带电粒子在电场中的运动应用

合集下载

带电粒子在电磁场中运动的科技应用

带电粒子在电磁场中运动的科技应用

带电粒子在电磁场中运动的科技应用1.加速器带电粒子在电场中加速的科技应用主要是加速器。

加速加速器直线加速器、回旋加 速器、电子感应加速器有三种,在高考试题中,直线加速器往往不单独命题,常常与磁 偏转和回旋加速器结合起来,考查单一问题的多过程问题:回旋加速器有时单独命题, 也常常与直线加速器结合起来命题。

例1. 1930年劳伦斯制成了世界上第一台回旋加速器,英原 理如图1所示,这台加速器由两个铜质D 形盒Di 、 留有空隙,下列说法正确的是( )离子由加速器的中心附近进入加速器 离子由加速器的边缘进入加速器 离子从磁场中获得能疑 离子从电场中获得能量 A.B. C. D. 答案:AD解析:离子由加速器的中心附近进入加速器,在电场中加速获得能量,在磁场中偏 转时,洛伦兹力不做功,能量不变,由于进入磁场的速度越来越大,所以转动的半径也 越来越大,故选项AD 正确。

例2.电子感应加速器工作原理如图2所示(上 图为侧视图、下图为真空室的俯视图),它主要有上、 下电磁铁磁极和环形真空室组成。

当电磁铁绕组通以 交变电流时,产生交变磁场,穿过真空盒所包囤的区 域内的磁通量随时间变化,这时頁•空盒空间内就产生 感应涡旋电场。

电子将在涡旋电场作用下得到加速。

(1) 设被加速的电子被“约朿"在半径为r 的圆周 上运动,整个圆而区域内的平均磁感应强度为求 电子所在圆周上的感生电场场强的大小与&的变化率 满足什么关系。

(2) 给电磁铁通入交变电流,一个周期内电子能被加速几次? (3)在(1)条件下,为了维持电子在恒泄的轨道上加速,电子轨道处的磁场从应 满足什么关系?解析:(1)设被加速的电子被“约朿"在半径为『的圆周上运动,在半径为「的圆而 上,通过的磁通量为0二"疗.&是整个圆而区域内的平均磁感应强度,电子所在圆周 上的感生电场场强为左‘°E 二 3 根据法拉第电磁感应龙律 Az 得,ec A5E 况2"二——帀 A/感生电场的大小 2 A/ 0(2)给电磁铁通入交变电流如图3所示,从而产生变化的磁场,变化规律如图4 所示(以图2中所标电流产生磁场的方向为正方向),要使电子能被逆时针(从上往下 看,以下同)加速,一方而感生电场应是顺时针方向,即在磁场的第一个或第四个1/4 周期内加速电子:而另一方面电子受到的洛仑兹力应指向圆心,只有磁场的第一或第二 个1/4周期才满足。

带电粒子在电场中的运动

带电粒子在电场中的运动

2 mv = qU第一章9带电粒子在电场中的运动带电粒子在电场中受到静电力的作用,因此要产生加速度,速度的大小和方向都可能 发生变化。

对于质量很小的带电粒子,如电子、质子等,虽然它们也会受到万有引力(重 力)的作用,但万有引力(重力)一般远小于静电力,可以忽略。

在现代科学实验和技术设备中,常常利用电场来改变或控制带电粒子的运动。

利用电 场使带电粒子加速、利用电场使带电粒子偏转,就是两种最简单的情况。

带电粒子的加速如图1.9-1所示,在真空中有一对平行金属板,由于接上电池组而带电,两板间的电 势差为U 。

若一个质量为 m ,带正电荷q 的粒子,在静电力的作用下由静止开始从正极板 向负极板运动,计算它到达负极板时的速度。

在带电粒子的运动过程中,静电力对它做的功是W = qU设带电粒子到达负极板时的速率为 v ,其动能可以写为2 mv由动能定理可知于是求出思考与讨论 上述问题中,两块金属板是平行的,两板间的电场是匀强电场。

如果两极板是其他形 状,中间的电场不再均匀,上面的结果是否仍然适用?为什么?【例题1】炽热的金属丝可以发射电子。

在金属丝和金属板之间加以电压U = 2 500 V(图1.9-2),发射出的电子在真空中加速后,从金属板的小孔穿出。

电子穿出时的速度有图1.9-1 计算粒子到达另一个极板时的速度2qU v = mv= ,2eU 2X 1.6 X 10-19X 2500\ 0.9 X 10-30=3.0 X 107 m/s电子的质量多大?设电子刚刚离开金属丝时的速度为零。

H >1图1.9-2 带电粒子的加速。

电池E用来给金属丝加热【解】电荷量为e的电子从金属丝移动到金属板,两处的电势差为U,电势能的减少量是eU。

减少的电势能全部转化为电子的动能,所以1 mv2= eU解出速度v并把数值代入,得m= 0.9X 10-30 kg和电子的电荷量e= 1.6 X 10-19 C可以作为已知数据使用。

