材料显微结构分析方法(精)
清华大学.材料显微结构分析.05-织构分布函数微晶尺寸XRD测定
Whkl(=0)与W00l( ≠0) 关系的确定:
如有{HKL}面织构,令HKL为00l
[001]
∵ 任一(hkl)与(00l)存在唯一的夹角关系 [uvw]
则有:Ihkl(=0)可以反映 I00l( =, ≠0) ∵(hkl)∧(00l)=
(hkl) (00l)
设单位参考球
dA
平板试样可衍射的小面积dA
单晶体
X光管固定 N 探测器固定
入射X线 反射X线
试样
(hkl)
d
摇摆曲线中只有在横坐标
为零时,才会有衍射强度。
*如果忽略仪器线形导致的衍射线宽化,
摇摆曲线为一条垂直于横坐标的直线。
D
**如果考虑仪器线形导致的衍射线宽化,
摇摆曲线为一具有一定半峰宽D(仪器线形) 0
的(窄)衍射峰。
III. 实际(非理想)晶体的摇摆曲线
……(5)
为满足爱氏Байду номын сангаас图法原理
显然,倒易点 (hkl)*应该是具有 一定体积的倒易球。
倒易球和爱氏球面相交为一 弧面,衍射峰才能发生展宽。
k g
(hkl )
shkl
g hkl
k
*偏离量值 shkl 与衍射强度关系:
设:原子对 晶胞原点的向径 ri xa yb zc
……(6)
那么,晶胞中i原子的散射波 和入射 波的位相差:
2k ri 2 (g s) ri
……(7)
对每个晶胞,设 fi 为原子散射因子, 反射X射线
那么,一个晶胞的结构因子:
n
Fg fi exp[ 2i( g s ) ri ]
i 1
……(8)
反射X射线 i ri
材料科学中的显微分析技术
材料科学中的显微分析技术随着科技的不断进步和发展,材料科学领域也在不断地推陈出新,尤其是在显微分析技术方面,取得了巨大的成就。
显微分析技术是材料科学中一种非常重要的研究手段,主要通过观察样品的微观结构和性质来达到材料分析和研究的目的。
本文将重点介绍几种常用的显微分析技术。
一、扫描电子显微镜(SEM)扫描电子显微镜是一种非常常用的显微分析技术,它主要利用电子束照射样品后所产生的二次电子和反射电子来观察样品表面的形貌、结构和成分。
SEM 可以通过不同的电子能量、探针电流等参数来调节图像的分辨率和深度,因此对于材料表面形貌的观察和分析非常有帮助。
二、透射电子显微镜(TEM)与 SEM 不同的是,透射电子显微镜主要研究的是材料的内部结构和组成成分。
透射电子显微镜通过压缩电子波长并穿过材料薄层来观察材料的内部结构。
这种技术非常适合于研究各种微纳米结构,如晶体缺陷、嵌入物晶体、纳米线、薄膜等。
三、原子力显微镜(AFM)原子力显微镜是一种非接触式的显微分析技术,可以实现 nm 和单个原子的分辨率。
AFM 通过利用样品表面的力变化来计算样品表面的形貌,可以直接观察到材料表面的原子结构和表面化学性质。
AFM 技术在材料表面形貌、粗糙度以及纳米级表面摩擦等方面各有应用。
四、拉曼光谱分析拉曼光谱分析是一种非常常见的光谱分析技术,它通过利用激光束的激发下产生的被动散射光,来给出材料的振动信息,包括化合物的结构、作为表面成分的化合物、内部动态变化等。
拉曼光谱分析广泛用于材料、纳米材料及化学生物学领域,为研究物理、化学、生物等方面的问题提供了有效的工具。
五、X射线衍射分析(XRD)X射线衍射分析是一种分析材料内部结构的技术,主要应用于晶体结构分析、材料相变研究、材料显微结构分析等领域。
