 与△GHI 为两个全等的三角形,点G 为△ABC 的重心,GH 交BC 于点D ,GI 交BC 于点E ,设∠BGD =α(0≤α≤60°),△GDE 的面积为S ,则S 作为α的函数,所对应的图象是( )A .B .C .D .6.如图,在锐角△ABC 中,∠ACB =60°,点D 为线段AB 上的一点,△ACD 的外接圆交BC 于点M ,△BCD 的外接圆交AC 于点N ,则CM CNCA CB+的值是( ) A .1 B .3 C .62 D .32二、填空题(本题有8小题,每小题6分,共48分) 7.关于x 的方程1122k x x +=-有且只有一个实数根,则k 的值为 . 8.函数12131y x x x =-+-+-的最小值为 .9.某次台球比赛之后,老陈、小苏、小刘三人名获得了一枚奖牌,其中一人获得金牌、一人获得银牌、一人获得铜牌.老胡猜测:“老陈没有获得金牌,小苏获得金牌,小刘得到的不是铜牌”.结果老胡只猜对了一个,由此推断:得到金牌的人是 . 10.设S =2221111232017+++⋅⋅⋅+,则12S ⎡⎤+⎢⎥⎣⎦= .(注:[]x 表示不超过实数x的最大整数)11.已知a ,b ,c 为方程32330x x -+=的三个不同的解,则111111a b c ++---的值是 .12.如图,已知直线l :12y x b =-+交函数()10y x x=>的图象于P 、Q 两点,交x 轴于点A ,交y 轴于点B ,且AB =4AP ,则b 的值为 .NMCABD(第6题)13.将3根绳的6个头相接,每个头恰与另一个头相接,则恰好结成3个圈的概率是 .14.如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,点D 在线段AB 上,点M , N 在直线AC 上,且满足BD =3DA ,CM =CN ,若∠MDB =∠NDA =θ,则tan θ= .2017年温州中学保送生招生综合素质测试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共6小题,每小题5分,共30分.7. ; 8. ; 9. ;10. ; 11. ; 12. ;__________ 姓名____________________…………封………………………………………………线………………13. ; 14. ;三、解答题(共5小题,15题12分,16至19题各15分,共72分)15.已知()22a b a b =+,其中a ,b 均为大于零的实数,求22222a ab b a ab b -++-的值.16.设关于x 的方程2220x kx --=有两个不同的实根()1212,x x x x <.(1)若m =121233x x +,求证:2220m km --<; (2)若12x a b x <<<,求证:224411a kb ka b --<++.17.如图,点O ,G 分别是△ABC 的外心和重心,若AG ⊥OG ,求222AB AC BC+的值.BCA18.求所有满足111a b c b c a ⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭的值为整数的正整数a ,b ,c .19.10名选手参加一次诗词大赛,共有6道试题,根据下列规则记录每道题的分值:这10名选手中,若恰有n名选手没解出某题,就规定此题分值为n分(n=0,1,2,…,10).(1)是否存在某位选手比其他选手做出的题都少,但得分却最多?并说明理由;(2)已知选手甲所得的分数比其他选手都少,求此分数的最大可能值.,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年温州中学自主招生数学试卷一、选择题(本大题共8题,每小题5分,共40分):1. A2. B3.B.4. B5.B6. C7. B 8. D二、填空题(本大题共6题,每题6分,共36分) 9.2 10.173611. 1012. 直线y 1=kx+b 经过点P (3,4)且与直线y 2=3x 和y 3=x 分别交于A ,B 两点,O 为坐标原点,当三角形AOB 的面积取得最小值时,k+b=______.13.14.2(0)y x =+> 三、解答题:学校_____________ 班级_____________ 姓名___________ 座位号____________ ………………………………装………………………………订…………………………………线………………………………15、当a 取什么整数时,方程0)2(222=-++-+-x x a x x x x x 只有一个实根,并求此实根 解原方程化为0)2(4222=-++-x x ax x(1)若0422,202=++-≠≠a x x x x 则且∵原分式方程恰有一个实根,∴△=0,即△=,0828)4(24)2(2=--=+⨯⨯--a a 则27-=a 于是2121==x x 但a 取整数,则舍去 (2)若方程04222=++-a x x ,有一个根为x=0,则a=-4 这时原方程为0)2(4222=--+-+-x x x x x x x ,去分母得0222=-x x ,解得x=0,x=1 显然x=0是增根,x=1是原分式方程的根(3)若方程04222=++-a x x ,有一个根为x=2,则a=-8 这时,原方程为0)2(8222=--+-+-x x x x x x x ,去分母,得04222=--x x 解得x=2,x=-1 显然x=2是增根,x=-1是原分式方程的根经检验当a=-4时,原方程恰有一个实根x=1;当a=-8时,原方程恰有一个实根x=-116、若满足不等式2)1(2)1(22-≤+-a a x 的x 值也满足不等式0)13(2)1(32≤+++-a x a x ,求a 的取值范围解:2)1(2)1(22-≤+-a a x 等价于2)1(2)1(2)1(222-≤+-≤--a a x a , 解得122+≤≤a x a0)13(2)1(32≤+++-a x a x ,可化为0)]13()[2(≤+--a x x观察132)13(-=-+a a (1)当31<a 时3a+1<2;则3a+1《x 《2则由题意,可得⎩⎨⎧+≥≤+122132a a a 解得a=-1(2)当31=a 时,3a+1=2,解得x=2 则由题意,可得2212==+a a ,这与31=a 矛盾 (3)当31>a 时,3a+1>2解得2《x 《3a+1 则由题意可得⎩⎨⎧+≥+≤113222a a a解得1《a 《3 综上所述a 的取值范围是131-=≤≤a a 或已知:O 是坐标原点,()P m,n (m >0)是函数ky x=(k >0)上的点,过点P 作直线PA OP ⊥于P ,直线PA 与x 轴的正半轴交于点()0A a, (a >m ). 设△OPA 的面积为s ,且414n s =+.(1)当1n =时,求点A 的坐标(4分); (2)若OP AP =,求k 的值(5分);(3) 设n 是小于20的整数,且42n k ≠,求2OP 的最小值(5分).DC在等腰Rt△ABC 中,AC=BC ,点D 在BC 上,过点D 作DE⊥AD,过点B 作BE⊥AB 交DE 于点E ,DE 交AB 于F.(1)求证:AD=DE ;(2)若BD=2CD ,求证:AF=5BF 。