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动【教学结构】一、带电粒子在电场中加速1.电场力对带电粒子做功如图1所示的匀强电场,场强为E,AB之间电势差为U,把带电量为q的正电荷放在A处,设初速度为零,在电场力作用下,q从A加速运动到B,设到达B处速度为υ.带电粒子从A运动到B,电场力对带电子做正功,W=Uq.电场力做功使电势能减少Uq,而转化成为动能.因而带电粒子获得动能为Uq.2.动能定理(1)因为带电粒子的重力很小,远远小于电场力,可以忽略不计.(2)外力对带电粒子的总功就等于电场力的功:Uq.(3)根据动能定理Uq=12mυ2(4)如带电粒子到达A点时速度不为O,而是υ0,则Uq=12mυ2-12mυ23.计算加速后带电粒子速度如图2所示,一对平行金属板AB,中间有小孔MN,AB 与电源相连,A板接负极,两板间电压为U,电子在M处初速为零,经电场加速后从N孔穿出,穿出时速度υ=?Uq=12mυ2υ=2Uqm,若在M处初速为υ0,则,Uq=12mυ2-12mυ2υ=υ22+Uqm二、带电粒子在电场中偏移1.分析带电粒子在电场中运动过程如图3所示,平行金属板与电压为U的电源相连,板间为匀强电场,板长为L,两板间距离为d,质量为m,带电量为q的正电荷以初速υ0沿两板中轴线进入电场.设轴线方向为x,与轴线垂直方向为y.在x方向带电粒子不受力,应做匀速运动.在y方向:带电粒子应受电场力,若y方向为竖直方向,还应受重力,但带电粒子重力很小可忽略不计.故只受沿正y方向的电场力,带电粒子沿正y方向做初速为零的匀加速运动.综上所示,粒子运动轨迹与平抛运动很相似,故又称类平抛运动.2.研究带电粒子偏转规律(1)借此机会复习平抛运动研究方法,提高解决平抛问题的能力.(2)根据处理平抛运动的方法,分两个方向研究运动过程x方向:L=υ0 t,带电粒子穿出电场时位移为L,所用时间为t.y方向:y=12at2,y为离开电场时,在y方向上的位移,有的书称为横向位移.a是在电场力作用下产生加速度.a =Uq dm .认真分析:E =U d ,F=Eq =Uq d ,a =F m =Uq dm y =Uqmd L 22υ02.利用运动学知识进一步推进.在y 方向带电粒子离开电场时的速度:υy=at =UqL dm υ0.带电粒子离开电场中偏转角φ的决定式: t g φ =υυy0=gUL md υ02.注意:带电粒子离开电场后应以υυυ=+y 202,作匀速直线运动,方向为与υ0成φ角.作速度υ的反向延长线与平行金属板轴线相交于O 点,正好是轴线的中点,如图5所示.可想像成经过偏转电场的粒子都是从两板正中点射出来的.证明如下,设板的边缘与O 间距离为x ,y=x ·tg φx=y/tg φ=Uqmd L UqL md L 22202υ02υ=. (3)带电粒子能离开偏转电场的条件.当偏转电场装置一定,即L 、d 不变,带电粒子m 、q 、υ0一定,带电粒子能否离开电场,就取决于两板电压U .y =UqLdm d υ022<,即U d m qL <20222υ.如U 大于此值粒子打在板的某处而不能出偏转电场.当偏转电场装置一定,板间电压一定,粒子m 、q 一定,带电粒子能否离开电场,就取决于带电粒子射入电场时υ0大小(υ0方向沿轴线方向).当υ0222>UqLmd 时,带电粒子可离开偏转电场.【课余思考】1.电场使带电粒子加速和偏转的原理是什么,点电荷电场能否给带电粒子加速?2. 带电粒子离开偏移电场时的横向位移,偏转角,横向速度表达式是什么?【解题点要】例一、如图6所示,B 板电势为U ,质量为m 的带电粒子以速度υ0水平射入电场,若粒子带-q 电量,则粒子到达B 板时速度大小为 ,若粒子带+q 电量,它到达B 板时速度大小为 .解析:A 板接地电势为零,B 板电势为U ,高于A 板电势.板间电场方向从B 向A ,负电荷受电场力方向为由A 向B ,带电粒子由A 板到达B 板电场力做正功,动能增大,根据电场加速原理:Uq =1212202m m υυ- υυ=+022Uq m.带电粒子带正电时,电场力做负功,-Uq =1212202m m υυ- υυ1022=-Uq m.电场力对带电粒子做正功时,把电势能转化为动能,电场力做负功时,把动能转化为电势能.从能量角度更容易理解带电粒子在电场中加速.例二、一个初动能为2000e v的电子,垂直电场线方向进入场强为5×104v/m 的匀强电场,离开电场时偏转距离为1cm,那么电子离开电场时的动能为.解析:本题是研究带电粒子在电场中加速还是偏转?粒子的初速度与场强方向垂直,电场作用方向与场强方向为同一条直线上,能用电场对带电粒子加速的公式吗?从题给的条件里很容易理解为带电粒子在电场中偏转,仔细审题便知.本题的要求还是电场对电子做功而使电子动能变化,求出所求,应是电子在电场中加速.速度是矢量当方向不同时,速度之和满足平行四边形法则,动能是标量、无方向问题,不能认为速度方向即是动能方向.动能之和用代数和的方法就可求.本题解应为:电场力的功:W=Eed=e·5×104×10-2=e·5×102=500e vW=E K-EK0E K=W+EK0=5×102+2000=2500e v例三、如图7所示,电子从负极板边缘垂直电场线方向射入匀强电场恰好从正极板的边缘射出,今使两极板间距离增大为原来的2倍,而电子仍以同样的速度射入,也恰好从正极板的边缘射出这时两板电势差为原来的()A.2倍B.4倍C.2倍D.相等解析:什么叫电子恰好从正极板边缘射出,前后两种情况有何变化?本题很明显是解决电子在电场中偏转问题,刚好从边缘射出,指的是在沿垂直场强方向位移为板长时,沿场强方向位移为两板间的距离.设板长为L,板间距离为d,两板间电压为U,带电粒子质量为m,电量为e,射入电场速度为υ0,题中给出两种情况是L、m、e、υ0均不变,试求当d变为2d时,U如何变.故有dUeLdmdU eLdmUU==⋅=222222224υυ与两式相比可得'',故选B.例四、如图8所示,电子在加速电压为U1的电场中,由静止开始加速,然后射入电压为U2的两块平行板间的偏转电场中.入射方向跟极板平行,整个装置处在真空中,重力可以忽略.在满足电子能射出平行极板区域的条件下.下述四种情况中,一定能使电子的偏转角φ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小解析:电子经过加速电场和偏转电场的偏转角度φ与U1、U2的关系是什么?解决这个问题后,选项很容易确定.电子经加速电场加速后速度由零增到υ,U1e=12mυ2υ=21U em.电子以速度υ进入偏转电场,经过后偏转角:tg φ=U eL md 22把υ=21U e m代入上式可得:tg φ=U L U d 212.L 、d 为不变的量,所以tg φ∝U U 21.U U 21增大时,φ增大.A 选项,U 1、U 2都增大,U U 21不一定增大,φ不一定变大;不能选.选项B ,U 1变小、U 2变大,U 2/U 1一定变大,B 选项正确.C 、D 选项都不能保证φ一定增大故不能选.答案:B .解答这类题不能猜,应根据学过的公式,准确确定φ与U 1、U 2的关系,最好有表达式,如:tg φ=U L U d212.以此为依据便能准确选择.【同步练习】1.原来都静止的质子(氢原子核11H )和α粒子(氦原子核24He ),经过同一电压的加速后,它们的速度大小之比为( )A .1 : 1B .1 : 2C .1 : 4D .2 : 12.如图9所示,电子经加速电场(电压为U 1)后进入偏转电场(电压为U 2),然后飞出偏转电场,要使电子飞不出偏转电场可采取的措施有( )A .增大U 1,其它条件不变B .减小U 1,其它条件不变C .增大U 2,其它条件不变D .减小U 2,其它条件不变 3.如图10所示,三个质量相等,分别带正电、负电和不带电的小球从带电平行金属板的P 点以相同的速率沿垂直于电场方向射入电场,它们分别落在A 、B 、C 三点上( )A .A 带正电,B 不带电,C 带负电B .三个小球在电场中运动时间相等C .三个小球在电场中的加速度大小关系是a C >a B >a AD .三个小球到达正极板时的动能的关系是E A >E B >E C4.如图11中,MN 为两块竖直放置的平行金属板,带电微粒紧靠着M 板以速度υ0竖直向上射入MN 两板之间.当滑动变阻器AB 的滑动触头在AB 中心位置时,带电微粒恰好垂直打在N 板上,这时速度大小和υ0相等.现将N 板移近M 板,使得其间距离减为原来的一半.求:(1)带电微粒打到N 板时速度大小.(2)欲使带电微粒仍然以垂直方向打到N 板上,应如何移动滑动变阻器的滑动头?这时打到N 板上的微粒的速度又是多大.【参考答案】1.D 2.BC 3.AC 4.(1)52υ0(2)滑动头距A为全长的18,速度为2.。

带电粒子在电场中的运动

带电粒子在电场中的运动

带电粒子在电场中的运动
带电粒子在匀强电场中运动时,若初速度与场强方向平行,它的运动是匀加速直线运动,其加速度大小为。

若初速度与场强方向成某一角度,它的运动是类似于物体在重力场中的斜抛运动。

若初速度与场强方向垂直,它的运动是类似于物体在重力场中的平抛运动,是x 轴方向的匀速直线运动和y 轴方向的初速度为零的匀加速直线运动的叠加,在任一时刻,x 轴方向和y 轴方向的速度分别为
位置坐标分别为
从上两式中消去t,得带电粒子在电场中的轨迹方程
若带电粒子在离开匀强电场区域时,它在x轴方向移动了距离l,它在y轴方向偏移的距离为
这个偏移距离h与场强E成正比,因此只要转变电场强度的大小,就可以调整偏移距离。

带电粒子进入无电场区域后,将在与原来运动方向偏离某一角度的方向作匀速直线运动。

可知

所以偏转角为
示波管中,就是利用上下、左右两对平行板(偏转电极)产生的匀强电场,使阴极射出的电子发生上下、左右偏转。

转变平行板间的电压,就能转变平行板间的场强,使电子的运动发生相应的变化,从而转变荧光屏上亮点的位置。

带电粒子在匀强电场中的运动

带电粒子在匀强电场中的运动

带电粒子的加速与减速
带电粒子在电场中会受到电场力的作用,根据电场的方向和粒子的电荷性质,粒子 会加速或减速。
加速器是利用电场对带电粒子的加速作用,使粒子获得高能量。加速器在科学研究、 工业应用和医疗等领域有广泛应用。
减速器是利用电场对带电粒子的减速作用,使高速运动的粒子逐渐减速。减速器在 粒子束技术、电子显微镜等领域有重要应用。
粒子的偏转角与速度的关系
总结词
粒子的偏转角与速度的关系是指带电粒子在 匀强电场中的运动轨迹与粒子速度之间的关 系。
详细描述
当带电粒子以不同速度进入匀强电场时,其 运动轨迹的偏转角会发生变化。通过分析粒 子的受力情况和运动轨迹,可以得出粒子的 偏转角与速度之间的关系。这种关系对于理 解带电粒子在电场中的运动规律和实验设计
总结词
带电粒子在垂直于初速度方向的恒定电场力作用下,将做偏转运动。
详细描述
带电粒子在匀强电场中受到的电场力恒定,根据牛顿第二定律,粒子的加速度也恒定。当电场力方向与初速度方 向垂直时,粒子将在垂直于初速度的方向上做类平抛运动,即偏转运动。
03 带电粒子在匀强电场中的 能量分析
电场力做功与能量转化
电场力做功
带电粒子在电场中运动时,电场力对 粒子做功,将电能转化为粒子的动能 或势能。
能量转化方向
电场力做正功时,粒子的动能增加; 电场力做负功时,粒子的动能减少。
电势能与动能的关系
电势能与动能相互转化
带电粒子在匀强电场中运动时,电势能和动能之间相互转化,总能量保持不变。
能量守恒
带电粒子在电场中运动时,总能量守恒,即粒子的动能和电势能之和保持不变。
能量守恒与转化
能量守恒定律
在任何封闭的系统中,能量既不会创生也不会消灭,只会从一种形式转化为另一种形式,或从一个物 体转移到另一个物体。

