Ask调制未加噪声

合集下载

ASK

ASK

二进制振幅键控(ASK)调制与解调设计一、ASK 调制解调系统的原理1、ASK调制原理及其方法数字幅度调制又称幅度键控(ASK),二进制幅度键控记作 2ASK。

2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。

有载波输出时表示发送“1”,无载波输出时表示发送“0”。

借助于第3 章幅度调制的原理,2ASK 信号可表示为e0 = s(t) cos ωc t式中,c 为载波角频率, s(t ) 为单极性 NRZ 矩形脉冲序列s(t) = ∑ a n g (t - nT b )其中, g(t) 是持续时间为 Tb 、高度为 1 的矩形脉冲,常称为门函数,an 为二进制数字。

2、ASK实现有两种方法;A、乘法器实现法. a、乘法器实现法的输入是随机信息序列,经过基带信号形成器,产生波形序列,乘法器用来进行频谱搬移,相乘后的信号通过带通滤波器滤除高频谐波和低频干扰。

b、带通滤波器的输出是振幅键控信号。

c、乘法器常采用环形调制器。

B、键控法键控法是产生ASK信号的另一种方法。

二元制ASK又称为通断控制(OOK)。

典型的实现方法是用一个电键来控制载波振荡器的输出而获得。

示意图如图1所示。

图1 3、ASK 解调原理及设计方法ASK 信号解调的常用方法主要有两种:包络检波法和相干检测法。

包络检波法的原理方框图如图2 所示:带通滤波器(BPF )恰好使 2ASK 信号完整地通过,经包络检测后输出其包络。

低通滤波器(LPF )的作用是滤除高频杂波,使基带信号(包络)通过。

抽样判决器包括抽样、判决及码元形成器。

定时抽样脉冲(位同步信号)是很窄的脉冲,通常位于每个码元的中央位置,其重复周期等于码元的宽度。

不计噪声影响时,带通滤波器输出为 2ASK 信号。

经抽样、判决后将码元再生,即可恢复出数字序列{an}。

相干检测法原理方框图如图3 所示相干检测就是同步解调,要求接收机产生一个与发送载波同频同相的本地载波信号,称其为同步载波或相干载波。

ASK调制与解调的仿真

ASK调制与解调的仿真

实验四ASK 调制与解调的仿真一.实验目的1.掌握幅度键控的原理,经过对仿真的过程和结果剖析,加深对其理解。

2.运用 MATLAB对 ASK的调制与解调过程进行仿真。

二.实验内容运用 MATLAB编程实现ASK调制解调过程,并且输出其调制后的波形,画出频谱、功率谱密度图,并比较各样调制的误码率状况,议论其调制成效。

三.软件纲要设计说明,功能模块及流程和工作原理ASK信号调制器的设计:产生二进制振幅键控信号的方法主要有两种:法 1:采纳相乘电路,用基带信号 A t 和载波 cos t 相乘就获得已调信号输出;法 2:采纳开关电路,这里的开关由输入基带信号 A t 控制,用这类方法能够获得相同的输出波形。

ASK 信号解调器的设计:ASK信号的解调方法有两种,即包络检波法和相关解调法,前者属于非相关解调。

此中解调的原理框图以下图。

依据 ASK调制的表达式可知:S2 ASK (t ) a n A cos c t综合式令A=1,则ASK信号的一般时域表达式为:S 2ASK (t ) a n g(t nT s ) cos c tnS(t ) cos c t式中, T s 为码元间隔, g(t ) 为连续时间 Ts 2,Ts 2 内随意波形形状的脉冲(剖析时一般 设为归一化矩形脉冲) ,而 S(t) 就是代表二进制信息的随机单极性脉冲序列。

依据 ASK 相关解调的表达式:z(t ) y(t) ?cos( c t) m(t ) ? cos 2 ( c t ) m(t) ? 1 [1 cos(2 c t)] 1 m(t) 1 m(t ) cos(2c t) 2 2 2此中第 1 项是基带信号,第 2 项是频次为 2 c 的高频信号,利用低通滤波器可检出基带信 号,再经过抽样裁决,可恢复出原始信号序列。