(1)证法(一)过D作DN//AB交AC于N点∵∠CAD+∠CDA=∠EDB+∠CDA=90°,∴∠CAD=∠EDB,又∠AND=∠DBE=135°,AN=BD,∴△AND≌△DBE,∴DA=DE证法(二)证A、D、B、E四点共圆(2)过E作EM//BC交AB于M点,则∠BME=∠MBD=45°,∴△BME为等腰Rt△,设CD=a,则AC=BD=3a,AB=a23,BE=a2,ME=2a,可证△MEF≌△BDF,所以MF=BF=2a2,AM=225a,AM=5BF.17、在平面直角坐标系xOy中,抛物线y=x2-2mx+m2+m的顶点为C.直线y=x+2与抛物线交于A、B两点,点A在抛物线的对称轴左侧.抛物线的对称轴与直线AB交于点M. (1)求线段MB的长(2)作点B关于直线MC的对称点B’. 以M为圆心,MC为半径的圆上存在一点Q,使得QB’+22QB的值最小,求这个最小值.MB’ BA xyCOQ解:(1)、∵y =x 2-2mx +m 2+m =(x -m )2 +m ,∴顶点坐标为C (m ,m ),点M 坐标为(m ,m +2)y =x 2-2mx +m 2+m 由 y =x +2x 1=m -1 x 2=m +2y 1=m +1 y 2=m +4 ∵点A 在点B 的左侧,∴B (m +2,m +4),则B ’(m -2,m +4),BM =2 2(2)、由M 点坐标(m ,m +2),C 点坐标(m ,m )可知以MC 为半径的圆的半径为 (m +2)-m =2取MB 的中点N ,点N 的坐标为(m +1,m +3),连接QB 、QN 、QB ′,则MN =12 BM = 2 ,MN MQ = MQMB ,∠QMN =∠BMQ ,∴△MNQ ∽△MQB , ∴QN QB = MN QM = 22,∴QN = 22QB ,即QB ′+ 22QB = QB ′+QN 当Q 、N 、B ′三点共线时QB ′+QN 最小,(QB ′+QN )min =B ′N =10 即QB ′+22QB 的最小值为10如图所示,已知抛物线213222y x mx m =--交x 轴于1(,0)A x 、2(,0)B x ,交y 轴于C 点,且120x x <<,2()121OA OB CO +=+.(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点P ,使APB ∠为锐角?若存在,求出P 点的横坐标的范围;若不存在,请说明理由.解:(1)由已知可得1AO x =-,2OB x =.∵123x x m +=,1240x x m =-<g ,∴0m >.xyO A CB(第17题图)∵2CO m =,2()121OA OB CO +=+, ∴212()1221x x m -+=⨯+, 即21212()4241x x x x m +-=+. 整理,得 29810m m --=, 解得 11m =,219m =-. ∵0m >,∴11m =.∴抛物线的解析式为213222y x x =--. (2)存在这样的点P ,使得APB ∠为锐角.2132022x x --=,得11x =-,24x =. ∴(1,0)A -、(4,0)B ,而(0,2)C -.如图所示,连接AC 、BC ,可得25AC =,220BC =,225AB =, ∴222AC BC AB +=,∴△ABC 为直角三角形. 过A 、B 、C 三点作⊙1O ,则AB 为⊙1O 的直径. ∵⊙1O 与抛物线都关于直线32x =对称, ∴C 点关于直线32x =的对称点M 是⊙1O 与抛物线的另一个交点, ∴(3,2)M -.设P 点的坐标为0x ,当003x <<时,点P 在⊙1O 外.连接PA 交⊙1O 于点Q ,连接QB 、BP .而90APB AQB ∠<∠=o ,故APB ∠为锐角.同理,当01x -<<0或03x <<4时,有APB ∠为钝角. 故0x 的取值范围是003x <<.18、将1~9这九个数分别填入3⨯3的方表格的每个方格内。