带电粒子在匀强电场和匀强磁场中的运动

带电粒子在匀强电场和匀强磁场中的运动

带电粒子在匀强电场和匀强磁场中的运动1. 引言带电粒子在外加电场和磁场的作用下,会受到力的作用而发生运动。

本文将详细讨论带电粒子在匀强电场和匀强磁场中的运动规律。

2. 匀强电场中的运动在匀强电场中,带电粒子受到电场力的作用。

根据库仑定律,带电粒子所受力与其所处位置成正比,方向与电场方向相同或相反。

假设带电粒子的质量为m,带有单位正电荷q,所处位置为r,则其所受力可以表示为F = qE,其中E为电场强度。

根据牛顿第二定律 F = ma,将上式代入可以得到 ma = qE。

由于在匀强电场中,加速度是常量 a = qE/m。

因此,在匀强电场中,带电粒子的加速度与其质量无关。

根据基本物理公式 v = u + at (u为初速度),可以得到 v = u + (qE/m)t。

如果假设初始时刻t=0时,带电粒子具有初始速度v0,则可以得到 v = v0 +(qE/m)t。

这就是带电粒子在匀强电场中的速度公式。

3. 匀强磁场中的运动在匀强磁场中,带电粒子受到洛伦兹力的作用。

洛伦兹力的大小与带电粒子的电荷量、速度以及磁场强度之间有关。

根据洛伦兹力公式 F = q(v × B),其中v为带电粒子的速度,B为磁感应强度。

根据牛顿第二定律 F = ma,将上式代入可以得到ma = q(v × B)。

由于在匀强磁场中,加速度是常量a = q(v × B)/m。

因此,在匀强磁场中,带电粒子的加速度与其质量成反比。

当带电粒子初始时刻t=0时,其速度方向与磁场方向垂直,可以通过右手定则确定。

假设初始时刻t=0时,带电粒子具有初始速度v0,则可以得到 v = v0 +(q/m)(v0 × B)t。

这就是带电粒子在匀强磁场中的速度公式。

4. 匀强电场和匀强磁场共同作用下的运动当带电粒子同时处于匀强电场和匀强磁场中时,将同时受到电场力和磁场力的作用。

根据洛伦兹力公式F = q(E + v × B),带电粒子所受合力为 F = q(E + v × B)。

带电粒子在电场中的加速和偏转知识归纳与运用技巧

带电粒子在电场中的加速和偏转知识归纳与运用技巧

带电粒子在电场中的加速和偏转知识归纳与运用技巧知识点一:带电粒子在电场中的加速和减速运动要点诠释:(1)带电粒子在匀强电场中运动的计算方法用牛顿第二定律计算:带电粒子受到恒力的作用,可以方便的由牛顿第二定律以及匀变速直线运动的公式进行计算。

用动能定理计算:带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则。

(2)带电粒子在非匀强电场中运动的计算方法用动能定理计算:在非匀强电场中,带电粒子受到变力的作用,用牛顿第二定律计算不方便,通常只用动能定理计算。

:如图真空中有一对平行金属板,间距为d,接在电压为U的电源上,质量为m、电量为q的正电荷穿过正极板上的小孔以v0进入电场,到达负极板时从负极板上正对的小孔穿出。

不计重力,求:正电荷穿出时的速度v是多大?解法一、动力学由牛顿第二定律:①由运动学知识:v2-v02=2ad ②联立①②解得:解法二、由动能定理解得讨论:(1)若带电粒子在正极板处v0≠0,由动能定理得qU=mv2-mv02解得v=(2)若将图中电池组的正负极调换,则两极板间匀强电场的场强方向变为水平向左,带电量为+q,质量为m的带电粒子,以初速度v0,穿过左极板的小孔进入电场,在电场中做匀减速直线运动。

①若v0>,则带电粒子能从对面极板的小孔穿出,穿出时的速度大小为v,有 -qU=mv2-mv02解得v=②若v0<,则带电粒子不能从对面极板的小孔穿出,带电粒子速度减为零后,反方向加速运动,从左极板的小孔穿出,穿出时速度大小v=v0。

设带电粒子在电场中运动时距左极板的最远距离为x,由动能定理有: -qEx=0-mv02又E=(式d中为两极板间距离)解得x=。

知识点二:带电粒子在电场中的偏转要点诠释:(1)带电粒子在匀强电场中的偏转高中阶段定量计算的是,带电粒子与电场线垂直地进入匀强电场或进入平行板电容器之间的匀强电场。

如图所示:(2)粒子在偏转电场中的运动性质受到恒力的作用,初速度与电场力垂直,做类平抛运动:在垂直于电场方向做匀速直线运动;在平行于电场方向做初速度为零的匀加速直线运动。

