微分中值定理和应用(大学毕业论文)

微分中值定理和应用(大学毕业论文)
微分中值定理和应用(大学毕业论文)

毕业论文(设计)

题目名称:微分中值定理的推广及应用

题目类型:理论研究型

学生:邓奇峰

院 (系):信息与数学学院

专业班级:数学10903班

指导教师:熊骏

辅导教师:熊骏

时间:2012年12月至2013年6月

目录

毕业设计任务书I

开题报告II

指导老师审查意见III

评阅老师评语IV

答辩会议记录V

中文摘要VI

外文摘要VII

1 引言1

2 题目来源1

3 研究目的和意义1

4 国外现状和发展趋势与研究的主攻方向1

5 微分中值定理的发展过程2

6 微分中值定理的基本容3

6.1 罗尔(Rolle)中值定理3

6.2 拉格朗日(Lagrange)中值定理4

6.3 柯西(Cauchy)中值定理4

6.4 泰勒(Taylor)定理4

7 微分中值定理之间的联系5

8 微分中值定理的应用5

8.1 根的存在性证明6

8.2 利用微分中值定理求极限8

8.3 利用微分中值定理证明函数的连续性10

8.4 利用微分中值定理解决含高阶导数的中值问题10

8.5 利用微分中值定理求近似值10

8.6 利用微分中值定理解决导数估值问题10

8.7 利用微分中值定理证明不等式11

9 微分中值定理的推广14

9.1 微分中值定理的推广定理15

9.2 微分中值定理的推广定理的应用17

参考文献18

致19

微分中值定理的推广及应用

学生:邓奇峰,信息与数学学院

指导老师:熊骏,信息与数学学院

【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。

由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。

拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。

【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

The Extension andApplicationoftheDifferential

Mean Value Theorem

Student: Deng Qifeng,School of Information and Mathematics Tutor: XiongJun, School of Information and Mathematics

【Abstract】The differential mean value theorem, is the fundamental theorem of calculus, is the communication bridge between function and its derivative, is an important mathematical tool integrated local research application function derivative, plays a very important role in Calculus.This paper describes the develop progress,the contents and the intrinsic link between the differential mean value theorem; Then look at the differential mean value theorem in solving problems, such as: the discussion of the roots (zero) in existence, limit and proof of in equality.

Because often proof of differential mean value theorem and related propositions in the form is not the three theorems of a direct conclusion, this requires the help of a suitable auxiliary function, equivalent to mathematical problems, but, how to construct the auxiliary function appropriate is often more difficult. The key is how to solve the problem of mean value theorem by constructing an auxiliary function, expounds the importance of the differential mean value theorem from the combination of theory and practice.

The Lagrange mean value theorem and the Cauchy mean value theorem are extensions of the Rolle mean value theorem.In this article,the Rolle mean value theorem has been concluded and deduced in few more forms that helped to expand the use of the Rolle mean value theorem.Also,the article has demonstrated of the application of differential meanvalue theorem in derivative limit,derivative estimate value,existence of root of an equation,proof of inequality and calculation of functional limit upon

many examples.

【Keywords】 Differential mean value theorem;Rolle mean value theorem; The Lagrange mean value theorem;the Cauchy mean value theorem;Contact; Promotion; Application

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

第五章微分中值定理及其应用答案

139 第五章 微分中值定理及其应用 上册P 178—180 习题解答 1. 设0)(0>'+x f ,0)(0<'-x f .证明0x 是函数)(x f 的极小值点 . 证 0)()(lim )(0000 <--='- →-x x x f x f x f x x ,?在点0x 的某左去心邻域内有 0) ()(0 0<--x x x f x f , 此时00<-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >; 0)()(lim )(0000 >--='+ →+x x x f x f x f x x ,?在点0x 的某右去心邻域内有0) ()(0 0>--x x x f x f , 此时00>-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >. 综上 , 在点0x 的某去心邻域内有)()(0x f x f >. 即0x 是函数)(x f 的极小值点 . 2. 举例说明 , Rolle 定理的三个条件都不满足 , 函数仍然可以存在水平的切线 . 解答: 例如函数 . 21 , 1, 12 , )(2? ??≤<-≤≤-=x x x x x f )(x f 定义在区间] 2 , 2 [-上 , )(x f 在 点1=x 间断 ,因此不满足在闭区间上连续和在开区间内可导的条件 , 并且4) 2(=-f , 而 1) 2 (=f , ≠-) 2(f ) 2 (f . 对区间] 2 , 2 [-上的这个函数)(x f , Rolle 定理的三个条件都 不满足 . 但是 , 0) 0 (='f , 该曲线上点) 0 , 0 (处的切线仍然是水平的 . 3. 设函数)(x f 在闭区间] , [b a 上连续 , 在开区间) , (b a 内可微 . ⑴ 利用辅助函数 1 )(1)(1)( )(b f b a f a x f x x =ψ. 证明Lagrange 中值定理 .