确定如下一种运算:考虑任意的一行或一列,用非负数a -x 、b -x 、c +x 或a +x 、b -x 、c -x 之一代替该行或列中的数字a 、b 、c ,其中,x 是一个正数且在每次运算中可以改变。

(1) 对于图1(甲)、(乙)的两种最初的排列,是否存在一系列的运算,使得全部的九个数字最终相等?(甲) (乙)图1(2) 一些步骤后全部的九个数变为相等的值,求此值的最大值。

解:(1)每一次运算后,四个角上的数字之和不变。

因此,若存在运算使得所有的数字相等,则每个方格中的数最后均相等地变为四个角上的数字的平均值。

每一步后,九个数的和严格递减,且中心方格的数不增。

情形甲:59921479315=+++<+++=Λ,情形乙:346152≤+++。

因此,图1的两种情形均不可能。

…………(5分)(2)设x 为全部的数最终成为的相等的值。

显然,x <5,且可以证明x ≤4. 反之,若4<x <5,则4x >16。

由于4x 为四个角上数字之和,于是,4x 为整数。

所以,4x ≥17。

故x ≥417①设a 为最初写有9、8、7、6、5的方格中所增大的总和。

则这些方格中数所减小的总和为(9-x )+(8-x )+…+(5-x )+a =35-5x +a 。

设b 为最初写有1、2、3、4的方格中所减小的总和。

则这些方格中所增大的总和为(x -1)+…+(x -4)+b =4x +b -10。

因为总减少数是总增大数的两倍,所以, (35-5x +a )+b =2[a +(4x +b -10)] ⇒13x =55-(a +b )135513)(55≤⇒+-=⇒x b a x 。

