量子力学第二章-波函数与薛定谔方程-郭华忠
量子力学-第二章波函数和薛定谔方程
因发现原子理论新的有 效形式与狄拉克
荣获1933年
RETURN
诺贝尔物理学奖
32
二. 方程的讨论
1. 概率流密度和守恒定律 设t时刻,x点周围单位体积内粒子出现的概率
w x,t * x,t x,t
概率随时间的变化规律
w * *
t
t t
因为 i 2 1 U x
t 2m
概率密度:
w x, y, z,t dW C x, y, z,t 2
dV
3.波函数的性质
(1) x, y,是z,t单 值、有界、连续的; (2) x, y,与z,t C描x写, y同, z,一t 状态。
20
(3)波函数的归一性 ① (x, y是, z)平方可积的,则可归一化,
2
dV 1
玻恩(M.Born):在某一时刻, 空间 x 处粒子出现 的概率正比于该处波函数的模方。粒子在空间出 现的概率具有波动性的分布,它是一种概率波。
19
设波函数 x, y, z,t t 时刻处于 x—x+dx,y—y+dy,z—z+dz内的
概率
dW x, y, x,t C x, y, z,t 2 dxdydz
c
q v B mv 2
q Br v
c
r
mc
与玻尔量子化条件联立,得
r2
n
1 2
2 q
c B
所以,粒子能量可能值为
En
1 2
mv 2
(n
1) 2
qB mc
(n 0,1, 2, )
10
V(x) 3.德布罗意假设的实验V(验x)证
(1)德布罗意—革末(Davison—Germer)
量子力学第二章 波函数与薛定谔方程
描写。
(2) 电子在晶体表面衍射的实验中,粒子被晶体表面反射后,
p p 可能以各种不同的动量 运动,以一个确定的动量 运动的粒
子状态用波函数
i ( E t p r ) p ( r , t ) Ae
即 r , p 决定体系的一切性质。
d r F m (3)质点状态的变化 (运动) 遵从牛顿定律: 2 F , 当 dt
2
已知时,如果初始时刻 r0 , p 0 ( v 0 ) 也已知,则积分得: t t t F v( t ) dt v 0 ; p( t ) Fdt p 0 ; r ( t ) v( t )dt r0 m 0 0 0 即任何时刻的r (t ), p(t ) 完全确定.
可以写作而薛定谔方程这个方程称为哈密顿算是常数其中可以写作于是定态薛定谔方程定义哈密顿算符值方程的解称为哈密顿算符的本征相应的一系列的本征函一系列的本征值求得满足这个方程的是常数其中波函数这样的波函数称为定态程的一系列特解这样我们得到薛定谔方定态波函数与时间t的关系是正弦型的其角频率2eh
一、状态的描述
ቤተ መጻሕፍቲ ባይዱ
(1)坐标平均值 为简单计,剩去时间t变量(或者说,先不考虑随时间 的变化) 设ψ(x) 是归一化波函数,|ψ (x)|2 是粒子出现在x点
的几率密度,则
x x
x | ( x ) | 2 dx
对三维情况,设ψ(r) 是归一化波函数,|ψ(r)|2是 粒子出现在 r 点的几率密度,则x的平均值为 2 x x x | ( r ) | d
两者一一对应 具有类似的物理含义
量子力学 2 波函数和薛定谔方程
x, t c( p, t ) p dp p, t ( p, t ) x dx
§2.3 Schrodinger 方程
经典力学
物体运动状态用位置、 动量等力学量描述。
运动状态随时间变化 规律由牛顿方程描述。 若知道力学体系的初 始条件,利用牛顿方 程即可求出体系在任 何时刻的运动状态
请问下列波函数中,哪 些与 1描写同一状态?