四. 软件详尽设计、重点技术与难点、测试数据用 MATLAB 编程以下:t=0::8; % 定义时间采样值y=sin(2*pi*t); % 定义未调信号的表达式x=[ones(1,100),zeros(1,100),ones(1,100),ones(1,100),zeros(1,100),zeros(1,100) ,ones(1,100),zeros(1,101)]; % 定义载波 X 的取值z=x.*y; % 定义已调信号的表达式subplot(3,1,1) % 画第一个图plot(t,x) % 画出载波图axis([0,8,,]) % 定义范围xlabel(' 时间 ') % 定义坐标轴的名字title(' 未调信号 '); % 定义图的名字subplot(3,1,2); % 画第二个图plot(t,y) % 画出调制信号图axis([0,8,,]) % 定义范围xlabel(' 时间 ') % 定义坐标轴的名字title('载波 ')%定义图的名字subplot(3,1,3)%画出第三个图plot(t,z)%画出解调后的图axis([0,8,,]) %定义范围xlabel('时间 ')%定义坐标轴的名字title('已调信号 ');%定义图的名字仿真结果:软件中主要包括有二进制信号的产生,调制信号的产生,调制信号的解调解画图部分。

ASK调制与解调实验

ASK调制与解调实验

2ASK调制与解调一、实验目的:(1)掌握2ASK的调制与解调原理。

(2)学会运用Matlab编写2ASK调制程序。

(3)会画出原信号和调制信号的波形图。

(4)掌握数字通信的2ASK调制方式。

二、实验原理分析1、二进制振幅键控(2ASK)频移键控是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。

在2ASK中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。

二进制振幅键控的表达式为:s(t) = A(t)cos(w+θ) 0<t≤T式中,w0=2πf为载波的角频率;A(t)是随基带调制信号变化的时变振幅,即A(t) =⎩⎨⎧A典型波形如图1所示:图12ASK信号的产生方法通常有两种:相乘法和开关法,相应的调制器如图2。

图2(a)就是一般的模拟幅度调制的方法,用乘法器实现;图2(b)是一种数字键控法,其中的开关电路受s(t)控制。

在接收端,2ASK有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法),相应的接收系统方框图如图:三、附录2ASK调制matlab程序:clear all;close all;clc;max = 8;s=[1 1 0 1 1 0 1 0];cp=[];fs=100;fc=1;t1=(0:1/fs:8);f=1;%载波频率tc=0:2*pi/99:2*pi;nsamp = 100;cm=[];mod=[];for n=1:length(s);if s(n)==0;m=zeros(1,nsamp);b=zeros(1,nsamp);else s(n)==1;m=ones(1,nsamp);b=ones(1,nsamp);endc = sin(f*tc);cm=[cm m];cp = [cp b];mod=[mod c];endtiaozhiqian=sin(2*pi*t1*fc);tiaozhi=cm.*mod;%2ASK调制t = linspace(0,length(s),length(s)*nsamp); figure;subplot(3,1,2);plot(t,cp);grid on;axis([0 length(s) -0.1 1.1]);title('二进制信号序列');subplot(3,1,1);plot(t1,tiaozhiqian);grid on;%axis([0 length(s) -1.1 1.1]);title('未调制信号');subplot(3,1,3);plot(t,tiaozhi);grid on;axis([0 length(s) -1.1 1.1]);title('2ASK调制信号');图1 2ASK调制2ASK解调matlab程序:%加性高斯白噪声信道tz=awgn(tiaoz,10);%信号tiaoz中加入白噪声,信噪比为SNR=10dB figure;subplot(2,1,1);plot(t,tz);grid onaxis([0 length(s) -1.5 1.5]);title('通过高斯白噪声信道后的信号');jiet = mod.*tz;%相干解调subplot(2,1,2);plot(t,jiet);grid onaxis([0 length(s) -1.5 1.5]);title('乘以相干载波后的信号波形')图2 2ASK解调六、总结与心得体会通过实验,基本掌握了MATLAB的基本功能和使用方法,对数字基带传输系统有了一定的了解,加深了对2ASK的调制原理的认识,理解了如何对他进行调制,通过使用MATLAB仿真,对个调制和解调电路中各元件的特性有了较为全面的理解。

几种常见的数字调制方法 ASK,FSK,GFSK

几种常见的数字调制方法 ASK,FSK,GFSK

几种常见的数字调制方法
ASK FSK GFSK
说说常见的射频调制方式吧。

常见的有ASK,FSK,GFSK。

1、ASK(Amplitude Shift Keying),即振幅键控方式。

这种调制方式是根据信号的不同,调节载波的幅度,载波的频率是保持不变的。

因此载波幅度是随着调制信号而变化的,最简单的方式就是载波在调制信号的控制下表现为通断,由此也可由引出另外一种调试方式就是多电平MASK,顾名思义M为Multi,是一种较高效的传输方式,但由于抗噪声能力较差,所以一般不常见。