XRD 通过跟踪和分析样品探针的散射角度和强度,从而确定材料的具体晶格结构、原子排列和相互影响。
总结以上几种显微分析技术只是材料分析中常用的几种手段,还有许多其他的方法可以用于材料或材料组件的分析和研究。
实验4陶瓷材料的显微结构分析
主要设备:日立S-3000N扫描电镜、超声清洗仪 耗 材:Al2O3等多晶功能陶瓷材料、Au金靶、导电胶等
电子束与固体的相互作用
电子束
电子 电动势
阴极荧光 特征X-射线
二次电子 俄歇电子 背散射电子
样品
吸收 电流
透射电子
扫描电镜工作原理图
电子枪
高压电源
聚光镜 扫描线圈
透镜电源
M = As/Ac 由于扫描电子显微镜的荧光屏尺寸是固定不变的,电子束在样 品上扫描一个任意面积的矩形时,在阴极射线管上看到的扫描 图像大小都会和荧光屏尺寸相同。因此我们只要减少镜筒中电 子束的扫描幅度,就可以得到高的放大倍数,反之,若增加扫 描幅度们,则放大倍数就减小。90年代后期生产的高级扫描电 子显微镜放大倍数可以从数倍到80万倍左右。
思考题
(1) 扫描电镜使用时为何要抽真空? (2) 对于非金属样品,用扫描电镜观察前为何需在样品表面 喷镀一层金属?
金属材料断口SEM图
(a) 沿晶断裂
(b) 穿晶断裂
掺硼金刚石薄膜SEM图
LiCoO2和Al,Zr掺杂LiCoO2材料SEM图
(a) 未掺杂
(b) 掺杂
人体组织SEM图
(a) 味 蕾
实验四 陶瓷材料的显微结构分析
一.实验目的与内容
1显微镜基本构造和使用方法
二.实验基本原理
电子枪发射并经过聚焦的电子束在样品表面逐点扫描,激发样 品产生二次电子、背散射电子、透射电子、特征X射线、俄歇电 子等各种物理信号。这些信号经检测器接收、放大并转换成调制 信号,最后在荧光屏上显示反映样品表面各种特征图像。
聚光镜:共有三对,前两对为强磁透镜,起缩小电子束光斑用, 第三对为弱磁透镜,又称物镜,焦距较长。扫描电镜中电子束直 径越小,成像单元的尺寸越小,相应的分辨率就越高。
材料分析方法第九章其他显微分析方法简介
4
3、表面分析技术的发展
• 表面科学的发展:主要发展始于20世纪60年代, 它的两个最主要的条件是:
• —超高真空技术的发展; • —各种弱信号检测技术不断出现。 • 此外,需要电子及计算机技术的突破性进展。
• 与材料科学的联系:表面分析技术的发展与材料 科学的发展密切相关,它们相互促进。
5
19
二、X射线光电子能谱仪
20
1、 XPS谱仪的构成
• XPS谱仪的基本构成:真空系统、样品输运系统、X射线源、能 量分析系统、检测器和计算机操作系统。
• 满足X射线光电子能谱要求的靶主要是铝靶和镁靶。用15KeV的 电子轰击铝靶,其产生的特征X射线的能量为1486.6eV(线宽 0.85eV),镁靶的特征X射线的能量为1253.6eV(线宽0.70eV)。
• 若>' ,则:V , 此接触电势将使光电子向 谱仪入口的运动加速,使其动能从Ek增加到Ek ' Ek + = Ek ' + ' h= Eb+ Ek' + ' 于是, Eb = h -Ek' - '
式中: h为已知量; ‘在仪器中为定值(约4eV)。
• 通过测量出光电子的动能Ek' ,就能计算出Eb 。
• XPS 的有效探测深度,对于金属和金属氧化物是 0.5~2.5nm,对有机物和聚合材料一般是4~10nm, 通常用来作为表面分析的方法。