1 ei 2 x / , 4 e i 2 x / ,
( 2)
已知下列两个波函数:
n A sin ( x a) | x | a 1 ( x) n 1,2,3, 2a | x | a 0 n ( x a) | x | a A sin 2 ( x) n 1,2,3, 2a | x | a 0 请问:I、波函数 1 ( x ) 和 2 ( x ) 是否等价? II、对 1 ( x )取n 2两种情况,得到的两个 波函数是否等价?
c( p, t )
1 32 2
(r , t )e
i p r
dxdydz
i p r 1 ( r , t ) c ( p , t ) e dp dp dp x y z 3 2 总结: 2 i p r 1 c ( p, t ) ( r , t ) e dxdydz 3 2 2
的状态,则这些态的线性叠加
c1ψ1 c2ψ2 cnψn cnψn
(其中 C1 , C2 ,...,Cn ,...为复常数)。
n
也是体系的一个可能状态。处于Ψ 态的体系,
部分的处于 Ψ 1态,部分的处于Ψ 2态...,部分
量子物理第二章-薛定谔方程ppt课件.ppt
P2 Ψ 2
2 2Ψ
2m
x 2
i Ψ t
E
Ek
P2 2m
一维自由粒子的 含时薛定谔方程
2、一维势场 U (x,t) 中运动粒子薛定谔方程
E
Ek
U
(x,t)
P2 2m
U
(x,t)
Ψ t
i
EΨ
2Ψ x 2
P2 2
Ψ
Ψ t
i
[
P2 2m
U
(x,
t)]Ψ
2
2m
2Ψ x2
P2 Ψ 2m
2 2m
0
波函数本身无直观物理意义,只有模的平方反映粒子出 现的概率,在这一点上不同于机械波,电磁波!
2、玻恩(M..Born)的波函数统计解释:
概率密度: w Ψ (r,t) 2 ΨΨ*
单位体积内粒子出现的概率! 3、波函数满足的条件
1、单值: 在一个地方出现只有一种可能性; 2、连续:概率不会在某处发生突变; 3、有限 4、粒子在整个空间出现的总概率等于 1
(x) Asin(kx ) ( a x a)
(2)确定常数 A、
2
2
由波函数连续性, 边界条件 (-a/2) = 0 (a/2) = 0
Asin( ka 2 ) 0 ka 2 l1
Asin( ka 2 ) 0
2 (l1 l2) l
ka 2 l2 l
2
1)当 l 0 时 o Asin kx ——奇函数。 2)当 l 1 时 e Acos kx ——偶函数。
3. 薛定谔方程是对时间的一阶偏微分方程, 因此波动形式 解要求在方程中必须有虚数因子 i,波函数是复函数。
4. 只有动量确定的自由粒子才能用平面波的描写。
量子力学 第二章 波函数和薛定谔方程
x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2
∴
2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )
2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:
2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e
(r ) p
1 (2)
3 2
e
i pr
(r , t )
( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的
量子力学-波函数和薛定谔方程
1. 单电子衍射实验
我们再看一下电子的衍射实验
1. 入射电子流强度小,开始显示电子的微粒性,长 时间亦显示衍射图样;
2. 入射电子流强度大,很快显示衍射图样。
P
P
电子源
O
Q 图
感 光 屏 Q
单电子衍射实验
单电子衍射实验结果分析:
实验所显示的电子的波动性是许多电子地同一次实 验中的统计结果,或者是一个电子在许多次相同实验中 的统计结果。波函数正是为描写粒子的这种行为而引进 的。 (1)“亮纹”处是到达该处的电子数多,或讲电子 到达该处的概率大;“暗纹”处是到达该处的电子数少, 或讲电子到达该处的概率小。 (2)衍射图样由电子波动性引起, “亮纹”处表示 该处波强度|Ψ(r)|2大;“暗纹”处表示该处波强度|Ψ(r)|2 小,所以,电子到达屏上各处的概率与波的强度成正比。
量子力学
Quantum Mechanics 第二章
第二章 波函数 和薛定谔方程
