苏州市2019届高三上期末考试数学试卷及答案(含附加题)

合集下载

苏教版2019届高三上学期期末考试数学(理)试题(答案解析)

苏教版2019届高三上学期期末考试数学(理)试题(答案解析)

2018-2019学年度高三上学期期末考试卷数学(理科)试题第I卷(选择题共60分)一、选择题(共12小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项符合题目要求。

)1.已知集合,,则()A. B. C. D.【答案】B【解析】,,选B2.复数(为虚数单位)的虚部是()A. B. C. D.【答案】D【解析】,所以虚部是,故选D。

3.当时,执行如图所示的程序框图,则输出的值为()A. 9B. 15C. 31D. 63【答案】C【解析】由程序框图可知,,,退出循环,输出的值为,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.等比数列的前项和为,且成等差数列,若,则()A. 15B. 16C. 18D. 20【答案】A【解析】设公比为,则等价于,故,所以,选A.5.若,且,则()A. B. C. D.【答案】A【解析】∵,∴,∴.选A.6.设,分别是正方形的边,上的点,且,,如果(,为实数),则的值为().A. B. C. D.【答案】C【解析】如图所示,∴,.∴.故选.7.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为()A. B. 61 C. 62 D. 73【答案】C【解析】由三视图画出几何体如图所示,上、下底面分别为边长是1、4的正方形;前、后两个侧面是上底为1,下底为4,高为4的梯形;左、右两个侧面是上底为1,下底为4,高为5的梯形.其表面积为.选C.8.设不等式组表示的平面区域为,若直线上存在内的点,则实数的取值范围是()A. B.C. D.【答案】A【解析】满足不等式组的可行域如图所示∵阴影部分满足不等式组的平面区域,联立解得∴点联立解得∴点∵直线恒过点∴∵观察图像可知,当直线在和之间时,才会存在内的点∴故选A点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.9.已知,为的导函数,则的图像是()A. B. C. D.【答案】A【解析】,为奇函数,图象关于原点对称,排除,又,可排除,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.已知函数,若存在四个互不相等的实数根,则实数的取值范围为()A. B. C. D.【答案】D【解析】令,则,由题意,有两个不同的解,有两个不相等的实根,由图可知,得或,所以和各有两个解。