22
2、工作过程
• ①将经原子级表面清洁处理(如氩离子清洗)后的 样品置于能精单色的X射线激发样品产生一定动能的光 电子。
8
5、X射线光电子能谱的发现
• 在中对观硫察代到硫化酸学钠位移(Na效2S应2O。3)的研究 • 如图:XPS谱图中出现两个完全
常用金属材料的显微组织
03
钢铁材料的显微组织
钢的显微组织分类
铁素体
一种具有体心立方晶格 的相,在钢中通常作为
基体相。
奥氏体
一种具有面心立方晶格 的相,在钢的熔炼过程
中通常形成。
渗碳体
一种具有复杂晶格结构 的相,在钢中作为强化
相。
珠光体
由铁素体和渗碳体组成 的层状相,具有较好的
塑性和韧性。
钢材的显微组织特点
钢材的显微组织结构取决于其制造工艺,如熔炼、 轧制、热处理等。
马氏体
形状记忆合金中的马氏体是 一种有序的晶体结构,能够 通过加热或冷却实现形状的 变化。
奥氏体
形状记忆合金中的奥氏体是 一种无序的晶体结构,能够 通过加热或冷却实现形状的 恢复。
孪晶
形状记忆合金中的孪晶是一 种特殊的晶体结构,能够通 过温度变化实现形状的变化 和恢复。
06
金属材料显微组织的观察与分析方法
高温合金中的碳化物是一种硬质点,能够 提高材料的耐磨性和抗腐蚀性能。
精密合金的显微组织
特点 精密合金是一种具有优异物理、 化学和机械性能的金属材料,其 显微组织通常包括单相、双相、 多相等结构。
多相 精密合金中的多相组织由多种晶 体结构组成,如奥氏体、铁素体 和碳化物,能够提供优异的机械 性能和耐腐蚀性能。
铝及铝合金
纯铝具有轻巧和良好的导电性, 但强度较低。铝合金通过添加镁、 锰等元素来提高其强度和耐腐蚀
性。
钛及钛合金
钛是一种轻巧、高强度的金属, 具有良好的耐腐蚀性和生物相容 性。钛合金通过添加铝、钼等元 素来进一步提高其强度和耐腐蚀
性。
特殊金属材料
不锈钢
功能金属材料
不锈钢是一种具有高度耐腐蚀性和良 好机械性能的合金钢。常见的类型包 括奥氏体、马氏体和双相不锈钢。
第1章电子材料常用的微观分析方法
(3)俄歇电子成像
因某种原因使原子一个内层电子电离出 去,于是内层产生一个空位,(一个电子填 充此空位,同时发出X射线)也可以一个电 子填充此空位,同时另一个电子脱离原子发 射出去,这种无辐射现象称为俄歇 (Auger) 效应。
俄歇电子带有表面原子化学态的信息, 用俄歇电子成像不但可以观察表面的形貌, 而且特别适用作表面层成分分析,这种仪器 称为俄歇扫描电镜。
2 .通过测量衍射峰强度,可计算出原子在晶胞 中的位置。
3 .根据峰的宽度,可得出微晶的尺寸和点阵应
变的信息。
7
I/CPS
I / (CPS)
20
25
30
35
40
45
50
55 60 65 70 75 80
DyBa Cu Zn O
2
3-x
x
7-
x=0.30
x=0.20
x=0.10
x=0.05
x=0.00
12
根据入射电子能量的大小, 扫描电子显微镜(扫描电镜) 有三种电子成像:
1.背散射电子成像 2.二次电子成像 3.俄歇电子成像
13
(1) 背散射电子成像
经200~ 300keV 加速后的入射电子 束被样品中的原子核反弹回来的一 部分电子(卢瑟福散射), 从试样表面 0.1 ~ 1μm 深度内反射出来.可研究 样品内部的晶体学特性.