§2.1 波函数的统计解释 §2.2 态叠加原理 §2.3 薛定谔(Schrodinger)方程 (S-方程) §2.4 粒子流密度和粒子数守恒定律 §2.5 定态薛定谔方程 §2.6 一维无限深势阱 §2.7 线性谐振子 §2.8 势垒贯穿 §2.9 例题
自由粒子的波函数无法正常归一化
自由粒子德布罗意平面波为
Ae
i ( p r Et )
归一化条件为
d =1
2
2
A
d
所以德布罗意平面波无法正常归一化。 (具体如何处理后面将讨论)箱归一化方法
四. 多粒子体系的波函数
(r1 , r2 ,, rN , t ) 描述N个粒子组成的体系的运动状态 玻恩统计解释:
量子力学-薛定谔方程
30
2.3 一维运动的一般分析
31
一、 一维势场中粒子能量本征态的一般性质 1、定态
2、简并 如果系统的能级是分立的,即 E En,若对 同一个能级,有两个及其以上的本征函数与 其对应,则称这个能级是简并的。
5
2 物理意义: 对实物粒子的波动性有两种解释
(1)第一种解释,认为粒子波就是粒子 的某种实际结构,即将粒子看成是三维 空间中连续分布的一种物质波包。波包 的大小即粒子的大小,波包的群速度即 粒子的运动速度。粒子的干涉和衍射等 波动性都源于这种波包结构。
6
能量和动量的关系为, E p2 / 2m
d
dt WV
S
J dS,
WV 是在体积V内发现粒子的总几率,而
S
J dS
穿过封闭曲面S向外的总通量。所以
J 是“几率流密度”,而上式表现了几率守恒。
几率守恒也就是粒子数守恒。 27
三 定态Schrodinger方程
若
U
(r
)
与时间无关,则Schrodinger方程
A
12
说明:
1 即使要求波函数是归一化的,它仍有一个 位相因子的不确定性(相位不确定性)。
例如:常数 c ei ,则 (x, y, z)
和 c (x, y, z) 对粒子在点(x,y,z)附近
出现概率的描述是相同的。
2 有些波函数不能(有限地)归一,如平面 波。
13
五、对波函数的要求
E p
i
量子力学2波函数和薛定谔方程
波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。 电子双
缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒 子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也 是波,它是粒子和波动两重性矛盾的统一,这个波不再 是经典概念下的波,粒子也不再是经典概念下的粒子。 在经典概念下,粒子和波很难统一到一个客体上。
也是一个可能的波动过程。
波的干涉、衍射现象可用波的迭加原理解释。 二、量子力学的态迭加原理
如果 1 和 2 是体系的可能状态,那么它们的线性 迭加: c11 c21(c1 ,c2是复数)也是这个体系 的一个可能状态。
三、电子双缝衍射 P
设 1 表示电子穿过上面窄
缝到达屏的状态,设 2 表 示电子穿过下面窄缝到达
二、波函数的(Born)统计解释
1、几率波
1926年玻恩提出了几率波的概念: 在数学
上,用一函数表示描写粒子的波,这个函数叫波函数。波
函数在空间中某一点的强度(振幅绝对值的平方)和在该
点找到粒子的几率成正比。既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同 一实验或一个电子在多次相同实验中的统计结果。
dW 应正比于体积 d dxdydz 和强度 2
dW(x, y, z,t) C (x, y, z,t) 2 d
2.1 归一化条件:在整个空间找到粒子的几率为1。
2
dW (x, y, z,t) C (x, y, z,t) d 1
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
的线性迭加: c11 c22 cn n cn n
量子力学 第二章
第二章 波函数和薛定谔方程微观粒子波性 如何描述 波函数 薛定谔方程光子 E hv ω== h p n k λ==粒子 由E 、P Evh =h p λ==平面波的频率和波矢都是不随时间或位置改变自由粒子的能量和动量 对应∴自由粒子用平面波表示 ()()i p r E i k rAe Ae ωπψ--==如粒子受到随时间或位置而变化的力场的作用,它的能量和动量不再是常量,这时粒子就不能用平面波描写而必须用较复杂的波函数来描写。