2、FSK(Frequency Shift Keying),即频移键控方式。

这种调试方式是利用载波的频率变化来传递数字信息。

例如20KHz的频率用来表示1,10KHz的频率用来表示0。

3、GFSK(Gauss Frequency Shift Keying) 高斯频移键控。

与FSK类似,就在FSK前通过一个高斯低通滤波器来限制信号的频谱宽度。

ASK

ASK
8.9二进制振幅键控(ASK) 二进制振幅键控( 二进制振幅键控 ) 调制器与解调器设计
ASK调制方法
数字信号对载波振幅调制称为振幅键控 即 ASK(Amplitude-Shift Keying)。 ASK有两种实现方法: ASK 1.乘法器实现法 2.键控法
1.乘法器实现法
乘法器实现法的输入是随机信息序列,经过 基带信号形成器,产生波形序列,乘法器用 来进行频谱搬移,相乘后的信号通过带通滤 波器滤除高频谐波和低频干扰。 带通滤波器的输出是振幅键控信号。 乘法器常采用环形调制器。
与同步解调相似,为使误码率最小,判决电平应 和 的交点的横坐标值,如 图中 , 称为最佳门限,经分析,得到 当信噪比 (即大信噪比)时,
ASK调制VHDL程序及仿真
ASK调制方框图
注:图中没有包含模拟电路部分,输出信号为数字信号。
ASK调制电路符号
ASK调制VHDL程序
--文件名:ASK.vhd --功能:基于VHDL硬件描述语言,对基带信号进行ASK振幅调制 --最后修改日期:2004.3.16 library ieee; use ieee.std_logic_arith.all; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity ASK is port(clk :in std_logic; --系统时钟 start:in std_logic; --开始调制信号 x :in std_logic; --基带信号 y :out std_logic); --调制信号 end ASK; architecture behav of ASK is signal q:integer range 0 to 3; --分频计数器 signal f :std_logic; --载波信号

基于matlab的ask调制解调实现讲解

基于matlab的ask调制解调实现讲解
3.2 载波信号波形
图 3-2 载波信号时域谱和频域谱
庄维 《基于 MATLAB的 ASK调制解调实现》
第 5 页 共 18 页
在调制解调系统中, 载波信号的频率一般要大于信号源的频率。 信号源频率为 12 Hz,
所以将载波频率设置为 36 Hz,编写正弦函数 carry=cos(2*pi*Fc*t) 并进行频域转换
握 ASK 调制解调原理,根据原理编写出 ASK 调制解调程序。 绘制出 ASK 信号解调前后在时域和频域中的波形,观察解调前后频谱的变化理解
ASK 信号解调原理。 对二进制基带信号叠加噪声后解调,绘制出解调前后信号的时频波形,然后改变噪
声功率进行解调,记录并分析分析噪声对信号传输造成的影响。 根据要求独立完成课程设计学年论文,能正确阐述和分析设计结果并得出结论。
庄维 《基于 MATLAB的 ASK调制解调实现》
第 3 页 共 18 页
幅移键控法 ( ASK ) 的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二
进制调制信号控制下通断, 此时又可称作开关键控法 ( OOK ) 。二进制幅度键控记作
2ASK 。2ASK 是利用代表数字信息 “ 0”或“ 1”的基带矩形脉冲去键控一个连续的载波,
dmod 用
于加入噪声, 即 Ynt3=awgn(y,SNR(i)) ,而调制后的函数基础上编写循环判断语句只用来
显示已调波形。
5 结束语
an an 为二进制数字
1,出现概率为 P 0,出现概率为 1 P
2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。本模拟
幅度调制的方法用乘法器实现。相应的调制如图 2-1 和图 2-2:
s(t )