20
25
30
35
40
45 50 55
2/(o)
60
65
70
75
80
YBa Sr Cu O
x=0.18
2-x x 3 7-
x=0.12
《显微构造分析的工作与技术方法简介》课件
3、标本定向标记方法
(1)组构定向法(以岩组座标系统定向) 在野外露头上,先根据小构造确定不同组构轴的方位,标记在定向面上,并测定组构轴方位产状,再将标本敲下。
(2)地理定向法(以地理座标系统定向)
在定向面,先测量出该面产状,再将其走向线和真倾斜线标上,再将标本敲下。如果在上层面定向不方便,也可在下层面定向,但标记应有区别或注明。如该定向面产状很平缓接近水平,则只要在定向面上标上正北方位,再将标本敲下。
(一)区域构造背景分析 (2)另一方面,开展显微构造分析,还需要结合区域较大尺度上的构造特点,针对不同的目的采集不同构造部位的样品。 如开展褶皱机制的研究工作,需要在褶皱不同构造部位,如转折端、核部、翼部等部位采集相应的变形岩石样品位、具有不同特点的糜棱状岩石样品开展研究。
(3)综合定向法
这种方法是将地理定向法和组构定向法结合起来应用。即在野外先按照地理定向法定向,量出并记录下定向面的产状;再在定向面上将组构轴标上;并量出并记录下组构轴的产状。
a
b
4、采集定向标本的注意事项
(1)不要匆匆忙忙打标本,一定要先进行露头详细观察,研究各种地质现象、小构造特征及其相互关系,组构要素的产状等。 (2)要区分定向面是朝上还是朝下,并要用不同的标记方法标明,以免日后在室内恢复标本产状时出错。 (3)采标本时一定要记录采样点坐标位置、标图,标本编号、详细记录,必要时素描与照相。
sem扫描电镜,怎样分析材料结构
sem扫描电镜,怎样分析材料结构篇一:扫描电镜材料分析作用扫描电子显微镜在材料分析中的应用摘要:介绍了扫描电子显微镜的工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。
关键词:扫描电子;微镜;材料;应用;SEm’sapplicationinmaterialscienceabstract:Theprinciple,structureanddevelopmentoftheScanningElectronmic roscope(SEm)areintroducedinthisthesis.TheapplicationofSEminthefieldof materialscienceisdiscussed.Keywords:ScanningElectronmicroscope(SEm);material;application;前言:二十世纪60年代以来,出现了扫描电子显微镜(SEm)技术,这样使人类观察微小物质的能力发生质的飞跃。
依靠扫描电子显微镜的高分辨率、良好的景深和简易的操作方法,扫描电子显微镜(SEm)迅速成为一种不可缺少的工具,并且广泛应用于科学研究和工程实践中。
近年来,随着现代科学技术的不断发展,相继开发了环境扫描电子显微镜(ESEm)、扫描隧道显微镜(SEm)、原子力显微镜(aFm)等其它一些新的电子显微技术。
这些技术的出现,显示了电子显微技术近年)子枪);(3)提高真空度和检测系统的接收效率;(4)尽可能减小外界振动干扰。
目前,采用钨灯丝电子枪扫描电镜的分辨率最高可以达到 3.0nm;采用场发射电子枪扫描电镜的分辨率可达1nm。
到20世纪90年代中期,各厂家又相继采用计算机技术,实现了计算机控制和信息处理。
2.1场发射扫描电镜采用场发射电子枪代替普通钨灯丝电子枪,这项技术从1968年就已开始应用,这项技术大大提高了二次电子像分辨率。