波函数是一个复数如何理解波函数的意义。
不同看法以电子为例1.波是由粒子组成的。
粒子是基本的波只是大量粒子分布密度的变化有点象纵波,密、疏、密、疏集体行为干涉衍射是由因密度波的叠加实验 电子束强度减弱,弱到一个一个地发射长时间后有干涉象 单粒子就有波动性夸大了粒子性2. 认为粒子是由波所组成。
即粒子是de-Broglie 波在空间有限区域中的物质波包。
粒子的实质是波,波包真空色散特性决定包波必然扩散 估算10-8cm 1Å经过10-6S 会扩散到103cm 夸大了波动性 到底电子是什么?波函数是什么?上两种看法现在波认为不对的是对粒子波函数的不正确理解,人们所普通接受的观点为:电子 即不是粒子也不是波确切地说不是经典粒子,也不是经典的波,但人我们说,即是粒子,又是波,它是粒子和波动两重性的矛盾统一,这个波不是经典概念下的波。
经典物理中 粒子 有质量 坐标 轨道仔细分析粒子有确切的轨道是牛顿力学的概念从来没有无限精确地为实验证实过,所以很可能坐标和轨道地概念是宏观情况下的近视。
同时电荷、质量、体现出的粒子性与确切坐标和轨道无必然联系。
波 在经典物理中总是意味着某种实际的物理量在空间分布作周期性的变化,而更重要的是呈现出干涉与衍射现象。
干涉衍射的本质在于波的相干叠加性并不一定要求与某种实际的物理量在空间分布联系在一起。
Born (1926年提出几率波的概念) 基本原理不是经典物理波那样代表秆么实在的物理量的波动只不过是刻画粒子在空间的几率分布的几率波而已,为了阐明这个概念,分析一个比较简单的电子双缝衍射实验。
量子力学电子教案(第二章 波函数和 薛定谔方程)
�
i ( E t px x) i + px x i Et i Et
Ψ ( x, t ) = Ψ0 e
与驻波类比
= Ψ0 e
i px x
e
= Ψ ( x) e
式中: 式中: Ψ ( x ) = Ψ e 0
振幅函数
∵ Ψ ( x, t ) = Ψ ( x ) e
i Et
| Ψ ( x, t ) |2 = Ψ Ψ * = Ψ ( x )e
代入 得 即
d Ψ ( x) p x = 2 Ψ ( x) 2 dx
2 2
2 x
*
d 2 Ψ ( x ) 2m + 2 ( E U )Ψ ( x) = 0 2 dx
一维定态薛定谔方程
三维定态薛定谔方程 振幅函数 Ψ = Ψ ( x, y , z )
Ψ Ψ Ψ 2m + 2 + 2 + (E U)Ψ = 0 2 x y z
Ψ(r , t ) = Ψ0e
i ( Et pr )
2. 波函数的强度 波函数的强度——模的平方 模的平方 | Ψ |2 = Ψ Ψ * 波函数与其共轭复数的积 例:一维自由粒子: 一维自由粒子:
| Ψ ( x, t ) | = Ψ Ψ* = Ψ0 e
2
i ( E t px x )
Ψ0 e
x x Ψ = Ψ0 cos ω (t ) = Ψ0 cos 2π (ν t ) λ u 1 E x = Ψ0 cos 2π ( t ) = Ψ0 cos ( Et x p x ) h h p
Ψ(x, t) = Ψ e 0
i ( Et px x)
(取实部) 取实部)
推广 :三维自由粒子波函数
量子力学第二章波函数和薛定谔方程PPT课件
③波函数一般满足连续性、有限性、单值性。
10
3.波函数的归一化条件
令
(r,t)C (r,t)
t 时刻,在空间任意两点 r 和1
对几率是:
处r 2 找到粒子的相
((rr1 2,,tt))2 2C C((rr1 2,,tt))2 2((rr1 2,,tt))2 2
r , t 和 r ,所t 描写状态的相对几率是相同的,
这里的 是常数C 。
11
非相对论量子力学仅研究低能粒子,实物粒子不会产 生与湮灭。这样,对一个粒子而言,它在全空间出现的 几率等于一,所以粒子在空间各点出现的几率具有相对 性,只取决于波函数在空间各点强度的相对比例,而不 取决于强度的绝对大小,因而,将波函数乘上一个常数 后,所描写的粒子状态不变,即:
➢ 2.3 薛定谔方程
The Schrödinger equation
➢ 2.4 粒子流密度和粒子数守恒定律
The current density of particles and conservation
laws
➢ 2.5 定态薛定谔方程