电场中的带电粒子和电场力的作用

电场中的带电粒子和电场力的作用

电场中的带电粒子和电场力的作用在物理学中,电场是一个重要的概念,描述了电荷之间相互作用的力场。

带电粒子在电场中运动时,会受到电场力的作用。

本文将介绍电场中带电粒子的行为,以及电场力对其的作用。

一、电场和电场力的概念电场是一种在空间中存在的力场,由电荷产生。

任何一个带电物体都会在周围形成一个电场。

电场本质上是一种场的概念,可以将其类比为重力场。

电场的强弱用电场强度来描述,它与电荷的大小和距离有关。

电场力是电场对带电粒子施加的力,也称为库仑力。

根据库仑定律,电场力的大小与电荷的大小成正比,与距离的平方成反比。

电场力的方向则是电荷所受力的方向,正电荷受力方向与电场方向相同,而负电荷受力方向则相反。

二、带电粒子在电场中的行为当一个带电粒子置于电场中时,它会受到电场力的作用,从而发生运动。

带电粒子的运动状态取决于电场力和其它可能存在的力的平衡。

以下将介绍几种常见情况。

1. 带电粒子在电场中静止当带电粒子的电荷与电场方向相反时,电场力将与其它可能存在的力达到平衡。

这种情况下,带电粒子将保持相对静止。

这是因为电场力与其它力的大小相等但方向相反,所以它们抵消了彼此的效果。

2. 带电粒子在电场中做匀速直线运动当带电粒子的电荷与电场方向相同,且受到的电场力与其它力相等时,带电粒子将做匀速直线运动。

这是因为相等大小但方向相反的力对粒子的净作用力为零,粒子不受力而进行匀速直线运动。

3. 带电粒子在电场中做加速或减速运动当带电粒子的电荷与电场方向相同,但受到的电场力与其它力不相等时,带电粒子将做加速或减速运动。

这是因为净作用力不为零,导致带电粒子加速度的存在或改变。

三、实例分析为了更好地理解带电粒子在电场中的行为和电场力的作用,我们来看一个实际的示例。

假设有一个正电荷,放置在一个均匀电场中。

正电荷将受到电场力的作用,其方向与电场方向相同。

根据电场力的大小与带电粒子电荷大小的关系,正电荷将朝向电场的方向受力。

如果我们改变电场的方向,那么电场力的方向也会相应改变。

带电粒子在电场的应用

带电粒子在电场的应用

[同步导学]1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动).(2)运动的分析方法(看成类平抛运动):①沿初速度方向做速度为v 0的匀速直线运动.②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少?解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0 由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qUL at 0== 离子离开偏转电场时的偏转角度θ可由下式确定:dmv qUL v v 200Ítan ==θ 电荷射出电场时的速度的反向延长线交两板中心水平线上的位置确定:如图所示,设交点P 到右端Q 的距离为x ,则由几何关系得:x y /tan =θ21/2/tan 20202===∴dmv qLU d mv U qL y x θ 点评:电荷好像是从水平线OQ 中点沿直线射出一样,注意此结论在处理问题时应用很方便.3.示波管的原理(1)构造及功能如图l —8—2所示①电子枪:发射并加速电子.②偏转电极YY ,:使电子束竖直偏转(加信号电压) XX ,:使电子束水平偏转(加扫描电压).③荧光屏.(2)工作原理(如图1—8—2所示)偏转电极XX ,和YY ,不加电压,电子打到屏幕中心;若电压只加XX ,,只有X 方向偏;若电压只加YY ,,只有y 方向偏;若XX ,加扫描电压,YY ,加信号电压,屏上会出现随信号而变化的图象.4.在带电粒子的加速或偏转的问题中,何时考虑粒子的重力?何时不计重力?一般来说:(1)基本粒子:如电子、质子、α粒子、离子等除有特别说明或有明确暗示以外,一般都不考虑重力(但不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有特别说明或有明显暗示以外,一般都不能忽略重力.5.易错易混点带电粒子在电场中发生偏转,—定要区分开位移的方向与速度的方向,它们各自偏角的正切分别为: x y =αtan ,xy v v =βtan ,切不可混淆 6.带电粒子在电场中的运动(1)带电粒子在电场中的运动由粒子的初始状态和受力情况决定.在非匀强电场中,带电粒子受到的电场力是变力,解决这类问题可以用动能定理求解.在匀强电场中,带电粒子受到的是恒力,若带电粒子初速度为零或初速度方向平行于电场方向,带电粒子将做匀变速直线运动;若带电粒子初速度方向垂直于电场方向,带电粒子做类平抛运动,根据运动规律求解,(2)带电小球、带电微粒(重力不能忽略)在匀强电场中运动,由于带电小球、带电微粒可视为质点,同时受到重力和电场力的作用,其运动情况由重力和电场力共同决定.又因为重力和电场力都是恒力,其做功特点一样,常将带电质点的运动环境想象成一等效场,等效场的大小和方向由重力场和电场共同决定.例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .Uedh B .edUh C .dh eU D .d eUh 解析:电子从O 点到A 点,因受电场力作用,速度逐渐减小,根据题意和图示可知,电子仅受电场力,由能量关系:OA eU mv =2021,又E =U /d ,h d U Eh U OA ==,所以deUh mv =2021 . 故D 正确. 点评:应用电场力做功与电势差的关系,结合动能定理即可解答本题.例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场,如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计)分析:带电粒子在水平方向做匀速直线运动,在竖直方向做匀加速运动.电场力做功导致电势能的改变.解析:水平方向匀速,则运动时间t =L/ v 0 ① 竖直方向加速,则侧移221at y =② 且dmqU a = ③ 由①②③得2022mdv qUL y = 则电场力做功20222220222v md L U q mdv qUL d U q y qE W =⋅⋅=⋅= 由功能原理得电势能减少了2022222v md L U q 例4如图1—8-5所示,离子发生器发射出一束质量为m ,电荷量为q的离子,从静图1—8—4止经加速电压U 1加速后,获得速度0v ,并沿垂直于电场线方向射入两平行板中央,受偏转电压U 2作用后,以速度v 离开电场,已知平行板长为l ,两板间距离为d ,求:①0v 的大小;②离子在偏转电场中运动时间t ;③离子在偏转电场中受到的电场力的大小F ;④离子在偏转电场中的加速度;⑤离子在离开偏转电场时的横向速度y v ;⑥离子在离开偏转电场时的速度v 的大小;⑦离子在离开偏转电场时的横向偏移量y ;⑧离子离开偏转电场时的偏转角θ的正切值tgθ解析:①不管加速电场是不是匀强电场,W =qU 都适用,所以由动能定理得:0121mv qU = m qU v 20=∴ ②由于偏转电场是匀强电场,所以离子的运动类似平抛运动.即:水平方向为速度为v 0的匀速直线运动,竖直方向为初速度为零的匀加速直线运动. ∴在水平方向102qU m l v l t == ③d U E 2=F =qE =.d qU 2 ④mdqU m F a 2== ⑤.mU q d l U qU m l md qU at v y 121222=∙== ⑥1242222212220U md U ql U qd v v v y +=+= ⑦1221222422121dU U l qU m l md qU at y =∙==(和带电粒子q 、m 无关,只取决于加速电场和偏转电场)图1—8-5例1:如图8-1所示,带电粒子在电场中的加速:在真空中有一对平行金属板,两板间加以电压U ,两板间有一个带正电荷q 的带电粒子,它在电场力的作用下,由静止开始从正极板向负极板运动,到达负极板时的速度有多大?(不考虑带电粒子的重力)【审题】本题是带电粒子在匀强电场中的加速问题,物理过程是电场力做正功,电势能减少,动能增加,利用动能定理便可解决。