近几年来,各厂家采用多级真空系统(机械泵+分子泵+离子泵),提高了真空度,真空度可达10~7Pa;同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。
材料组织结构的显微分析与表征
材料组织结构的显微分析与表征材料科学是研究材料性质与性能的一门学科,而材料的组织结构是决定其性质与性能的关键因素。
通过显微分析与表征技术,可以深入了解材料的内部结构与微观特征,为材料设计和工艺改进提供科学依据。
本文将介绍几种常见的显微分析与表征技术,以及它们在材料科学研究中的应用。
一、光学显微镜光学显微镜是最常用也是最基础的显微表征技术之一。
它利用可见光在材料表面反射或透射的原理,通过放大镜片来观察材料的形貌和结构。
光学显微镜适用于非金属材料的晶粒观察和颗粒大小测量,特别是对于透明材料和薄膜的研究有着重要的作用。
此外,光学显微镜还可以结合其他技术,如偏光显微镜和荧光显微镜,来研究材料的晶体结构和化学成分。
二、电子显微镜电子显微镜是一种利用电子束取代光束进行成像的显微表征技术。
相对于光学显微镜,电子显微镜具有更高的分辨率和放大倍数,可以观察到更细微的结构和更小的颗粒。
电子显微镜分为扫描电子显微镜(SEM)和透射电子显微镜(TEM),分别适用于表面形貌和内部结构的观察。
电子显微镜广泛应用于金属材料的析出相研究、纳米材料的形貌表征以及生物材料的细胞结构观察等领域。
三、X射线衍射X射线衍射是一种利用物质对X射线的散射来研究其结晶性质的技术。
通过测量材料对X射线的散射角度和强度,可以确定材料的晶胞参数和晶体结构。
X射线衍射广泛应用于金属、陶瓷和无机晶体材料的晶体学研究。
此外,X射线衍射还可以结合其他技术,如能谱分析和衍射成像,来研究材料的化学成分和表面形貌。
四、原子力显微镜原子力显微镜(AFM)是一种基于力的显微表征技术,可以在纳米尺度下观察材料的形貌和力学性质。
AFM利用微小的力探针扫描材料表面,通过检测力变化来绘制出材料的拓扑图像。
AFM适用于各种材料的表面形貌和力学性质的表征,对于纳米材料、生物材料和涂层材料的研究尤为重要。
综上所述,材料组织结构的显微分析与表征技术是材料科学研究中不可或缺的工具。
通过光学显微镜、电子显微镜、X射线衍射和原子力显微镜等技术,我们可以深入了解材料的内部结构和微观特征,为材料设计、工艺改进和性能优化提供科学依据。
《显微结构分析讲座》课件
X射线衍射分析技术
总结词
利用X射线照射样品,通过衍射现象分析样品的晶体结构和相组成
详细描述
X射线衍射分析技术是一种利用X射线照射样品,通过衍射现象分析样品的晶体结构和 相组成的方法。它广泛应用于材料科学、地质学和生物学等领域,用于研究材料的晶体 结构和相组成。通过X射线衍射分析技术,可以确定材料的晶体类型、晶格常数和相组
总结词
利用电子束扫描样品表面,通过电子信 号获取表面形貌和元素信息
VS
详细描述
扫描电子显微技术是一种利用电子束扫描 样品表面,通过电子信号获取表面形貌和 元素信息的方法。它广泛应用于材料科学 、生物学和环境科学等领域,用于观察材 料的表面形貌和微观结构。通过扫描电子 显微技术,可以观察到材料的表面粗糙度 、晶体取向和元素分布等特征。
显微结构分析将应用于医学诊断 中,提高疾病诊断的准确性和效 率。
THANKS
感谢观看
REPORTING
02
它通过观察物质在显微镜下的结 构特征,分析其组成、形态、排 列和相互关系等,以揭示物质性 质和行为。
显微结构分析的应用领域
生物学
研究细胞、组织的结构和功能 ,探究生物大分子的结构和相
互作用。
医学
诊断疾病、研究药物作用机制 和药物疗效评估。
材料科学
研究材料的晶体结构、相变、 界面结构和缺陷等。
环境科学