ASK__FSK__PSK频谱特性分析

ASK__FSK__PSK频谱特性分析

ASK__FSK__PSK频谱特性分析频移键控(FSK)、频移移相键控(FSK)和相移键控(PSK)是数字调制技术中常见的几种调制方式。

它们在通信领域被广泛应用,在频谱特性方面各有不同的特点。

本文将分析FSK、ASK和PSK的频谱特性。

首先,我们来看FSK的频谱特性。

FSK是通过改变载波频率来表示数字信号的一种调制方式。

形式上,FSK可以分为连续FSK和离散FSK。

连续FSK是指在调制信号中,载波频率在两个不同的值之间连续变化。

离散FSK是指调制信号中只有两个不同的载波频率。

在频谱特性上,FSK的频谱带宽与数据速率相关。

具体而言,FSK的带宽等于数据速率的两倍加上载波频率的差值。

这是因为FSK信号在频谱中产生两个副载波,分别位于上行频率和下行频率。

因此,FSK具有宽频带的特点,适用于对频谱带宽要求比较宽松的通信系统。

接下来,我们来分析ASK的频谱特性。

ASK是通过改变载波幅度来表示数字信号的一种调制方式。

在频谱特性上,ASK的频谱主要集中在载波频率附近。

具体而言,ASK信号频谱的能量集中在载波频率附近的频率成分,而没有副载波出现。

因此,ASK具有窄频带的特点。

这使得ASK在对频谱利用率要求较高的通信系统中具有优势。

然而,ASK的主要缺点是容易受到噪声和干扰的影响,因为它不能提供相位信息。

最后,我们来分析PSK的频谱特性。

PSK是通过改变载波的相位来表示数字信号的一种调制方式。

在频谱特性上,PSK信号的频谱由两个附属副载波构成,分别位于主载波的两侧,且与主载波相位差为180度。

因此,PSK信号的频谱在载波频率打上了两个窄带的峰值,代表不同的相位状态。

这使得PSK具有窄频带的特点,并且能够提供较好的抗噪声和干扰的能力。

综上所述,FSK、ASK和PSK在频谱特性上各有不同的优势。

FSK适用于频谱带宽要求较宽松的通信系统,ASK适用于对频谱利用率要求较高的通信系统,而PSK能够提供较好的抗噪声和干扰的能力。

实验三 ASK调制与解调

实验三 ASK调制与解调

实验三 ASK调制解调一、实验目的1.掌握ASK调制器的工作原理及性能测试;2.学习基于软件无线电技术实现ASK调制、解调的实现方法。

二、实验仪器1.RZ9681实验平台2.实验模块:●主控模块●基带信号产生与码型变换模块-A2●信道编码与频带调制模块-A4●纠错译码与频带解调模块-A53.信号连接线4.100M四通道示波器三、实验原理3.1调制与解调数字信号的传输方式分为基带传输和带通传输。

然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。

为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制(digital modulation)。

在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调(digital demodulation)。

通常把包括调制和解调过程的数字传输系统叫做数字频带传输系统。

数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。

在二进制调制中,信号参量只有两种可能的取值;而在多进制调制中,信号参量可能有M(M>2)种取值。

本章主要讨论二进制数字调制系统的原理。

3.2 2ASK调制振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。

在2ASK中,载波的幅度只有两种变换状态,分别对应二进制信息“0”或“1”。

2ASK信号的产生方法通常有两种:数字键控法和模拟相乘法。

实验中采用了数字键控法,并且采用了最新的软件无线电技术。

结合可编程逻辑器件和D/A转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK,OQPSK等调制方式。

ASK 调制解调

ASK 调制解调

《信息处理综合实验》实验报告(三)班级:姓名:学号:日期: 2020-11-20实验三 ASK 调制解调一、实验目的1.掌握ASK 调制器的工作原理及性能测试;2.学习基于软件无线电技术实现ASK 调制、解调的实现方法。

二、实验内容及步骤ASK 调制观测(1). 基带数据设置及时域观测使用双踪示波器分别观察2P1 和2P3,使用鼠标点击“基带设置”按钮,设置基带速率为“15-PN”“2K”,点击“设置”进行修改。

观察示波器观测波形的变化,理解并掌握基带数据设置的基本方法。

(2). 基带数据频域观测采用频谱仪或示波器的FFT 功能,观测分析2P3 的频谱特性。

将基带信号设置为“16bit”,“2K”,自己设置16bit 基带数据,观测分析其频谱变化。

思考将信号进行ASK 调制频谱会有什么变化?进行FSK 调制频谱会有什么变化?(3). ASK 调制信号时域观测在ASK 实验内容页面,示波器一个通道测基带信号2P1,并用基带信号作示波器同步源;用示波器另一个通道观测研究4TP9 调制信号,观测并记录ASK 调制信号特性;鼠标点击“载波频率”按钮,尝试ASK 调制的载波频率,观察ASK 调制波形的变化;ASK 解调观测(1). ASK 解调整形输出观测在实验中ASK 解调采用了包络检波法。

示波器同时观测ASK 调制输入5P1 和调制信号整形输出5TP3,观测ASK 调制整形前后的波形对比,并思考后面怎么处理整形后波形;(2). 整形信号滤波后输出示波器同时观测ASK 调制输入5TP3 和滤波后输出5TP5,对比整形后输出和滤波后输出,分析是否和基带信号相关;(3). 判决输出观测示波器同时观测判决前5TP5 和判决后输出5P2,结合当前的判决电平5TP7,判断判决后数据是否正确。

通过模块右下角的“编码器”修改当前的判决电平,观测5TP7 的变化以及判决后5P2 的变化情况。

观测在不同判决电平下的判决输出,分析解调对判决电平有什么要求?ASK 系统加噪及误码率分析(1). ASK 系统加噪设置在前面实验步骤中,直接将调制输出4P9 连接到了解调输入端5P1,没有经过模拟信道。