带电粒子的运动及其在生活中的应用

带电粒子的运动及其在生活中的应用

带电粒子的运动及其在生活中的应用带电粒子是一种特殊的粒子,它们带有电荷,可以通过外加电场或磁场的作用下进行运动。

这种带电粒子的运动过程具有很大的应用价值,在人类的生活中得到了广泛的应用。

一、带电粒子的运动带电粒子在外加电场或磁场的作用下,会受到电荷的作用力,从而进行运动。

具体来说,带电粒子在电场中的受力大小与所带电荷数量、电场强度、电场中的介质性质以及粒子尺寸等相关。

而在磁场中运动时,带电粒子受到的作用力与磁场强度及粒子带电荷量和粒子的速度有关。

这些都是影响带电粒子运动的因素。

带电粒子在电场或磁场中的运动情况也可以用数学公式进行描述。

例如,在电场中平行板电容器中,电子的运动方程可以用F=qE=ma 表示。

在磁场中,磁感线垂直于带电粒子的轨迹时,粒子将沿着磁感线通过磁场。

此时,带电粒子的运动方程为F=qvB=ma。

二、生活中的应用带电粒子的运动具有很多应用价值,在生活中也得到了广泛的应用。

以下是其中几个例子:1. 微电子学微电子学是一种应用电子学的科学,它主要用于制造微型电子元件。

在这个领域中,带电粒子的运动被广泛应用。

例如,在固体中,电子的运动过程将对材料的电导率和电阻率产生影响,从而用于制造半导体器件和电路板等微型电子元件。

2. 医疗领域的应用带电粒子的运动还可以应用于医疗领域。

例如,在放射性医学中,带电粒子的辐照可以用于治疗癌症等疾病。

此外,带电粒子在放射性医学中还可以用于诊断和监测治疗进展。

3. 动力学和能源领域的应用在动力学和能源领域中,带电粒子的运动也具有重要的应用价值。

例如,在航空工业中,气体分子和离子的运动过程将影响飞机发动机中的燃料燃烧,从而影响飞机的性能。

在原子能领域中,带电粒子的运动还可以用于核融合和核裂变过程的研究和应用。

小结带电粒子的运动具有很大的应用价值,在人类的生活中得到了广泛的应用。

它的应用覆盖了微电子学、医疗领域、动力学和能源领域等多个领域,在这些领域中取得了重要的成果。

带电粒子在电场中的运动

带电粒子在电场中的运动

图所示. A、B两板中心开孔,在A板的开
孔上搁有一金属容器P且与A板接触良好,
其内盛有导电液体.A板通过闭合的电键
P
与电池的正极相连,B板与电池的负极相 A
连并接地,电池提供A、B两极板电压为 U0,容器P内的液体在底部小孔O处形成
U0
O h
质量为m,带电量为q的液滴后自由下落, S
穿过B板的开孔O`落在D板上,其电荷被D B 板吸咐,液体随即蒸发,接着容器顶部又形
⑶穿越电场过程的动能增量:
ΔEK=Eqy
典型讲解
❖ 例题1:如图所示,热电子由阴极飞出时的初速忽
略不计,电子发射装置的加速电压为U0。电容
器板长和板间距离均为L=10cm,下极板接地。
电容器右端到荧光屏的距离也是L=10cm。在电
❖ 容器两 极板间接一交变电压,
上极板的电势随时间变化的图象
Hale Waihona Puke 如左图。(每个电子穿过平行板
带电粒子在电场中的运动
河北省景县中学 ——张书州
基本内容
❖ 一、带电粒子(微粒)在电场中的直线加速 问题
❖ 二、带电粒子(微粒)在电场中的偏转问题 ❖ 三、带电粒子(微粒)在交变电场中的运动
问题 ❖ 四、电场中物体运动及相互作用的问题
一、带电粒子(微粒)在电场中的 直线加速问题
❖ 基本思路: ❖ 1.在匀强电场中 ❖ (1)牛顿第二定律与运动规律综合处理; ❖ (2)动能定理、动量定理; ❖ 2.在非匀强电场中 ❖ 应用能量、动量观点分析问题. ❖ *需注意带电粒子与带电微粒的区别.
带电粒子(微粒)在电场中的偏转问题
❖ 处理电偏转问题的基本思路: ❖ 1.运动的合成与分解; ❖ 2.能量观点.

带电粒子在电场运动规律经典例题及典型习题(附答案)

带电粒子在电场运动规律经典例题及典型习题(附答案)

带电粒子在电场运动规律透析一、带电粒子在电场中的加速1运动状态的分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动。

2用功能观点分析:电场力对带电粒子动能的增量。

2022121mv mv qU -= 说明:①此法不仅适用于匀强电场,也适用于非匀强电场。

②对匀强电场,也可直接应用运动学公式和牛顿第二定律典型例题例1:1:如图所示,两平行金属板竖直放置,如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。

右极板电势随时间变化的规律如图所示。

电子原来静止在左极板小孔处。

(不计重力作用)下列说法中正确的是法中正确的是A.A.从从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上B.B.从从t=0时刻释放电子,电子可能在两板间振动C.C.从从t=T /4时刻释放电子,电子可能在两板间振动,也可能打到右极板上D.D.从从t=3T /8时刻释放电子,电子必将打到左极板上解析:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /2,接着匀减速T /2,速度减小到零后,又开始向右匀加速T /2,接着匀减速T /2直到打在右极板上。

……直到打在右极板上。

电子不可能向左运动;电子不可能向左运动;电子不可能向左运动;如果两板间距离不够大,电子如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。

从t=T /4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T /4,接着匀减速T /4,速度减小到零后,改为向左先匀加速T /4,接着匀减速T /4。

即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。

子在第一次向右运动过程中就有可能打在右极板上。

从从t=3T /8时刻释放电子,时刻释放电子,如如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。

带电粒子在电场中的运动

带电粒子在电场中的运动

带电粒子在电场中的运动专题精析一、匀变速运动不计重力的带电粒子进入匀强电场,做匀变速运动。

如果平行进人匀强电场,则在电场中做匀变速直线运动;如果垂直进入匀强电场,则在电场中做匀变速曲线运动(类平抛运动);如果既不垂直也不平行地进入匀强电场,做类斜抛运动,可将速度分解,沿电场线方向做匀变速运动,垂直于电场线方向做匀速运动。

一般情况下带电粒子所受电场力远大于重力,可以不计重力,认为只有电场力作用。

电场力做功,由动能定理,有W =qU =ΔE k ,此式与电场是否匀强电场无关与带电粒子的运动性质、轨迹形状也无关。

当电荷量为q 质量为m 、初速度为v 的带电粒子经电压U 加速后,速度变为v t ,由动能定理,有qU =mv 20-mv 20。

若v 0=0,则有v t =2qUm ,这个关系式对任意静电场都是适用的。

带电粒子垂直进入匀强电场讨论速度偏转角与位移偏转角的关系。

解析:电荷的受力、速度、位移有如下关系⎩⎪⎨⎪⎧∑F x =0 ∑F y =Eq =ma,⎩⎨⎧v x =v 0v y =at ,⎩⎨⎧x =v 0t y =12at 2 某段时间内平抛物体的速度偏转角θ和位移偏转角α之间有tan θ=2tan α,其中tan θ=v y v x =gt v 0,tanα=y x =12gt2v 0t =gt 2v 0当带电粒子以一定速度垂直于电场线方向进入匀强电场时,其运动是类平抛运动。

如图1所示,设带电粒子质量为m ,电荷量为q ,以速度。

垂直于电场线方向飞入匀强偏转电场,偏转电压为U 1。

若粒子飞出电场时偏转角为θ,有tanθ=at v 0=qU 1dm ×lv 0v 0=qU 1l mv 20 d在图中作出粒子离开偏转电场时速度的反向延长线,与初速度方向交于O 点,O 点与电场边缘的距离为x ,有x =ytanθ=12at2tanθ=qU 1l 2/(2mdv 20)qU 1l /(mdv 20)=l 2 粒子从偏转电场中射出时,就像是从极板中间的l2处沿直线射出。