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理研究报告和推广

渤海大学 毕业论文<设计) 题目微分中值定理的研究和推广完成人姓名张士龙 主修专业数学与应用数学 所在院系数学系 入学年度 2002年9月 完成日期 2006年5月25日 指导教师张玉斌

目录 引言 (1) 一、中值定理浅析 (1) 1、中值定理中的 (1) 2、中值定理中条件的分析 (2) 二、微分中值定理的推广 (4) 1、微分中值定理在无限区间上的推广 (4) 2、中值定理矢量形式的推广 (7) 3、微分中值定理在n维欧式空间中的推广 (9) 4、中值定理在n阶行列式形式的推广 (12) 5、高阶微分中值定理 (15) 结束语 (19) 参考文献 (19)

微分中值定理的研究和推广 张士龙 <渤海大学数学系锦州 121000 中国) 摘要:微分中值定理是高等数学中的一项重要内容,是解决微分问题的关键。本文对微分中值定理中的一些条件给予了相关说明。后又在此基础上,对微分中值定理进行了一系列的推广,先后在无限区间内,在定理的矢量形式,在多维欧氏空间中,在高阶行列式形式,以及在微分定理的高阶形式五个方面来研究,通过定理与实例的结合,来说明各个推广的过程。从而,使定理向着更加广阔的方面发展,有利于对定理的掌握和应用。 关键词:微分中值定理,无限区间,矢量形式,行列式,高阶微分中值定理,欧式空间。 The Research and Popularization of The Differential Mean Value Theorem Shilong Zhang (Department of Mathematics Bohai University Jinzhou 121000 China> Abstract: The differential mean value theorem is an important element of higher mathematics. It is the key to solve the differential problems. This text gives detailed explanations to the conditions of the differential mean value theorem. On this foundation, this text carries on series of promotional activities of the theorem, and makes research in the indefinite sector, the vector form of the theorem, the multi-dimensional Euclidean space, the high rank determinant and high rank of the differential theorem altogether five aspects. This text illustrates the promotional process through the integration of the theorem and its examples, so as to enable the theorem to develop towards broader aspects. It is advantageous to the mastery and application of the theorem. Key words: the differential mean value theorem, indefinite sector, the rector form, Euclidean space, determinant, defferential value theorm of higher order 引言 罗尔定理、拉格朗日定理、柯西定理统称为微分学的中值定理。中值定理既应用导数来研究函数的性质,是沟通函数及其导数之间的桥梁,是应用导数的局部性研究,函数在区间上的重要工具。在实践中,有着广泛的应用,因此,有必要将其进一步推广,使其达到一个比较完善的地步,对进一步的研究和创造有很大的帮助。 一、中值定理浅析 1、中值定理中的

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

微分中值定理和应用(大学毕业论文)

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书I 开题报告II 指导老师审查意见III 评阅老师评语IV 答辩会议记录V 中文摘要VI 外文摘要VII 1 引言1 2 题目来源1 3 研究目的和意义1 4 国外现状和发展趋势与研究的主攻方向1 5 微分中值定理的发展过程2 6 微分中值定理的基本容3 6.1 罗尔(Rolle)中值定理3 6.2 拉格朗日(Lagrange)中值定理4 6.3 柯西(Cauchy)中值定理4 6.4 泰勒(Taylor)定理4 7 微分中值定理之间的联系5 8 微分中值定理的应用5 8.1 根的存在性证明6 8.2 利用微分中值定理求极限8 8.3 利用微分中值定理证明函数的连续性10 8.4 利用微分中值定理解决含高阶导数的中值问题10 8.5 利用微分中值定理求近似值10 8.6 利用微分中值定理解决导数估值问题10 8.7 利用微分中值定理证明不等式11 9 微分中值定理的推广14 9.1 微分中值定理的推广定理15 9.2 微分中值定理的推广定理的应用17 参考文献18 致19