基于MATLAB的ASK调制解调实现

基于MATLAB的ASK调制解调实现

长沙理工大学《通信原理》课程设计报告学院专业班级学号学生姓名指导教师课程成绩完成日期2016年1月8日课程设计成绩评定学院专业班级学号学生姓名指导教师课程成绩完成日期2016年1月8日指导教师对学生在课程设计中的评价指导教师对课程设计的评定意见课程设计任务书城南学院通信工程专业庄维《基于MATLAB的ASK调制解调实现》第 1 基于MATLAB的ASK调制解调实现学生姓名:指导老师:摘要MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,本课程设计主要内容是利用MATLAB集成环境下的M文件,编写程序来实现ASK的调制解调,要求采样频率为360HZ,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。

目的是熟悉MATLAB中M文件的使用方法,并在掌握ASK调制解调原理的基础上,编写出2ASK调制解调程序,绘制出ASK信号解调前后在时域和频域中的波形,观察解调前后频谱有何变化以及对信号叠加噪声后的变化。

最终得到随着输入信号噪声的增加增大,误码越严重的结论,加深对ASK信号解调原理的理解。

关键词ASK调制解调;时域谱;频域谱;高斯白噪声;信噪比1 引言通信原理是通信工程专业的一门重要的专业课,是通信工程专业后续专业课的基础,掌握通信原理课程的知识不仅可以打下一个坚实的专业基础,还能提高处理通信系统问题能力和素质。