带电粒子在电场和磁场中的运动解读

带电粒子在电场和磁场中的运动解读

带电粒子在电场和磁场中的运动要点归纳一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q 、质量为m 、初速度为v 0的带电粒子经电压U 加速后,速度变为v t ,由动能定理得:qU =12m v t 2-12m v 02.若v 0=0,则有v t =2qU m,这个关系式对任意静电场都是适用的. 对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1 qU 1=12m v 12 设两平行金属板间的电压为U 2,板间距离为d ,板长为L .(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md. (2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关) 偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L 2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y ′=(D +L 2)tan φ. 以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:q v B =m v 2R =mRω2=m v ω=mR (2πT)2=mR (2πf )2 R =m v qBT =2πm qB (与v 、R 无关),f =1T =qB 2πm. 3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m v qB来确定. ②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示.图4-5 (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ). (4)圆周运动中有关对称的规律①从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图4-7所示.图4-6 图4-7(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切.三、带电粒子在复合场中的运动1.高中阶段所涉及的复合场有四种组合形式,即:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.2.带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析.当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化.因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略.3.带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关.当带电粒子的速度方向与磁场方向平行时,f 洛=0;当带电粒子的速度方向与磁场方向垂直时,f 洛=q v B .当洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功.(2)电场力的大小为qE ,方向与电场强度E 的方向及带电粒子所带电荷的性质有关.电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.(3)重力的大小为mg ,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关.注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.4.带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解.注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.热点、重点、难点一、根据带电粒子的运动轨迹进行分析推理图4-8●例1 如图4-8所示,MN 是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( )A .带电粒子从a 到b 的过程中动能逐渐减小B .正点电荷一定位于M 点的左侧C .带电粒子在a 点时具有的电势能大于在b 点时具有的电势能D .带电粒子在a 点的加速度大于在b 点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN 的方向为N →M ,正点电荷位于N 的右侧,选项B 错误;由a 、b 两点的位置关系知b 点更靠近场源电荷,故带电粒子在a 点受到的库仑力小于在b 点受到的库仑力,粒子在b 点的加速度大,选项D 错误;由上述电场力的方向知带电粒子由a 运动到b 的过程中电场力做正功,动能增大,电势能减小,故选项A 错误、C 正确.[答案] C【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点:①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧;②W 电=qU a b =E k b -E k a ;③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5 m ,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm .若墨汁微滴的质量为1.6×10-10 kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103 V ,其打到纸上的点距原射入方向的距离是2.0 mm .求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q ,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y =12at 2+L tan φ又a =qU md ,t =l v 0,tan φ=at v 0解得:y =qUl md v 02(l 2+L ) 代入数据得:q =1.25×10-13 C要将字体放大10%,只要使y 增大为原来的 1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm .[答案] 1.25×10-13 C 将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y =(l 2+L )tan φ=(l 2+L )qUl md v 02进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R 的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M 和N ,两板间距为R ,板长为2R ,板间的中心线O 1O 2与磁场的圆心O 在同一直线上.有一电荷量为q 、质量为m 的带正电的粒子以速度v 0从圆周上的a 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点水平飞出磁场时,给M 、N 两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N 板的速度从N 板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10 (1)求磁场的磁感应强度B .(2)求交变电压的周期T 和电压U 0的值.(3)当t =T 2时,该粒子从M 、N 板右侧沿板的中心线仍以速度v 0射入M 、N 之间,求粒子从磁场中射出的点到a 点的距离.【解析】(1)粒子自a 点进入磁场,从O 1点水平飞出磁场,则其运动的轨道半径为R .由q v 0B =m v 02R ,解得:B =m v 0qR. (2)粒子自O 1点进入电场后恰好从N 板的边缘平行极板飞出,设运动时间为t ,根据类平抛运动规律有:2R=v 0tR 2=2n ·qU 02mR (T 2)2 又t =nT (n =1,2,3…)解得:T =2R n v 0(n =1,2,3…) U 0=nm v 022q(n =1,2,3…).图4-10丙(3)当t =T 2时,粒子以速度v 0沿O 2O 1射入电场,该粒子恰好从M 板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v 0,运动的轨迹半径为R .设进入磁场时的点为b ,离开磁场时的点为c ,圆心为O 3,如图4-10丙所示,四边形ObO 3c 是菱形,所以Oc ∥O 3b ,故c 、O 、a 三点共线,ca 即为圆的直径,则c 、a 间的距离d =2R .[答案] (1)m v 0qR(2)2R n v 0 (n =1,2,3…) nm v 022q(n =1,2,3…) (3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”.三、带电粒子在有界磁场中(只受洛伦兹力)的运动1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析.2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分线,两垂线的交点即为圆周的圆心.②确定圆的半径.一般在圆上作图,由几何关系求出圆的半径.③求运动时间.找到运动的圆弧所对应的圆心角θ,由公式t =θ2πT 求出运动时间. 3.解析带电粒子穿过圆形区域磁场问题常可用到以下推论:①沿半径方向入射的粒子一定沿另一半径方向射出.②同种带电粒子以相同的速率从同一点垂直射入圆形区域的匀强磁场时,若射出方向与射入方向在同一直径上,则轨迹的弧长最长,偏转角有最大值且为α=2arcsin R r =2arcsin RBq m v. ③在圆形区域边缘的某点向各方向以相同速率射出的某种带电粒子,如果粒子的轨迹半径与区域圆的半径相同,则穿过磁场后粒子的射出方向均平行(反之,平行入射的粒子也将汇聚于边缘一点).●例3 如图4-11甲所示,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (0,h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点,不计重力,求:图4-11甲(1)粒子到达x =R 0平面时的速度方向与x 轴的夹角以及粒子到x 轴的距离.(2)M 点的横坐标x M .【解析】(1)粒子做直线运动时,有:qE =qB v 0做圆周运动时,有:qB v 0=m v 02R 0只有电场时,粒子做类平抛运动,则有:qE =maR 0=v 0tv y =at解得:v y =v 0粒子的速度大小为:v =v 02+v y 2=2v 0速度方向与x 轴的夹角为:θ=π4粒子与x 轴的距离为:H =h +12at 2=h +R 02. (2)撤去电场加上磁场后,有:qB v =m v 2R解得:R =2R 0此时粒子的运动轨迹如图4-11乙所示.圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y轴的夹角均为π4.由几何关系可得C 点的坐标为:图4-11乙x C =2R 0y C =H -R 0=h -R 02 过C 点作x 轴的垂线,在△CDM 中,有:l CM =R =2R 0,l CD =y C =h -R 02解得:l DM =l CM 2-l CD 2=74R 02+R 0h -h 2 M 点的横坐标为:x M =2R 0+74R 02+R 0h -h 2. [答案] (1)π2 h +R 02 (2)2R 0+74R 02+R 0h -h 2 【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量. ●例4 如图4-12甲所示,质量为m 、电荷量为e 的电子从坐标原点O 处沿xOy 平面射入第一象限内,射入时的速度方向不同,但大小均为v 0.现在某一区域内加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度大小为B ,若这些电子穿过磁场后都能垂直地射到与y 轴平行的荧光屏MN 上,求:图4-12甲 (1)荧光屏上光斑的长度.(2)所加磁场范围的最小面积.【解析】(1)如图4-12乙所示,要求光斑的长度,只要找到两个边界点即可.初速度沿x 轴正方向的电子沿弧OA 运动到荧光屏MN 上的P 点;初速度沿y 轴正方向的电子沿弧OC 运动到荧光屏MN 上的Q 点.图4-12乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:e v 0B =m v 02R ,即R =m v 0Be由几何知识可得:PQ =R =m v 0Be. (2)取与x 轴正方向成θ角的方向射入的电子为研究对象,其射出磁场的点为E (x ,y ),因其射出后能垂直打到屏MN 上,故有:x =-R sin θy =R +R cos θ即x 2+(y -R )2=R 2又因为电子沿x 轴正方向射入时,射出的边界点为A 点;沿y 轴正方向射入时,射出的边界点为C 点,故所加最小面积的磁场的边界是以(0,R )为圆心、R 为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:S =34πR 2+R 2-14πR 2=(π2+1)(m v 0Be)2. [答案] (1)m v 0Be (2)(π2+1)(m v 0Be)2 【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型.★同类拓展2 如图4-13甲所示,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:图4-13甲(1)此匀强磁场区域中磁感应强度的方向和大小.(2)此匀强磁场区域的最小面积.[2009年高考·海南物理卷]【解析】(1)若要使由C 点入射的电子从A 点射出,则在C 处必须有磁场,设匀强磁场的磁感应强度的大小为B ,令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力f =e v 0B ,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a .按照牛顿定律有: f =m v 02a联立解得:B =m v 0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射的电子在A 点沿DA 方向射出,且自BC 边上其他点垂直于入射的电子的运动轨道只能在BAEC 区域中,因而,圆弧AEC 是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设0≤θ<π2)的情形.该电子的运动轨迹QP A 如图4-13乙所示.图中,圆弧AP 的圆心为O ,PQ 垂直于BC 边,由上式知,圆弧AP 的半径仍为a .过P 点作DC 的垂线交DC 于G ,由几何关系可知∠DPG =θ,在以D 为原点、DC 为x 轴、DA 为y 轴的坐标系中,P 点的坐标(x ,y )为:x =a sin θ,y =a cos θ图4-13乙 这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周 AEC 和 AFC 所围成的,其面积为:S =2(14πa 2-12a 2)=π-22a 2. [答案] (1)m v 0ea 方向垂直于纸面向外 (2)π-22a 2 四、带电粒子在复合场、组合场中的运动问题●例5 在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图4-14甲所示.磁场的磁感应强度B 随时间t 的变化情况如图4-14乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:图4-14(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间.(3)小球运动的周期,并画出运动轨迹(只画一个周期).【解析】(1)小球从M 点运动到N 点时,有:qE =mg解得:E =mg q. (2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0小球从P 点运动到D 点的位移x =R =m v 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=m B 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q[或t =m qB 0(3π+1),t =2t 0(13π+1)]. (3)小球运动一个周期的轨迹如图4-14丙所示.图4-14丙 小球的运动周期为:T =8t 0(或T =12πm qB 0). [答案] (1)mg q (2)2t 0+m B 0q(3)T =8t 0 运动轨迹如图4-14丙所示【点评】带电粒子在复合场或组合场中运动的轨迹形成一闭合的对称图形的试题在高考中屡有出现.五、常见的、在科学技术中的应用带电粒子在电场、磁场中的运动规律在科学技术中有广泛的应用,高中物理中常碰到的有:示波器(显像管)、速度选择器、质谱仪、回旋加速器、霍耳效应传感器、电磁流量计等.●例6 一导体材料的样品的体积为a ×b ×c ,A ′、C 、A 、C ′为其四个侧面,如图4-15所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n ,电阻率为ρ,电子的电荷量为e ,沿x 方向通有电流I .图4-15(1)导体样品A ′、A 两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________.(2)将该导体样品放在匀强磁场中,磁场方向沿z 轴正方向,则导体侧面C 的电势________(填“高于”、“低于”或“等于”)侧面C ′的电势.(3)在(2)中,达到稳定状态时,沿x 方向的电流仍为I ,若测得C 、C ′两侧面的电势差为U ,试计算匀强磁场的磁感应强度B 的大小.【解析】(1)由题意知,样品的电阻R =ρ·c ab根据欧姆定律:U 0=I ·R =ρcI ab分析t 时间定向移动通过端面的自由电子,由电流的定义式I =n ·ab ·v ·t ·e t可得v =I nabe.(2)由左手定则知,定向移动的自由电子向C ′侧面偏转,故C 侧的电势高于C ′侧面.(3)达到稳定状态时,自由电子受到电场力与洛伦兹力的作用而平衡,则有:q Ub=q v B解得:B =neaUI .[答案] (1)ρcI ab I nabe (2)高于 (3)neaUI【点评】本例实际上为利用霍耳效应测磁感应强度的方法,而电磁流量计、磁流体发电机的原理及相关问题的解析都与此例相似.★同类拓展3 如图4-16甲所示,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)图4-16甲(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ. (2)求质量为m 的离子在磁场中做圆周运动的半径.(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.[2009年高考·重庆理综卷]【解析】(1)设正离子经电压为U 0的电场加速后速度为v 1,应用动能定理有:图4-16乙eU 0=12m v 12-0正离子垂直射入匀强偏转电场,受到的电场力F =eE 0产生的加速度a =F m ,即a =eE 0m垂直电场方向做匀速运动,有:2d =v 1t沿电场方向,有:d =12at 2联立解得:E 0=U 0d又tan φ=v 1at解得:φ=45°.(2)正离子进入磁场时的速度大小为: v =v 12+v ⊥2=v 12+(at )2正离子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有:e v B =m v 2R联立解得:正离子在磁场中做圆周运动的半径R =2mU 0eB 2.(3)将4m 和16m 代入R ,得R 1=24mU 0eB 2、R 2=216mU 0eB 2图4-16丙由几何关系可知S 1和S 2之间的距离Δs =R 22-(R 2-R 1)2-R 1联立解得:Δs =4(3-1)mU 0eB 2由R ′2=(2R 1)2+(R ′-R 1)2得:R ′=52R 1由12R 1<R <52R 1 得:m <m 正<25m .[答案] (1)45° (2)2mU 0eB 2(3)m <m 正<25m经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用; ②需要较强的空间想象能力. 1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷]( )。