2019年江苏省苏州市第四中学高三数学文上学期期末试题含解析

2019年江苏省苏州市第四中学高三数学文上学期期末试题含解析

2019年江苏省苏州市第四中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 一个几何体的三视图如图所示,则该几何体的外接球的体积为()A.B.C.D.参考答案:B【考点】球的体积和表面积;简单空间图形的三视图.【专题】综合题;转化思想;综合法;立体几何.【分析】三视图复原的几何体是长方体的一个角,扩展为长方体,它的外接球的直径就是长方体的对角线的长,求出对角线长,即可求出外接球的体积.【解答】解:三视图复原的几何体是长方体的一个角;把它扩展为长方体,则长、宽、高分别为1,2,2,则它的外接球的直径就是长方体的对角线的长,所以长方体的对角线长为: =3,所以球的半径为:R=cm.这个几何体的外接球的体积是:πR3=π.故选:B.【点评】本题是基础题,考查几何体的外接球的问题,空间想象能力,逻辑思维能力,和计算能力,注意本题中三棱锥的外接球与长方体的外接球是同一个球.2. 若,是第三象限的角,则=A. B. C. D.-2参考答案:D略3. 已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为()A. B. C. D.参考答案:D4. 已知定义在R上的函数满足,且函数在(-∞,0)上是减函数,若,,,则a,b,c的大小关系为()A. B. C. D.参考答案:B【分析】利用函数奇偶性和单调性可得,距离y轴近的点,对应的函数值较小,可得选项.【详解】因为函数满足,且函数在上是减函数,所以可知距离y轴近的点,对应的函数值较小;,且,所以,故选B.【点睛】本题主要考查函数性质的综合应用,侧重考查数学抽象和直观想象的核心素养.5. 已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O 地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是().1﹣B1﹣.参考答案:A6. 若某空间几何体的三视图如图所示,则该几何体的体积是()A. B. C.1 D.2参考答案:C解:由所给三视图知,对应的几何体为一倒放的直三棱柱(如下图所示),其高为,底面满足:.故该几何体的体积为.故选.7. 已知为偶函数,当时,,则满足的实数a 的个数为()A. 8B. 6C. 4D. 2参考答案:A【分析】根据偶函数作出函数的图象,结合图象及可以求解.【详解】因为为偶函数,所以图象关于y轴对称,如图,设,则结合图象由可知有4个不同的解,不妨设为,结合图象可知,此时,有两个解;同理,此时,有两个解;,此时,有四个解;,此时,无解;综上可得实数的个数为8,故选A.【点睛】本题主要考查函数的性质,数学结合是求解的捷径,侧重考查数学抽象,直观想象的核心素养.8. 在平面直角坐标系中,A,B点是以原点O为圆心的单位圆上的动点,则的最大值是A、4B、3C、2D、1参考答案:B9. 如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|+|的取值范围为()A.[,5] B.[,4] C.[,] D.[,4]参考答案:B【考点】平面向量数量积的运算.【分析】建立平面直角坐标系,设P(x,y),用x,y表示出||,利用两点间的距离公式转化为P点到M(﹣1,0)点的距离.【解答】解:以O为原点建立空间直角坐标系,如图所示:则C(0,1),A(1,0),D(3,0),设P(x,y),则=(x+1,y),∴||=,设M(﹣1,0),则||=|MP|,由图可知当P与C重合时|MP|取得最小值,当P与D重合时,|MP|取得最大值4,∴|+|的取值范围是[,4].故选B.10. (5分)(2015?哈尔滨校级二模)2015年开春之际,六中食堂的伙食在百升老师的带领下进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食.每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为()A. 96 B. 120 C. 132 D. 240参考答案:C【考点】:计数原理的应用.【专题】:应用题;排列组合.【分析】:分类讨论:甲选花卷,则有2人选同一种主食,剩下2人选其余主食;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果.解:分类讨论:甲选花卷,则有2人选同一种主食,方法为=18,剩下2人选其余主食,方法为=2,共有方法18×2=36种;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3=6;若没有人选甲选的主食,方法为=6,共有4×2×(6+6)=96种,故共有36+96=132种,故选:C.【点评】:本题考查排列组合的实际应用,本题解题的关键是分类讨论.二、填空题:本大题共7小题,每小题4分,共28分11. 若满足约束条件,且,则z的最大值为.参考答案:7由题,画出可行域为如图区域,,当在处时,.12. 已知,,与的夹角为,与的夹角为锐角,求的取值范围________参考答案:且试题分析:,由于与的夹角为锐角,因此且,与不共线同向,,解得,当与共线时,,即,,得,由于不共线,所以的取值范围且考点:向量夹角的应用.13. 已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的焦距与长轴的比值为参考答案:14. 在平面直角坐标系中,设不等式组所表示的平面区域是,从区域中随机取点,则的概率是 .参考答案:试题分析:作出可行域如图所示:不等式组所表示的平面区域是图中正方形,则正方形的面积是.从区域中随机取点,使,则点落在图中阴影部分.在中,,,所以阴影部分的面积是,故所求的概率是.考点:1、线性规划;2、几何概型.15. 执行如图所示的程序框图,若输入的x值为4,则输出的y值为.参考答案:2【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是计算并输出y=的值,根据x的取值即可得解.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出y=的值,由于x=4>1,可得:y=log24=2,则输出的y值为2.故答案为:2.16. 已知12cosθ﹣5sinθ=Acos(θ+φ)(A>0),则tanφ=.参考答案:【考点】三角函数的化简求值.【分析】利用辅助角和两角和与差的余弦函数对已知函数式进行变形,求得sinφ、cosφ的值.然后根据同角三角函数关系进行解答.【解答】解:∵12cosθ﹣5sinθ=13(cosθ﹣sinθ)=13(cosφcosθ﹣sinφsinθ)=Acos(θ+φ)(A>0),∴cosφ=,sinφ=,∴tanφ===.故答案是:.17. 已知向量满足、之间的夹角为,则= ▲。