这与式①相矛盾。

图3例子可证明:4m ax =x 。

…………(7分)…………(3分)图318.对每一个大于1的整数n ,设它的所有不同的质因数为1p ,2p ,...,k p ,对于每个i p (1≤i ≤k ),存在正整数i a ,使得i a i p ≤1i a i n p +<,记1212()k a a a k p n p p p =+++L ,例如,62(100)2589p =+=.(1)试找出一个正整数n ,使得()p n n >,并加以说明; (2)证明:存在无穷多个正整数n ,使得() 1.1p n n >. 解:(1)取90n =→→→290325n ==⨯⨯,90共有2,3,5三个质因数. 12p =,672902<<,∴16a =. 23p =,453903<<,∴24a =. 35p =,23590<<5,∴32a =.642(90)23590p =++>.(2)取310k n =⨯(k ≥0,k 为整数)则n 共有3,2,5三个质因数(12p =,23p =,35p =)∵39310327k k k n ⨯<=⨯<⨯,2333k k n ++<< ∴23p =,22a k =+要使312132 1.1a a a p p p n ++>,即312133 1.1310311a a k k k p p +++>⨯⨯=⨯只要证明31213113325a a k k k np p ++>3⨯-=⨯=即可 ① 由于n 含有因数5,所以必存在唯一的正整数b ,使得153105b k b n +<=⨯<成立∴15b n +>,55b n >,则3355a b np => ②∵②成立,∴31135a a np p +>比成立,则①式得证.由于k ≥0,k 为整数时,310k n =⨯有无穷多个, 原命题成立.18.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2017时,求a 的最小值. 解:设a -b = m (m 是素数),ab = n 2(n 是正整数).因为 (a +b )2-4ab = (a -b )2, 所以 (2a -m )2-4n 2 = m 2,(2a -m +2n )(2a -m -2n ) = m 2. 因为2a -m +2n 与2a -m -2n 都是正整数, 且2a -m +2n >2a -m -2n (m 为素数),所以2a-m+2n m2,2a-m-2n1.解得a,.于是=a-m.又a≥2017,即≥2017.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.19、如图所示,⊙O1与⊙O2外切于点T,四边形ABCD内接于⊙O1,直线DA,CB分别切⊙O2于点E、F,直线BN平分∠ABF并与线段EF交于点N,直线FT 交弧AT(不包含点B的弧)内于点M求证:点M为△BCN的外心C解、如图,设AM 的延长线交EF 于点P .联结AT ,BM ,BP ,BT ,CM ,CT ,ET ,TP . 由BF 与⊙O 2相切于F 点,可得 ∠BFT =∠FET 由⊙O 1与⊙O 2外切于点T ,可得 ∠MBT =∠FET 因此,∠MBT =∠BFM于是,△MBT ∽△MFB ,从而,MB 2=MT ·MF同理可得, MC 2= MT ·MF又由⊙O 1与⊙O 2外切于点T ,可得 ∠MAT =∠FET 因此A ,E ,P ,T 四点共圆,从而∠APT =∠AET 由AE 与⊙O 2相切于点E ,可得 ∠AET =∠EFT 因此 ∠MPT =∠PFM 于是,△MPT ∽△MFP 从而MP 2=MT ·MF由前面可得 MC =MB =MP从而点M 是△BCP 外接圆的圆心.于是 ∠FBP =12∠CMP而∠CMP =∠CDA =∠ABF 由题意得∠FBN =12∠ABF 从而∠FBN =∠FBP 即点P 与点N 重合.证毕.16=的实数解的个数为( )。

相关文档
最新文档