电场中的带电粒子运动

电场中的带电粒子运动

電場中的帶電粒子運動电场中的带电粒子运动在物理学中,电场是一种对电荷施加力的现象。

当一个带电粒子置于电场中时,它将受到电场力的作用,导致粒子发生运动。

本文将探讨电场中带电粒子的运动规律以及相关的数学模型。

1. 带电粒子在电场中的受力电场力是由电场中的电场强度和粒子所带电荷决定的。

当一个带电粒子置于电场中时,它将受到电场力的作用。

电场力的方向与电场强度的方向相同,但是根据粒子所带电荷的正负不同,电场力的方向也会相应改变。

2. 带电粒子在匀强电场中的运动匀强电场是指具有均匀、恒定电场强度的电场。

在匀强电场中,带电粒子的运动轨迹是直线。

根据牛顿第二定律,带电粒子的加速度与电场力成正比。

因此,在匀强电场中,带电粒子的加速度也是恒定的。

3. 带电粒子在非匀强电场中的运动非匀强电场是指电场强度在空间中存在变化的电场。

在非匀强电场中,带电粒子的运动轨迹不再是直线,而是弯曲或者曲线。

带电粒子受到的电场力的大小和方向也会随着位置的不同而变化。

4. 带电粒子在电场中的速度和能量带电粒子在电场中受到电场力的作用,会加速或减速。

根据动能定理,带电粒子的速度增加,其动能也会增加。

同样地,带电粒子的速度减小,其动能也会减小。

因此,电场力可以改变带电粒子的动能,从而改变其速度和位置。

5. 带电粒子在电场中的轨迹带电粒子在电场中的轨迹可以由洛伦兹力和牛顿第二定律来描述。

洛伦兹力是由带电粒子在磁场中的运动和电场力的叠加效应产生的。

带电粒子在电场中的轨迹可以是直线、圆形、螺旋状等各种形状。

总结:电场是带电粒子运动的重要因素,它对粒子施加力的大小和方向决定了粒子运动的轨迹和性质。

带电粒子在电场中的运动可以通过数学模型来描述,例如牛顿第二定律和洛伦兹力等。

深入研究电场中带电粒子的运动规律对于理解电磁现象以及应用于电场技术都具有重要意义。

带电粒子在匀强电场中的运动典型例题与练习(含答案)

带电粒子在匀强电场中的运动典型例题与练习(含答案)

专题: 带电粒子在匀强电场中的运动典型题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。

(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。

一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以压U 。

在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由开始从正极板向负极板运动,速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等设粒子带电量为q ,质量为如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强UE d =,加速度qE qUammd, 通过偏转极板的时间:0L t v 侧移量:y22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2Ly .粒子可看作是从两板间的中点沿直线射出的 M N q U M N qUv 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动,t v l 0=,0v l t =; (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以20222)(mdv qUl v v v v y x +=+=。

带电粒子在匀强电场和匀强磁场中的运动

带电粒子在匀强电场和匀强磁场中的运动

带电粒子在匀强电场和匀强磁场中的运动
带电粒子在匀强电场和匀强磁场中的运动是粒子物理学中重要的
研究内容之一。

匀强电场是指场强在空间中各点方向相同、大小相等
的电场;匀强磁场是指场强在空间中各点方向相同、大小相等的磁场。

在匀强电场中,带电粒子会受到电场力的作用而加速运动。

根据
带电粒子的电荷性质,正电荷粒子会沿着电场线的方向加速运动,而
负电荷粒子则会沿着相反方向加速运动。

带电粒子的加速度与所受电
场力成正比,比例系数为粒子的电荷量,方向与电场力方向相同。

在匀强磁场中,带电粒子会受到洛伦兹力的作用而进行旋转运动。

洛伦兹力的方向垂直于粒子的速度方向和磁场方向,根据带电粒子的
电荷性质,正电荷粒子的旋转方向和速度方向相同,而负电荷粒子的
旋转方向和速度方向相反。

带电粒子的旋转半径与粒子的动量成正比,比例系数为粒子的电荷量和磁场的大小,而旋转的频率与粒子的质量
和电荷量成正比。

当带电粒子同时存在匀强电场和匀强磁场时,粒子的加速运动和
旋转运动会同时发生。

在这种情况下,粒子的轨迹将呈螺旋状,即粒
子沿着螺旋线运动。

螺旋线的形状取决于电场和磁场的大小和方向以
及粒子的质量、电荷量和初始速度。

带电粒子在匀强电场和匀强磁场中的运动具有重要的理论和应用
价值。

理论上,通过对粒子的运动轨迹和性质进行研究,可以深入了
解粒子的物理本质和基本属性。

应用上,这种运动可以用于粒子加速器、粒子分选器等设备,也可以用于磁共振成像、磁共振治疗等技术,有助于人类的科学研究和医疗实践。

带电粒子在电场中的类平抛运动

带电粒子在电场中的类平抛运动

带电粒子在电场中的类平抛运动随着科学技术的不断发展,人们对带电粒子在电场中的运动规律进行了深入的研究。

在电场中,带电粒子具有一定的运动规律,其中类似于平抛运动的运动方式备受关注。

本文将对带电粒子在电场中的类平抛运动进行探讨,以期帮助读者更好地理解这一现象。

1. 带电粒子在电场中的运动规律带电粒子在电场中受到电场力的作用,其运动规律受到电场力和带电粒子的初速度、质量等因素的影响。

在电场中,带电粒子的运动轨迹可以被描述为一种类似于平抛运动的方式,其轨迹呈抛物线状。

2. 带电粒子在电场中的受力分析带电粒子在电场中受到电场力的作用,该力的方向与带电粒子的电荷性质和电场的方向有关。

带电粒子还受到其他力的影响,如重力等。

在研究带电粒子在电场中的类平抛运动时,需要对受力进行全面的分析,以便更好地理解其运动规律。

3. 带电粒子在电场中的运动方程带电粒子在电场中的运动可以通过运动方程进行描述,该方程能够准确地预测带电粒子在电场中的位置、速度等运动参数。

通过对带电粒子的运动方程进行分析,可以更好地理解带电粒子在电场中的类平抛运动规律。

4. 带电粒子在电场中的应用研究带电粒子在电场中的类平抛运动,不仅有助于对物理规律的深入理解,同时也对相关领域的应用具有重要意义。

在电子束加速器、离子注入等领域,都需要对带电粒子在电场中的运动进行准确的控制和预测,而对带电粒子的类平抛运动规律的研究则可以为相关领域的技术应用提供重要的理论支持。