(word完整版)江苏省苏州市2019届高三第一学期期末考试数学试卷

(word完整版)江苏省苏州市2019届高三第一学期期末考试数学试卷

苏州市2018-2019学年第一学期学业质量阳光指标调研卷高三数学2019.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........▲ .1.已知集合{1,2,3}A=,{3,4}B=,则集合A B=I▲ .2.复数12iiz+=(i )为虚数单位的虚部是▲ .3.某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60:80分的学生人数是▲ .4.连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为▲ .5.已知3sin()cosαπα-=,则tan()πα-的值是▲ .6.如图所示的流程图中,若输入的,a b分别为4,3,则输出n的值为▲ .7.在平面直角坐标系xOy中,中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(3,1)-,则该双曲线的离心率为▲ .注意事项学生在答题前请认真阅读本注意事项及各题答题要求1. 本调研卷共4页,包含填空题(第1题-第14题)、解答题(第15题-第20题).本调研卷满分160分,答题时间为120分钟.答题结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.8.曲线2e xy x =+在0x =处的切线与两坐标轴围成的三角形面积为 ▲ .9.如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为 ▲ .10.在平面直角坐标系xOy 中,过点(1,3)A ,(4,6)B ,且圆心在直线210x y --=上的圆的标准方程为 ▲ .11.设n S 是等比数列{}n a 的前n 项和,若51013S S =,则52010+S S S = ▲ . 12.设函数22,0()2,0x x x f x x x ⎧-+≥=⎨-<⎩若方程()3f x kx -=有三个相异的实根,则实数k 的取值范围是 ▲ .13.如图,在边长为2的正方形ABCD 中,,M N 分别是边,BC CD 上的两个动点,且BM DN MN +=,则AM AN u u u u r u u u rg 的最小值是 ▲ .14.设函数22()||,f x ax x=-若对任意1(,0)x ∈-∞,总存在2[2,)x ∈+∞,使得21()()f x f x ≤,则实数a 的取值范围 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)如图,在直三棱柱111ABC A B C -中,已知AB BC ⊥,,E F 分别是11A C ,BC 的中点 (1) 求证:平面ABE ⊥平面11B BCC ; (2) 求证:1//C F 平面ABE .▲ ▲ ▲16.(本题满分14分)在△ABC 中,角,,A B C 所对的边为,,a b c ,已知2cos 23b A c a =-. (1) 求B(2) 设函数3()cos sin()3f x x x π=+g,求()f A 的最大值 ▲ ▲ ▲如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6 (1) 求椭圆E 的标准方程; (2) 过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.▲ ▲ ▲18.(本题满分16分)如图,长途车站P 与地铁站O 的距离为5千米,从地铁站O 出发有两条道路12,l l ,经测量,12,l l 的夹角为45o,OP 与1l 的夹角θ满足1tan 2θ=(其中02πθ<<),现要经过P修一条直路分别与道路12,l l 交汇于,A B 两点,并在,A B 处设立公共自行车停放点. (1) 已知修建道路,PA PB 的单位造价分别为2/m 元千米和/m 元千米,若两段道路的总造价相等,求此时点,A B 之间的距离;(2) 考虑环境因素,需要对,OA OB 段道路进行翻修,,OA OB 段的翻修单价分别为/n 元千米和22/n 元千米,要使两段道路的翻修总价最少,试确定,A B 点的位置.▲ ▲ ▲已知函数32()4(,R)f x ax bx a a b =+-∈ (1) 当1a b ==时,求()f x 的单调增区间;(2) 当0a ≠,若函数()f x 恰有两个不同零点,求ba的值; (3) 当0a =时,若()ln f x x <的解集为(,)m n ,且(,)m n 中有且仅有一个整数,求实数b 的取值范围.▲ ▲ ▲20.(本题满分16分)定义:对任意*N n ∈,21n n n x x x +++-仍为数列{}n a 中的项,则称数列{}n x 为“回归数列”.(1) 已知*2(N n n a n =∈),判断{}n a 是否为“回归数列”,并说明理由;(2) 若数列{}n b 为“回归数列”,393,9b b ==,且对于任意*N n ∈,均有1n n b b +<成立① 求数列{}n b 的通项公式② 求所有的正整数,s t ,使得等式2123131s s t ss b b b ++-=+-成立 ▲ ▲ ▲苏州市2018-2019学年第一学期学业质量阳光指标调研卷数学Ⅱ(附加题)2019.121.【选做题】本题包括A ,B ,C 三小题,请选定其中两题,并在相应的答题区域.................内作答...,若多做题,则按作答的前两题评分,解答时应写出文字说明,证明过程或演算步骤 A.选修4-2,矩阵与变换(本小题满分10分)已知矩阵723m M ⎡⎤=⎢⎥⎣⎦的逆矩阵172n M m --⎡⎤=⎢⎥-⎣⎦,求实数,m nB.选修4-4,坐标系与参数方程(本小题满分10分)在极坐标系中,圆C 的方程是=4cos ρθ,在以极点为原点,极轴为x 轴正半轴的平面直角坐标系中,直线l的参数方程为22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数),若直线l 与圆C 相切,求实数m 的值.C.选修4-5,不等式选讲(本小题满分10分) 设,,a b c 都是正数,求证:2221()2a b c a b c b c c a a b ++≥+++++【必做题】第22题,第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)已知正四棱锥S ABCD -的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围城的三角形面积为ζ. (1) 求概率(2)P ζ=; (2) 求ζ的分布列和数学期望.23. (本小题满分10分)如图,四棱锥P ABCD -中,已知底面ABCD 是边长为1的正方形,侧面PAD ⊥平面ABCD ,PA PD =,PA 与平面PBC 所成角的正弦值为217(1) 求侧棱PA 的长;(2) 设E 为AB 中点,若PA AB ≥,求二面角B PC E --的余弦值.。