Time independent Schrödinger equation
8
设粒子状态由波函数 (r ,描t)述,波的强度是
(r,t)2*(r,t)(r,t)
按Born提出的波函数的统计解释,粒子在空间中
某一点 r 处出现的概率与粒子的波函数在该点模的
平方成比例
则微观粒子在t 时刻出现在 r 处体积元dτ内的几
量子力学第二章波函数及薛定谔方程 ppt课件
例.1 已知一维粒子状态波函数为
(rv,t)Aexp 1 2a2x22 it
求归一化的波函数,粒子的几率分布,粒子在何处 出现的几率最大。
解:
(1).求归一化的波函数
(r ,t)2d xA2 e d a2x2 x A 2
归一化常数 Aa/ 1/2
1
a2
归一化的波函数
(rv,t)a/
则微观粒子在t 时刻出现在 rv 处体积元dτ内的
几率
d W (r v ,t) C (r v ,t)2d
观客这体表运明动描的写一粒种子统的计波规是律几性率,波波(函概数率波 )rr,,反t 有映时微
也称为几率幅。
某一点按Brov r处n提出出现的的波概函率数与的粒统子计的解波释函,数粒在子该在点空模间的中
3 3 e i(2 x h )/h , 6 (4 2 i)e i2 x /h .
2.已知下列两个波函数
1(x)
Asin
n
2a
(xa)
0
| x|a | x|a
n1,2,3,L
2(x)
Asin
n
2a
(xa)
| x|a
n1,2,3,L
0
| x|a
试判断: (1)波函数 1 ( x ) 和 2 ( x ) 是否描述同一状态?
440 Hz + 439 Hz + 438 Hz + 437 Hz + 436 Hz
实验上观测到的电子,总是处于一个小区域内。 例如一个原子内的电子,其广延不会超过原子大小 ≈1A0 。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒 子也不是经典的波,但是我们也可以说,“ 电子既 是粒子也是波,它是粒子和波动二重性矛盾的统一。”
第2章 波函数与薛定谔方程
二、波函数的统计解释
电子(微观粒子)到底是什么? 它既不是经典的粒子,也不是经典的波。它是粒子 和波动两重性矛盾的统一。实际上是粒子“颗粒性” (具有一定的质量和电荷等属性的客体,但不与粒
6
子具有确定轨道相对应,这是由于位置和动量不能 同时具有确定的值,即测不准关系,后讲)与波的 “相干叠加性”(呈现干涉、衍射等现象,但不与 某种实在物理量在空间分布的周期性变化相对应) 的统一。
ˆ i p
3 ˆ 则 p * ( r ) p ( r ) d r
20
可表为
ˆ ) p (,p
动量算符
上式表明,动量平均值与波函数的梯度密切相关 (与波数 k 成正比)。 动能T=p2/2m和角动量L=r×p的平均值也可类似 求出。 一般说来,粒子的力学量A的平均值可如下求出
2
A-1/2称为归一化因子。波函数归一化与否,并 不影响几率分布。
12
注意:1)象平面波等一些理想波函数,它 们不能归一化。对此的归一化问题将在后 边介绍; 2)对于归一化的波函数仍有一个模为1的 因子不定性,即相位(phase)不定性。
e i 1
e
i
2
2
13
三、统计解释对波函数提出的要求
3
一、 波动、粒子两重性矛盾的分析
1 把电子看成是物质波包
包括波动力学的创始人薛定谔、德布罗意等人把 电子波理解为电子的某种实际结构,即看成三维 空间中连续分布的某种物质波包,因而呈现出了 干涉、衍射等现象。波包的大小即电子的大小, 波包的群速度即电子运动的速度。按经典自由粒 子能量,并利用德布罗意关系可得
量子力学2波函数和薛定谔方程
【教学目的】 正确了解波粒二象性的本质及波函数的统计解 释,了解薛定谔的建立过程,了解态迭加原理,掌握几种 典型一维定态问题的求解方法(一维无限深势阱、一维线 性谐振子)。
§2.1 波函数的统计解释 §2.6 一维无限深势阱
§2.2 态迭加原理
§2.3 薛定谔方程
§2.4 粒子流密度和粒子 数守恒定律
t
称为定态波函数
3、定态下几率流不随时间变化。
J
i ( )
i ( (r) (r) (r) (r) )
2
2
4、任何力学量的平均值不随时间变化。
三、哈密顿(Hamilton)算符
i (r, t ) E(r, t ) t
i E t
2 2 (r, t) U (r)(r, t) E(r, t)