总结起来,带电粒子在电场中的类平抛运动是一个复杂而又具有重要意义的研究课题。

通过对带电粒子在电场中的受力分析、运动方程的研究以及相关应用的探讨,可以更好地认识这一现象,并将其应用到实际生产和科研中。

希望本文能够对读者有所帮助,也欢迎各界同仁对本文所涉及的问题进行探讨和交流。

对带电粒子在电场中的运动进行深入的研究,可以涉及到更细致和具体的内容,下面我们就继续探讨带电粒子在电场中的类平抛运动的更多方面。

§11-6、7 带电粒子在电场和磁场中所受作用及运动

§11-6、7 带电粒子在电场和磁场中所受作用及运动

一、带电粒子在电场和磁场中所受的力电场力Eq F =e 磁场力(洛仑兹力)Bq F ×=v m Bq E q F ×+=v 运动电荷在电场和磁场中受的力方向:即以右手四指由经小于的角弯向,拇指的指向就是正电荷所受洛仑兹力的方向.Bv180§11-6 带电粒子在电场和磁场中所受作用及运动141967.4100.151.610 3.110F B T T qv −−×===×××例: 一质子沿着与磁场垂直的方向运动, 在某点它的速率为. 由实验测得这时质子所受的洛仑兹力为.求该点的磁感强度的大小.16s m 101.3−⋅×N 104.714−×解由于与垂直,可得vB 问1)洛仑兹力作不作功?2)负电荷所受的洛仑兹力方向?例:宇宙射线中的一个质子以速率v= 1.0×107m/s 竖直进入地球磁场内,估算作用在这个质子上的磁力有多大?197417sin 1.610 1.0100.310sin904.810F qvB N Nθ−−−==××××××=× 解:在地球赤道附近的地磁场沿水平方向,靠近地面处的磁感应强度约为B= 0.3×10-4T ,已知质子所带电荷量为q =1.6×10-19 C ,按洛仑兹力公式,可算出场强对质子的作用力为这个力约是质子重量(mg=1.6×10-26N)的109倍,因此当讨论微观带电粒子在磁场中的运动时,一般可以忽略重力的影响。

设有一均匀磁场,磁感应强度为,一电荷量为、质量为的粒子,以初速进入磁场中运动。

Bq m 0v(1)如果与相互平行B 0v=F 粒子作匀速直线运动。

(2)如果与垂直B 0vBqv F 0=粒子作匀速圆周运动。

Bv二、带电粒子在磁场中运动BRvmB qv 20=qB mv R 0=qBm v R T ππ220==Bqv F 0=(3)如果与斜交成θ角B 0vq n v 0 Bθcos 00v v x=θsin 00v v n=qBmv R n 0=qBmv T v h xx π200==qBm T π2=粒子作螺旋运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、带电粒子在电场中运动判断与分析
1.带电粒子在电场中的直线运动
例1.如图3-2-1所示,在点电荷+Q的电场中,一带电粒子-q的初速度v0恰与电场线QP方向相同,则带电粒子-q在开始运动后,将()
A.沿电场线QP做匀加速运动
B.沿电场线QP做变减速运动
C.沿电场线QP做变加速运动
B
D.偏离电场线QP 做曲线运动
例2.如图3-2-2所示,在匀强电场E中,一带电粒子-q的初速度v0恰与电场线方向相同,则带电粒子-q在开始运动后,将()
C
A.沿电场线方向做匀加速运动
B.沿电场线方向做变加速运动
C.沿电场线方向做匀减速运动
D .偏离电场线方向做曲线运动
2.带电粒子在电场中的曲线运动
例3.如图3-2-6所示,两平行金属板间有匀强电场,场强方向指向下板,一带电量为-q的粒子,以初速度v0垂直电场线射入电场中,则粒子在电场中所做的运动可能是()
C
A.沿初速度方向做匀速运动
B.向下板方向偏移,做匀变速曲线运动
C.向上板方向偏移,轨迹为抛物线
D .向上板偏移,轨迹为一段圆弧
二、带电粒子在电场中的偏转
带电粒子以垂直匀强电场的场强方向射入电场,若不计粒子的重力,则做类似平抛运动。

l v 0d ++
++++------
-q
φv ⊥φy l /2
结论:做类平抛运动的物体任意时刻的速度的反向延长线一定通过此时水平位移的中点。

⎩⎨⎧⋅=⋅===⎪⎩⎪⎨⎧⋅=⋅===2
2122122100t t at y t
v x t t at V V V md qU m qE md qU m qE y x 带电粒子在电场中类似平抛运动规律1、速度:
2
、位移:
•3.如图所示,离子发生器发射出束质量为m ,电量为q 的离子,从静止经加速电压U 1加速后进入偏转电场。

已知平行板长为L ,两板间距离是d ,电压U2求离子离开偏转电场时的侧移距离和偏向角的正切值。

+-
+--
y 1
y 2y
4.如图3-2-10所示,质量为m,电量为e的电子,从A点以速度v0垂直场强方向射入匀强电场中,从B点射出电场时的速度方向与电场线成120度角,则A、B两点间的电势差是多少?
四、示波管的原理
有两个偏转电极XX’、YY’,经过着两个板偏转,就得到不同位置的亮点,两极板电压不断变化,就可以在屏上得到不同的图象。

l
1
五、带电体在电场中的运动
•【例1】如图所示,在方向竖直向上的匀强电场中,一绝缘轻细线一端固定于O点,另一端系一带正电的小球在竖直平面内恰好做匀速圆周运动。

小球的带电量为q,质量为m,
•求:匀强电场的场强是多大?
•【例2】如图所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O点,另一端系一带正电的小球在竖直平面内做圆周运动。

小球的带电量为q,质量为m,绝缘细线长为L,电场的场强为E,若带电小球恰好能通过最高点A,则在A点时小球的速率v1为多大?小球运动到最低点B时的速率v2为多大?运动到B点时细线对小球的拉力为多大?
例3.如图3-2-12所示,在水平向右的匀强电场中的A点,有一个质量为m,带电量为-q的油滴以速度v竖直向上运动.已知当油滴经过最高点B时,
速度大小也为v.求:场强E的大小及A、B两点间的电势差.
•是否分成三股,先考虑偏转距离y 如果y 不同分成三股
偏转角φ不同如果y相同
偏转角φ相同
不会分成三股
例题2:如图,两极板的长度为6cm,相距2cm,极板间的电压为200V。

一电子水平射入图示的电场中,射入时的初速度3×107m/s。

求电子射出电场时竖直偏移的距离和偏移的角度。

U d mv ql y 2022=U d mv ql v v y
200tan ==φ代入数值得y=0.36cm 电子离开电场时竖直方向的分速度:离开电场时的偏转角度为角度为 6.8度0v L md qU y at v •=
=解:电子在竖直方向做匀加速运动,加速度
a=F/m=qE/m=qU/md.
电子射出电场时竖直偏移的距离
y=at 2/2,其中t 为飞行时间,
电子在水平方向做匀速运动,由L=v 0t 可求得:
t=L/v 0,将a 和t 代入y=at 2/2中,得到
⎪⎩⎪⎨⎧==⎩⎨⎧==2
22100
gt y t
v x gt
V V V y x 带电粒子以垂直匀强电场的场强方向射入场,若不计粒子的重力,则做类似平抛运动。

⎪⎩⎪⎨⎧⋅=⋅===⎪⎩⎪⎨⎧⋅=⋅===2
2122122100t
t at y t v x t t at V V V md qU m qE md qU m qE y x 物体在重力场中平抛
运动规律
带电粒子在电场中类似平抛运动规律对比
带电粒子的偏转l v 0d
++++++-------
q φv v 0v ⊥φy l /2结论:
谢谢!。

相关文档
最新文档