研究高分子材料的聚集态结构和相行为
详细描述
利用显微结构分析技术,可以观察高分子材 料的结晶度、取向、相分离等现象,了解其 聚集态结构和相行为,有助于优化高分子材
料的性能。
生物样品的显微结构分析
要点一
总结词
揭示生物组织的细微结构和功能特征
材料微观结构第七章材料中的第二相及其电子显微分析方法1
其次
第二相析出在基体中引起的应变状态,这是一个 和两相界面结合方式有关的问题。共格或部分共 格在基体中引起的应变场的性质和大小,以及它 们在电镜观察中表现的衬度效应和特征等,这些 都为电镜工作者所关注,并为此建立了定量和半 定量的分析方法。
还有
电镜下观察到的来自于第二相本身位向的取向 衬度以及来源于组成第二相物质原子性质的结 构因子衬度,也是电镜工作者所关心的。
7.3.1基体应变衬度
这种衬度来源于第二相和基 体的界面点阵共格,但匹配 界面的点阵常数略有差别, 存在一定错配度,如图7- 1(b)。这就势必在界面附近 的基体中造成应变场,即点 阵畸变。电子束经过此狭窄 畸变区时,波的相位发生改 变,从而显示出不同于远离 界面处的基体衬度,这就是 应变衬度。
7.3由第二相引起的衬度类型
合金中第二相的衬度由下述因素所决定: ❖ 它和母相基体的晶格匹配情况是共格、部分共
格或是完全不共格; ❖ 第二相的组成元素以及第二相的几何形状:圆
盘状、片状、球形还是针状。 这些不同情况在电子衍射谱和图像衬度上都会
反映出来。
第二相和基体界面匹配情况概括起来有共格、部分 共格和不共格三类。共格又分为共格无错配,如图(a); 共格但在某一界面上有错配,如图(b)。部分共格,如图 (c),上下界面是共格的,左右界面则不共格。完全不共 格,如图(d)。
界面由于相对于晶内是高能和比较不稳定 的状态,它是相变时析出第二相的最优先地点。 第二相在界面的形核率随界面自由能的升高而 增加。
例子
18-8型不锈钢中的M23C6碳化物,优先在α-铁素体/ 奥氏体界面析出,其次才是奥氏体晶界、非共格孪晶 界和共格孪晶界。
界面的晶体学取向对第二相的惯习取向有直接关系。 如果晶界平面正好或接近于析出相所要求的取向时, 第二相析出的几率将大为提高,而且将维持稳定的取 向关系。如果晶界一侧晶粒满足上述条件,而另一侧 不满足这种条件,则第二相往往形核于满足条件的一 侧,且保持共格或部分共格关系,并向不满足条件另 一侧不共格地长大。
陶瓷材料的显微结构
相组成:晶相、玻璃相、气相
晶形:每一种晶体在形成、长大的过程中,往往习 惯地、自发地按一定的规律生长和发育成一 定的几何形态。
这种习惯称为结晶习性。
自形晶:先结晶的晶体在较好的环境下生长,即在有利于按其 本身的结晶习性的环境中生长发育的,而形成晶形完整 的晶体。
• Al2O3含量↑,玻璃相↓。 • Al2O3含量↑,烧成温度↑。95%瓷→1600℃;
99%瓷→1700℃。
二次重结晶,导致局部晶粒 易于长大。
原料本身不均匀; 成型时的压力因素; 烧成温度偏高; 局部不均匀的液相存在。
异常显微结构,晶粒大小分 布显著不均匀。
与添加剂的选用与加入量不 当有关
2、ZrO2陶瓷
与应力诱导相变不 同,后者在相变开 始点周围应力变化 较大处产生,因此 成核相变可能是应 力诱导相变的先兆。
1、大孔径的孔隙 2、不纯原料 3、异常大晶粒 4、团聚 5、第二相夹杂物
二、高温缺陷
温度↑,陶瓷的强度↓ ➢高温破坏:广泛分布的显微结构 损伤的积累过程; ➢室温破坏:已经存在的裂纹的突 然破坏所致。
高温下损伤的形成与材料承受蠕变或蠕 变破坏的能力有关。 与高温强度有关的重要因素— 晶界相
I. 烧结助剂如MgO等与Si3N4中的SiO2杂质 反应形成硅酸盐液相;
③微裂纹增韧