通过本课程设计的ASK振幅键控调制解调,可以进一步理解数字通信的基础理论,有助于加深对通信原理的理解。

1.1课程设计目的通过设计基于MATLAB的ASK调制解调实现,让我深入理解和掌握二进制ASK调制解调以及噪声对信号传输的影响[1]。

在通信原理理论知识的基础上加深对ASK调制解调设计原理及实现方法的理解。

使我对通信信号波形及频谱有深刻的认识。

不仅加强了对课本知识的了解,而且还涉及掌握调制解调函数的应用,增强了我动手实践的能力。

ask调制过程

ask调制过程

ask调制过程
ASK(Amplitude Shift Keying)调制是一种数字调制技术,其中数字信号通过改变载波的振幅进行传输。

以下是ASK调制的基本过程:载波:
* 选择一个具有特定频率的载波信号。

这个载波信号通常是正弦波。

数字信号:
* 准备一个数字信号,这通常是二进制信号,由一系列比特(0和1)组成。

振幅调制:
* 根据数字信号的比特值来改变载波的振幅。

通常,一个比特值(例如1)对应于增加载波的振幅,而另一个比特值(例如0)对应于减小载波的振幅。

合成调制信号:
* 将振幅调制后的载波与数字信号相乘,生成ASK调制后的信号。

传输:
* 将ASK调制后的信号传输到接收端,可以通过无线传输或者有线传输。

解调:
* 在接收端,使用解调器对ASK信号进行解调,还原原始的数字信号。

ASK调制的优点是简单易实现,但相比于其他调制技术,如PSK (相位移键控)和FSK(频率移键控),它对噪声和干扰更为敏感。

因此,在噪声环境中,ASK的性能可能较差。

通常,ASK被用于简单
的短距离通信系统,或在低噪声环境下的应用。

数字调制ask

数字调制ask

数字调制ask
数字调制是一种将数字信号转换为模拟信号的技术。

它在现代通信系统中起着至关重要的作用。

数字调制使得我们能够通过无线电波或电缆等媒介传输数字信息,从而实现声音、图像和数据的传输。

数字调制的过程包括两个主要步骤:调制和解调。

在调制过程中,数字信号被转换为模拟信号,以便在传输过程中进行传输。

解调过程是调制的逆过程,它将模拟信号转换回数字信号,以便接收方能够还原原始的数字信息。

在数字调制中,有几种常见的调制方式,如频移键控(FSK)、相移键控(PSK)和振幅键控(ASK)。

其中,ASK是一种简单而常用的调制方式。

它通过改变载波的振幅来表示数字信号中的信息。

当数字信号为1时,载波的振幅增加;当数字信号为0时,载波的振幅减小或为0。

ASK调制具有简单、易实现的优点,并且在低噪声环境下具有较好的性能。

然而,它对噪声和干扰非常敏感,因此需要采取一些技术手段来提高系统的可靠性。

在数字调制应用中,ASK被广泛应用于无线通信领域。

例如,无线遥控器、无线传感器网络等都使用了ASK调制技术。

此外,ASK还可以用于数据传输和通信系统中的基带信号调制。

数字调制是一种重要的通信技术,可以将数字信号转换为模拟信号
进行传输。

ASK调制是其中的一种常见方式,通过改变载波的振幅来表示数字信号中的信息。

它在各种通信系统中发挥着重要的作用,为我们的日常通信提供了便利。

二进制ASK的调制与解调

二进制ASK的调制与解调

目录摘要 (I)Abstract (II)1、绪论 (1)1.1研究背景 (1)1.2 目的和意义 (2)2、ASK的调制和解调方案设计 (2)2.1 乘法器实现法 (2)2.2键控法 (2)2.3数字电路实现键控产生ASK信号的实例 (3)3、ASK的解调方案 (4)3.1同步解调 (4)3.2包络解调 (5)4. ASK调制VHDL程序及仿真 (6)4.1 ASK调制方框图 (6)4.2 ASK调制电路符号 (7)4.3ASK调制VHDL程序 (7)4.4ASK调制VHDL程序仿真图及注释 (9)5、ASK解调VHDL程序及仿真 (10)5.1ASK程序解调仿真图及注释 (11)6、总结 (12)7、参考文献 (12)摘要1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

在数字传输系统中,数字信号对高频载波进行调制,变成频带信号,在接收端进行解调,恢复原数字信号对载波的控制分为振幅调制即振幅键控(ASK),频率调制即频率键控(FSK)和相位调制即相位键控(PSK)。

现场可编程门阵列(FPGA)在通信领域得到了广泛的应用,利用FPGA性能优越、使用方便的特点,可以简化振幅调制解调电路的设计,而且易于反复编写和修改程序。

文章介绍了运用VHDL 语言进行基于FPGA 的振幅键控调制电路和解调电路设计的实现方案, 给出了程序设计和仿真结果, 完成了二进制基带数字信号的调制和解调, 得到了相应的调制信号和解调信号。

关键词: FPGA 2ASK 调制解调 VHDLAbstractCommunication digital era had began since American researcher Reeves put forward the concept of pulse code modulation (PCM) in 1934 and gained a rapid development after the 1970s. With the economic development, sound can't meet the demand of consumers and they also want to see the images. What's more, communication terminal doesn't only include the single telephone set but also the data terminal such as electro-graph and computer. Current transmission medium such as cable, microwave repeater and satellite communication will prefer to use digital transmission. In digital transmission system, the digital signal are used to modulate the high frequency carrier wave to the frequency signal, which transfers through the channel, are renewed at the receiver. Three ways to modulate the carrier wave are as follows: Amplitude Shift Keying(ASK), Frequency-Shift Keying(FSK) and Phase Shift Keying(PSK).Field-Programmable Gate Array(FPGA) is applied universally in the communication field. With the superior performance and utilization convenience of FPGA, the design of circuit in the Amplitude modulation and demodulation can be simplified and it's easy for us to compile and modify the programme. This thesis introduces the main realization method of designing Amplitude Shift Keying modulation and demodulation circuit based on FPGA in VHDL ,illustrates the programme design and simulation result, implement the modulation and demodulation of binary baseband digital signal and finally finds out the corresponding modulation signal and demodulation signal.Key words:FPGA Amplitude shift keying Modem VHDL1、绪论1.1研究背景1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。

FSK(ASK)调制解调实验报告

FSK(ASK)调制解调实验报告

实验6 FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。

观测基带数字和FSK(ASK)调制信号的频谱。

改变信噪比(S/N),观察解调信号波形。

四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成 ASK, FSK 调制,还可以完成 PSK, DPSK, QPSK, OQPSK 等调制方式。

不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。

在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。

下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。

基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或 FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过 D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。

ASK调制解调

ASK调制解调

基于Simulink的ASK频带传输系统仿真与性能分析实验目的:1)熟悉数字调制系统的的几种基本调制解调方法;2)学会运用Matlab、Simulink设计这几种数字调制方法的仿真模型;3)通过仿真,综合衡量系统的性能指标。

实验原理及分析:数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,所以本文主要讨论二进制的调制与解调,最后简单讨论一下多进制调制中的MFSK(M元移频键控)和MPSK(M元移相键控)。

最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK和2-DPSK)等。

此次实验二进制振幅键控,即——2—ASK。

典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,其框图如图3.1所示:数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码器编码后适合在信道中传输的基带信号。

对数字调制系统进行仿真时,我们并不关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数字基带信号,不用再经过编码器。