微分中值定理的推广及应用 学生:邓奇峰,信息与数学学院 指导老师:熊骏,信息与数学学院 【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。 由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。 拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。 【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

微分中值定理及其应用习题解析2

第六节 定积分的近似计算 1. 分别用梯形法和抛物线法近似计算 ?21x dx (将积分区间十等份) 解 (1)梯形法 ?21x dx ≈412.111.1121(1012+??+++-)6938.0≈ (2)抛物线法 ?21x dx =???++-(42 113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx x x ?π0sin 解 当n=2时,dx x x ?π 0sin ≈12π?? ?????+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ?π 0sin ≈ 24π ??? ????????? ??+++??? ??++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520. 当n=6时,dx x x ?π 0sin ≈ ??? ? ??+++++???? ??+?+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517. 3..图10-27所示为河道某一截面图。试由测得数据用抛物线法求截面面积。 解 由图可知n=5,b-a=8. ? b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++ =()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.2215 4+=8.64(m 2) (1)按积分平均 ?-b a t d t f a b )(求这一天的平均气温,其中定积分值由三种近视法分别计算;

微分中值定理及其应用

本科生毕业论文(设计)系(院)数学与信息科学学院专业数学与应用数学 论文题目微分中值定理及其应用 学生姓名贾孙鹏 指导教师黄宽娜(副教授) 班级11级数应1班 学号 11290056 完成日期:2015年4月

微分中值定理及其应用 贾孙鹏 数学与信息科学学院数学与应用数学 11290056 【摘要】微分中值定理是研究复杂函数的一个重要工具,是数学分析中的重要内容。我们可以运用构造函数的方法来巧妙的运用微分中值定理解决问题。本文主要研究微分中值定理的内容和不同形式之间的关系,以及它的推广形式。并归纳了它在求极限,根的存在性,级数等方面的应用。最后对中间点的问题进行了讨论。 【关键词】微分中值定理应用辅助函数 1引言 微分中值定理主要包括罗尔(Roll)定理,拉格朗日(Lagannge)中值定理,柯西(Cauchy)中值定理,以及泰勒(Taylor)公式。他们之间层层递进。研究了单个函数整体与局部,以及多个函数之间的关系。对掌握函数的性质,以及根的存在性等方面具有重要的作用。学微分中值定理这节同我们要掌握为什么要学这节,和不同定理之间的关系和应用。从教材来看,我们已经明白了导数微分重要性,但没讲明如何运用,因此有必要加强导数的应用,而微分中值定理是导数运用的理论基础。所以这部分内容很重要。它是以后研究函数极限,单调,凹凸性的基础。从微分中值定理的产生来看,其中一个基础问题就是函数最值问题。而解决此类问题就是能熟练的运用微分中值定理。此文为加深对中值定理的理解,在它推广的基础上详细解释了定理间的关系,对它的应用作了5个大方面的归纳。并对最新研究成果作了解释。 2柯西与微分中值定理 2.1柯西的证明 首先在柯西之前就有很多科学家给出了导数的定义,当然他们对导数的认识存在着差异。比如说欧拉在定义导数的时候就用了差商的形式,如将() g x的导数定义 为 ()() g x h g h h +- 当趋于0时的极限。对于拉格朗日他对导数的认识开始是建立在 错误观点的,他认为任意的函数都可以展开成幂级数的形式,但是事实并不是这样。而柯西采用的是极限来定义并将其转化成了不等式的语言。我们来看下柯西的证明,它开始于:

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

数学分析之微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.360docs.net/doc/714531934.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且

微分中值定理及其应用大学毕业论文

微分中值定理及其应用 大学毕业论文 Last revised by LE LE in 2021

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

相关文档
最新文档