材料制备过程中,由高温降至 低 温 时 , 一 些 晶 粒 的 t-ZrO2 自 发 地 相变到m-ZrO2,产生微裂纹,使材 料增韧。
(2)影响相变增韧的因素
①晶粒大小
I. ZrO2相变增韧材料中存在临界晶粒尺寸; II. 晶粒尺寸大于临界尺寸时,易于相变,冷却过程中,伴随相
材料显微结构分析之正反极图面织构测定
R.D
满足对称分布,可用1/8球面表示, 即 :0- /2
:0- /2
对Randon(完全无序)试样: 取单位球 r=1, 1/8球面上的极点密度:
N
R
1 R0 则: N I hkl 2 R0 I hkl 与、 无关
R
1 R0 4r 2 I hkl 8
实验步骤: 投影光源 ⅰ.初始XRD几何布置: 板面法线N 入射X线、探测器 X射线反射方向 依选定(hkl) 投影基面 R.D 按2d(hkl)Sin=固定 板面平分(T.D)1802, 轧向R.D=衍射仪轴,
衍射仪轴
T.D
X射线入射方向 ⅱ. 测量方法: 板以衍射仪轴为轴(即以R.D为轴) 转角; 板面以N为轴(轧向R.D绕N) 转角。
材料显微结构分析方法
§3 . 择优取向(织构)的测定方法
*利用物理性质的各向异性; **利用XRD, 因为择优取向的本质是晶粒 取向的定向排列。 通常采用衍射仪法,作极图。 一. 正极图 试样中所有晶粒的同一选定晶面(hkl) 的 晶面极点在空间分布的状态的极射(或极射 赤面)投影。
一. 正极图
R.D 衍射仪轴
反射X射线
c T.D
d
c`
d` 0 0 R.D
入射X射线
板面法线N
d c
t Phkl ( . )
T.D d` c`
极点投影
N
t Phkl ( . )
T.D
N
ⅲ. 测量步骤:联合透射与反射法 =0 改变(0º ~360º ,间隔5º ~10º ) = 5º 改变 吸收校正系数R(. ): ……
材料分析方法-22 其它显微分析方法
3、俄歇电子能谱仪(AES)
4、俄歇电子能谱分析(点分析和深度剖析)
Auger elemental survey of CVD aluminum deposited on microspheres
The depth distribution of O and Sn
5、俄歇电子能谱分析(面分析)
• l)拉曼散射谱线的波数虽然随入射光的波数而不同,但 对同一样品,同一拉曼谱线的位移与入射光的波长无关, 只和样品的振动、转动能级有关。
• 2)在以波数为变量的拉曼光谱图上,斯托克斯线和反斯 托克斯线对称地分布在瑞利散射线两侧,这是由于在上述 两种情况下,分别相应于得到或失去了一个振动量子的能 量。
2、X射线光电子能谱仪(XPS)
X射线电子能谱仪结构框图
主峰或特征峰:表征样品电子结合能的一系列光电子谱峰 伴峰:能谱图中的非光电子峰 化学位移:原子所处化学环境不同,内壳层电子结合能会发生 变化,导致谱峰位移,因此可以测定价态。
3、测量化学位移
4、X射线光电子能谱的定性分析与俄歇峰的利用
Cu的标准谱(X射线光电子谱主峰和化学 位移表) (a) Cu的标准谱(俄歇线) (b)
34
3、红外光谱仪
(1)棱镜和光栅光谱仪,属于色散型 (2)傅里叶变换红外光谱仪,它是非色散型的
35
2.2 激光拉曼光谱
瑞利散射,斯托克斯拉曼散射及反斯托克 斯拉曼散射的产生
当光穿过透明介质时,被分子散射的光发生频率 变化,这一现象称为拉曼散射。
36
1、激光拉曼光谱仪工作原理
37
2、拉曼散射光谱的特征:
第五篇 其他显微分析方法
第一章 能谱分析类
2
1.1 俄歇电子能谱(AES)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料显微结构分析方法