图3.1 数字通信系统模型根据Simulink提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所示的模型:图3. 2 数字调制系统仿真框图通常,二进制振幅键控信号(2-ASK )的产生方法(调制方法)有两种,如图3.3所示:(a)(b)图3.3 2-ASK 信号产生的两种方法2-ASK 解调的方法也有两种相应的接收系统组成方框如图3.4所示:图3.4 2-ASK 信号接收系统组成框图根据3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调,设计2-ASK 仿真模型如图3.5所示:图3.5 2-ASK模型在该模型中,调制和解调使用了同一个载波,目的是为了保证相干解调的同频同相,虽然这在实际运用中是不可能实现的,但是作为仿真,这样能获得更理想的结果。

仿真波形及分析:ASK调制与解调整个ASK的仿真系统的调制与解调过程为:首先将信号源的输出信号与载波通过相乘器进行相乘,在接收端通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。

ASK、FSK调制分析

ASK、FSK调制分析

前言数字调制是现代通信的重要方法,在卫星通信、移动通信等现代数字通信系统中,信道中传输的都是数字已调信号。

数字调制与模拟调制相比有许多优点。

数字调制具有更好的抗干扰性能,更强的抗信道损耗,以及更好的安全性;数字传输系统中可以使用差错控制技术,支持复杂信号条件和处理技术,如信源编码、加密技术等。

本文拟通过对ASK(振幅键控)/FSK(频移键控)的数字调制过程分析,使读者能初步了解数字调制过程。

1数字通信系统原理在通信技术中,远距离传递信息是通信的最终目的。

在无线远距离传输过程中,需要将基带信号进行调制,通过调制,基带信号的频谱搬移到适合信道和噪声特性的频率范围内进行传输。

图1大致显示了数字通信系统基本原理。

在图1中,就数字调制方式,有三种最基本的调制方式,ASK(振幅键控)、FSK(频移键控)和PSK (相移键控);它们分别利用载波的幅度、频率和相位来承载数字基带信号。

当基带信号为二进制时,也称为2ASK,2FSK,2PSK。

22ASK/2FSK的数字调制分析(1)2ASK调制分析。

2ASK是最早出现的数字调制方式,较多应用于早期的莫尔斯电报系统。

由于其容易受到增益变化的影响,抗干扰能力比较差,实际应用并不广泛,但是我们可以将2ASK作为理解其他数字调制的基础。

●2ASK基本原理:在振幅键控中,用二进制数字基带信号中的”0”和”1”来控制载波幅度的有或无,使载波幅度随着数字基带信号的变化而变化。

如图2所示,载波信号直接加到开关输入端,数字基带信号加入到控制端,当数字基带信号为”1”时,载波信号输出,为“0“时,信号无输出。

●具体分析过程:我们采用SDG6000X信号源以及SVA1015X频谱仪来模拟2ASK数字调制、解ASK、FSK调制分析吴嘉伟(深圳市鼎阳科技有限公司,深圳,518101)图1数字通信系统原理框图图22ASK基本原理框图图6SVA1000X 显示分析结果(符号)图3EasyIQ 设置界面图4SDG6000X 设置界面图5SVA1000X 显示分析结果(波形)调分析过程。

ASK、FSK调制分析

ASK、FSK调制分析

ASK、FSK调制分析数字调制是现代通信的重要⽅法,在卫星通信、移动通信等现代数字通信系统中,信道中传输的都是数字已调信号。

数字调制与模拟调制相⽐有许多优点。

数字调制具有更好的抗⼲扰性能,更强的抗信道损耗,以及更好的安全性;数字传输系统中可以使⽤差错控制技术,⽀持复杂信号条件和处理技术,如信源编码、加密技术等。

在通信技术中,远距离传递信息是通信的最终⽬的。

在⽆线远距离传输过程中,需要将基带信号进⾏调制,通过调制,基带信号的频谱搬移到适合信道和噪声特性的频率范围内进⾏传输。

数字通信系统⼤致原理如下图所⽰:图1 数字通信系统原理框图在上图数字调制过程中,有三种基本的调制⽅式,ASK(振幅键控)、FSK(频移键控)和PSK(相移键控),分别利⽤载波的幅度、频率和相位来承载数字基带信号。

当基带信号为⼆进制时,也称为2ASK,2FSK,2PSK。

2ASK2ASK是最早出现的数字调制⽅式,较多应⽤于早期的莫尔斯电报系统,但容易受到增益变化的影响,抗⼲扰能⼒⽐较差,实际应⽤并不⼴泛,但是我们可以将2ASK作为理解其他数字调制的基础。