dW 应正比于体积 d dxdydz 和强度 2
dW(x, y, z,t) C (x, y, z,t) 2 d
2.1 归一化条件:在整个空间找到粒子的几率为1。
2
dW (x, y, z,t) C (x, y, z,t) d 1
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
一.连续性方程
设描写粒子的状态波函数为:(r, t),
则几率密度为:
w(r, t) (r, t)(r, t)
几率密度随时间的变化率是 w
t
t t
由薛定谔方程和其共轭复数方程得
i 2 2 U (r)
t 2
i 2 2 U (r)
t
2
将上两式代入得
w i (2 2 ) i • ( )
也是一个可能的波动过程。
量子力学讲义 第二章(2)
•
在讨论了状态或波函数随时间变化的规律后
, 进一步讨论粒子在一定空间区域内出现的概 率将 怎样随时间变化。
设描写粒子状态的波函数是: (r , t ) 在时刻t 在r点周围单位体积内粒子出现的概率(概 2 率密度): ( r , t ) ( r , t ) ( r , t ) | ( r , t ) | (1)
将(2)代入 (1)式中:
一、定态薛定谔方程
i [ 2 U r ] 2m t
(2)
2
2
(1)
i (r )
d f (t ) f (t )[ 2 U r ] 2 m dt 上式两边除以 ( r ) f (t )
(3)
2 i df 1 [ 2 U r ] f dt 2m
j k 其中 i x y z
(称为动量算符)
(向量算符)
问:p x
?
p x i
x
利用关系式(8)、(9)来建立在力场 中粒子波函数所满足的微分方程。 设粒子在力场中的势能为 U r ,则:
2、薛定谔方程:
三、薛定谔方程
2 p 两边乘以 p U r (10) E E U r 2m r , t 2m 2 E i t 代入上式得 i 2 U r 将 t 2m p i (11)
定态的特点 1)粒子的概率密度和概率流密度
与时间无关 因为
2 Et ( r , t ) ( r )e
t
i 2
一、定态薛定谔方程
2 (r )
显然, 0
2)能量具有确定的值 3)各力学量的平均值不随时间变化
量子力学第二章波函数
第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。
自由粒子是不受力场作用的,它的能量与动量都是常量。
如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。
这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。
它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。
究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。
例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。
我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。
但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。
这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。
除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。
为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。
按照这种解释,描写粒子的波及是几率波。
按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。
但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论:h极其微小,宏观物体的波长小得实验难以量, ―宏观物体只表现出粒子性”
例题2:计算被电场加速运动的电子的物质波长。
设:加速电压为U 当V<<c 时 电子静止质量 me=9.1× 10-31 kg
V
4
h meV