Analysis of Materials Microstucture
一.内容提纲:材料显微结构分析是材料科学中最为重要的研究方法之一。
准确、快捷的分析结果为材料的制备工艺、材料性能微结构表征研究及其材料显微结构设计提供可靠的实验和理论依据。
本课程主要介绍包括物显微结构形貌观察、物相种类确定及其定量分析、Rietveld拟合方法、择优取向类型及其测定、微晶及纳米粉体尺寸测定、体材料及其微区成分分析和定量测定等;同时侧重介绍进行上述显微结构分析通常所采用的各种现代仪器的主要功能特性及其分析方法,其中包括X射线衍射仪(XRD)、X光荧光分析仪(XRF)、电子探针(EPME)、波谱仪(WDS)、能谱仪(EDS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等,并且按排了相应的实验。
通过本课程的学习,使研究生了解材料科学研究工作者通常关注的主要显微结构分析内容;掌握各种常见分析仪器的功能和基本原理;学会根据不同显微结构分析内容,准确选择、利用各种分析方法和手段,并得出正确的判断。
培养学生分析、解决问题的能力。
二. 教学学时: 48
课堂教学 32 实验 16
三. 先修课程:
1.材料科学基础
2.X射线衍射技术
3.扫描电子显微镜
4. 透射电子显微镜
四. 教学对象:
适用于金属、陶瓷、有机、半导体、复合材料等学科研究生。
五. 教材:
主要教材:自编讲义
主要参考书:
1. 自编文献汇编
2. X光衍射技术基础,王英华主编,原子能出版社
3. Svanning Electron Microscopy and X-ray Microanalysis
六. 主要讲授内容:
1.物相定量分析
(1)定量分析基本原理
(2)参考强度法
(3)含玻璃相的K值法的定量相分析
(4)混样无标样定量相分析
(5)理论计算定量相分析
(6)具有择优取向试样的定量相分析
2.织构测定及其应用
(1)择优取向的种类、形成及其对性能的影响
(2) 择优取向的的测定方法
正极图
反极图
面织构的f因子表示及测定方法
分布函数
3. 微晶晶粒尺寸的测定
(1) 微晶晶粒尺寸测定基本原理
(2) 线形分析及测量
(3) 微晶尺寸效应和晶格畸变效应
4. X射线粉末衍射的Rietveld拟合方法
(1) Rietveld方法基本原理
(2) Rietveld方法中衍射峰的线形分析
(3) Rietveld分析中的校正
(4) Rietveld方法的晶体结构
(5) Rietveld方法的指标化和相分析4.电子束与物质的相互作用
(1) 物质对入射电子的散射
(2) 弹性散射截面
(3) 非弹性散射的能量损失
(4) 背散射电子
(5) 二次电子
5. 光化学分析
(1) 光化学分析原理
(2) WDS分光
(3) EDS分光
(4) X光荧光定量分析方法
6.电子探针微区定量分析
(1) 定量分析基础
(2) 原子吸收因子校正
(3) 吸收因子校正
(4) 荧光校正
(5) Z.A.F校正的循环逼近
7.SEM/EDS,WDS显微分析
(1) SEM结构原理
(2) 探测器
(3) 二次电子显微像
(4) 背散射电子像与吸收电子像8.TEM/EDS,WDS显微分析
(1) TEM结构原理
(2) TEM显微成像及衍射花样成像原理
(3) 散射衬度
(4) 衍衬像
(5) 电子衍射
二. 主要实验内容:
1.采用C值理论计算方法的陶瓷的物相定量分析;
2.材料的择优取向定量测定;
3.微晶尺寸的XRD测定;
4.材料断口形貌的SEM/EDS显微观测与分析;
5.材料的TEM电子衍射微区物相分析。
*各实验的系列使用即时而定。