2ASK基本原理:在振幅键控中,⽤⼆进制数字基带信号中的”0”和”1”来控制载波幅度的有或⽆,使载波幅度随着数字基带信号的变化⽽变化。

如下图所⽰,载波信号直接加到开关输⼊端,数字基带信号加⼊到控制端,当数字基带信号为”1”时,载波信号输出,为“0“时,信号⽆输出。

图2 2ASK基本原理框图我们采⽤SDG6000X信号源以及SVA1015X频谱仪来模拟2ASK和2FSK数字调制、解调分析过程。

信号源设置:1. 在SDG6000X信号源中选择IQ波形输出,等待初始化完成;2. 在上位机软件EasyIQ设置要输出的数字调制信号,选择发送数据PN9随机⼆进制序列,发送信号的符号长度设置为256,符号速率为50K Symbol/s,调制类型选择2ASK,发送端滤波器选择根余弦滤波器(RootCosine),filter alpha选择0.8,然后在EasyIQ上⽅⼯具栏选择”Update”及”Download”把波形更新下载到信号源,具体如下图所⽰:图3 EasyIQ设置界⾯3. 在信号源中设置载波频率为100MHz,幅度为0dBm,连接信号源到SVA1015X频谱仪,此时信号源把调制信号通过线缆发送到频谱仪中;图4 SDG6000X设置界⾯在SVA1015X中点击”Mode”按键,进⼊调制分析模式,选择“ASK”,然后根据之前调制信号的设置,设置符号速率为50KS/s(接收速率和发送速率相等),滤波器设置为”Sqrt Nyquist”,参考滤波器设置为”Nyquist”(与发送端的发送滤波器相匹配,常⽤的滤波器选择规则可以参考SVA1015X⽤户⼿册),其它的 “Alpha” 和 “Filter Length” 保存和之前在EasyIQ上设置的设置⼀致,测量符号长度设置为100(最⾼可以查看到1500)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ask 调制未加噪声 M=2; Fc=5; Fd=2; Fs=20;
x=randint(100,1,M); y=dmod(x,Fc,Fd,Fs,'ask',M); z=ddemod(y,Fc,Fd,Fs,'ask',M); s=symerr(x,z); t=0.1:0.1:10;
subplot(3,1,1);
plot(t,x');axis([0,10,-0.1,1.1]);title('原信号') subplot(3,1,2); plot(y);title('调制')
subplot(3,1,3);
plot(t,z');axis([0,10,-0.1,1.1]);title('经调制解调后的信号') figure;modmap('ask',M)
01
2
3
4
56
7
8
9
10
原信号
01002003004005006007008009001000
调制
1
2
3
4
5
6
7
8
9
10
经调制解调后的信号
M=2; Fc=3; Fd=2; Fs=6;
x=randint(100,1,M); y=dmod(x,Fc,Fd,Fs,'ask',M); z=ddemod(y,Fc,Fd,Fs,'ask',M); s=symerr(x,z); t=0.1:0.1:10;
subplot(3,1,1);
plot(t,x');axis([0,10,-0.1,1.1]);title('原信号')
subplot(3,1,2);
plot(y);title('调制')
subplot(3,1,3);
plot(t,z');axis([0,10,-0.1,1.1]);title('经调制解调后的信号') figure;modmap('ask',M)
原信号
调制
经调制解调后的信号
M=2;
Fc=2;
Fd=1;
Fs=4;
x=randint(100,1,M);
y=dmod(x,Fc,Fd,Fs,'ask',M);
z=ddemod(y,Fc,Fd,Fs,'ask',M);
s=symerr(x,z);
t=0.1:0.1:10;
subplot(3,1,1);
plot(t,x');axis([0,5,-0.1,1.1]);title('原信号')
subplot(3,1,2);
plot(y);title('调制')
subplot(3,1,3);
plot(t,z');axis([0,5,-0.1,1.1]);title('经调制解调后的信号') figure;modmap('ask',M)
原信号
调制
经调制解调后的信号
N=100;
fb=1;
fs=32;
fc=4;
Kbase=2;
info=randint(100,1,2);
y=dmod(info,fc,fb,fs,'ask');
y1=y;y2=y;
T=length(info)/fb;m=fs/fb;nn=length(info);
dt=1/fs; t=0:dt:T-dt;
subplot(2,1,1);
plot(t,y');
title('已调信号(In:red,Qn:green)');
n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;
q=find(y<1e-04);y(q)=1e-04;y=20*log10(y);
f1=m/n;f=0:f1:(length(y)-1)*f1;
subplot(2,2,3);
plot(f,y,'r');
grid on;
title('已调信号频谱');xlabel('f/fb')
已调信号
(In:red,Qn:green)
已调信号
(In:red,Qn:green)
已调信号频谱
f/fb。

相关文档
最新文档