1 meV 2 e U 2
h 2eme U
2e U me
在电子衍射实验中,照相底片上 r 点附近衍射花样的强度 正比于该点附近感光点的数目,
正比于该点附近出现的电子数目, 正比于电子出现在 r 点附近的几
率。
假设衍射波波幅用 Ψ (r) 描述,与光学相似, 衍射花纹的强度则用 |Ψ (r)|2 描述,但意义与经典波不同。 |Ψ (r)|2 的意义是代表电子出现在 r 点附近几率的大小,确切 的说,|Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx ΔyΔz 中找到粒子的几率。波函数在空间某点的强度(振幅绝对值 的平方)和在这点找到粒子的几率成比例. 据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的基本原理。
实验上观测到的电子,总是处于一个小区域内。例如在一个原子内,其广 延不会超过原子大小≈1 Å 。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也 不是波 ”,既不是经典的粒子也不是经典的波, 但是我们也可以说, “ 电子既是粒子也是波,它是粒子和波动二重性矛盾的统一。” 这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
反例:i)自由粒子平 面波,占据整个空间 ii)色散
群速度:
相速度: 必有色散->粒子解 体
经典概念中
1.有一定质量、电荷等“颗粒性”的属性;
粒子意味着
2.有确定的运动轨道,每一时刻有一定 位置和速度。
经典概念中
1.实在的物理量的空间分布作周期性的变化;
波意味着
2.干涉、衍射现象,即相干叠加性。
波函数的统计解释
1923年,法国青年物理学家德布罗意 (de Broglie)提出,既然光具有粒子性,是 否实物粒子如电子也应当具有波动性?
一、德布罗意假设
实物粒子(静止质量不为零的粒子)具 有波动性,与粒子相联系的波称为物 质波(matter wave)或德布罗意波。
h 实物粒子 h p n
—函数 亦可写成 Fourier 积分形式: 令 k=px/, dk= dpx/, 则
0
x0
x
性质:
( x ) ( x )
(ax )
1 ( x) |a|
1 ( x x0 ) dk e ik ( x x0 ) 2 i 1 p x ( x x0 ) ( x x0 ) dp x e 2 作代换:p x x,p x0,则 x
B
D
集 电 器
I 电 G 流 计
K
热阴极 U I
晶体
U
散射电子束具有波动性,像X射线一样, 电子束极大的方向满足布喇格方程 2d sin 根据德布罗意公式
k
h h m0v ( ) 2
h 1 12.2 A 2m0 e U U h 1 代入布喇格公式 2d sin k 2m0 e U
注意:对归一化波函数仍有一个模为一的因子不定性。
若Ψ (r , t )是归一化波函数,那末, exp{iα}Ψ (r , t ) 也是归一化波函数(其中α是实数), 与前者描述同一几率波。
也就是说,(A)-1/2Ψ (r , t )是归一化的波函数, 与Ψ (r , t )描写同一几率波, (A)-1/2 称为归一化因子。
i Et
i [ p r ] ( r ) Ae p p x ( x ) p y ( y ) pz ( z )
p (r )e
t=0 时的平面波
第二章 波函数与薛定谔方程
• 质子在钯中的波函数 • /groups/materials%20characterisation/hy drogen%20in%20palladium.shtml
普朗克 MAX PLANCK (1858-1947)
这即是要求描写粒子量子 状态的波函数Ψ必须是绝 对值平方可积的函数。
若∫∞|Ψ(r,t)|2 dτ ∞, 则 C 这是没有意义的。 注意:自由粒子波函数
0,
i (r , t ) A e xp ( p r Et )
•不满足这一要求。关于自由粒子波函数如何归一化问 题,以后再予以讨论。
0
当 U 10 V 0.122 A U 150V 1A0
(一)波函数
i A e xp ( p r Et )
称为 de
描写自由粒子的 平 面 波
Broglie 波。此式称为自由粒子的波函数。
•如果粒子处于随时间和位置变化的力场中运动,他的动量和能 量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为:
这与经典波不同。经典波波幅增大一倍(原来的 2 倍),则相应的波动能 量将为原来的 4 倍,因而代表完全不同的波动状态。经典波无归一化问题。
归一化常数
若 Ψ (r , t ) 没有归一化, ∫∞ |Ψ (r , t )|2 dτ= A (A 是大于零的常数),则有 ∫∞ |(A)-1/2Ψ (r , t )|2 dτ= 1
2. 粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构,是三维空间中连续
分布的某种物质波包。因此呈现出干涉和衍射等波动现象。波包的大小即 电子的大小,波包的群速度即电子的运动速度。
什么是波包?波包是各种波数(长)平面波的迭加。
平面波描写自由粒子,其特点是充满整个空间,这是因为平面波振 幅与位置无关。如果粒子由波组成,那么自由粒子将充满整个空间,这是 没有意义的,与实验事实相矛盾。
德布罗意 LOUIS DE BROGLIE (1892-1987)
薛定谔 ERWIN SCHRODINGER (1887-1961)
海森堡 WERNER HEISENBERG (1901-1976)
泡利 WOLFGANG PAULI (1900-1958)
狄拉克 PAUL DIRAC (1902-1984)
i 1 ( p x px ) x ( p x p ) e dx x 2
f ( x ) ( x x0 ) f ( x0 ) ( x x0 )
2.平面波归一化
p (r , t ) Ae
i [ pr Et ]
写成分量形式
x x0 x x0
x0
x0
( x x0 )dx
( x x0 )dx 1
( 0)
或等价的表示为:对在x=x0 邻域 连续的任何函数 f(x)有:
( x x0 )
f ( x ) ( x x0 )dx f ( x0 )
单缝
双缝
三缝
四缝
4. 随后,用衍射实验证实了中子、质子、原子和分子 等微观都具有波动性,德布罗意公式对这些粒子同 样正确性。
C60分子束衍射
Nature 401, 680 (1999)
Nature 401, 651 (1999)
例题1:m = 0.01kg,v = 300m/s的子弹,求。
h h 6.63 10 34 2.21 10 m p mv 0.01 300
L. de Broglie (法1892-1987)
德布罗意获得1929 年诺贝尔物理学奖
二、实验验证
1. 戴维孙——革末实验(1927年) 电子束在晶体表 面上散射的实验, 观察到和X射线衍 射相似的电子衍 射现象。 使一束电子投 射到镍晶体特选 晶面上,探测器 测量沿不同方向 散射的电子束的 强度。
改变k值求出U值,与实验比较, I 发现与I取极大值时的U相符, 证明电子像射线一样具有波动性, 并证明了德布罗意公式的正确性。
U
2. 同年,英国的汤姆逊用多晶体做电子衍射实验, 也得到了电子衍射照片。
实验原理
十年后,戴维逊、汤姆逊因电子衍射实验的成果共 获1937年度诺贝尔物理奖。
3. 1961年,约恩逊进行了电子的单缝、双缝和多缝衍 射实验,得出了衍射条纹的照片。
我们再看一下电子的衍射实验
1.入射电子流强度小,开始显示电子的微粒性,长时间亦显示衍射图样; 2. 入射电子流强度大,很快显示衍射图样.
P
电子源
P
O Q
感 光 屏
Q
结论:衍射实验所揭示的电子的波动性是: 许多电子在同一个实验中的统计结果,或者是一个电子 在许多次相同实验中的统计结果。
波函数正是为了描述粒子的这种行为而引进的,在此基 础上,Born 提出了波函数意义的统计解释。
• 波函数的讨论 的平方可积 除了个别孤立奇点外,波函数单值,有界,连续 不确定性: i) 表示同一个态->归一化 ii)相角不确定性(常数相角) 经典,态确定性 量子:几率性=>可用以计算平均值
(4)平面波归一化 1. Dirac —函数
定义:
0 ( x x0 )
(3)归一化波函数
Ψ (r , t ) 和 CΨ (r , t ) 所描写状态的相对几率是相同的,这里的 C 是常数。 因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的相对 几率之比是:
C ( r1 , t ) C ( r2 , t )