江苏省苏州市2019届高三上学期期末学业质量阳光指标调研数学试题(解析版)

江苏省苏州市2019届高三上学期期末学业质量阳光指标调研数学试题(解析版)

苏州市2019届高三上学期期末学业质量阳光指标调研卷数学2019.1一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.已知集合A ={1,3,5},B ={3,4},则集合A B = .答案:{3}考点:集合的运算。

解析:取集合A 、B 的公共部分即可,所以,A B ={3}2.复数12iiz +=(i 是虚数单位)的虚部是 . 答案:-1考点:复数的运算,复数的概念。

解析:212i (12)2i i iz i i ++===-,所以,虚部为-1。

3.某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60~80分的学生人数是 .答案:25考点:频率分布直方图。

解析:成绩在60~80分的频率为:1-(0.1-0.3-0.1)=0.5, 成绩在60~80分的学生人数为:50×0.5=25。

4.连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为 . 答案:536考点:古典概型。

解析:连续抛掷一颗骰子2次,共有36种可能,点数之和为8的有(2,6),(3,5),(4,4),(5,3),(6,2)所以,所求概率为:P =5365.已知3sin()cos απα-=,则tan()πα-的值是 . 答案:13考点:三角函数的诱导公式。

解析:3sin()cos απα-=化为3sin cos 21αα-=(世纪网),得:1tan 3α=-, tan()πα-=tan α-=136.如图所示的流程图中,若输入的a ,b 分别为4,3,则输出的n 的值为 .答案:3考点:程序框图。

解析:第1步:a =6,b =6,n =2;第2步:a =9,b =12,n =3,退出循环,所以,n =3 7.在平面直角坐标系xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点 (﹣3,1),则该双曲线的离心率为 . 答案10考点:双曲线的性质。

【2019江苏期末】江苏省苏州市2019届高三上学期期末考试 数学

【2019江苏期末】江苏省苏州市2019届高三上学期期末考试 数学

2019届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2019.1一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,3,5},B ={3,4},则集合A ∩B = W.2. 复数z =1+2i i(i 为虚数单位)的虚部是 W. 3. 某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60~80分的学生人数是 W.4. 连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为 W.5. 已知3sin(α-π)=cos α,则tan(π-α)的值是 W.6. 如图所示的流程图中,若输入的a ,b 分别为4,3,则输出n 的值为 W.7. 在平面直角坐标系xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点(-3,1),则该双曲线的离心率为 W.8. 曲线y =x +2e x 在x =0处的切线与两坐标轴围成的三角形面积为 W.9. 如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为 W.10. 在平面直角坐标系xOy 中,过点A (1,3),B (4,6),且圆心在直线x -2y -1=0上的圆的标准方程为 W.11. 设S n 是等比数列{a n }的前n 项和,若S 5S 10=13,则S 5S 20+S 10= W. 12. 设函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,-2x ,x <0,若方程f (x )-kx =3有三个相异的实根,则实数k 的取值范围是 W.13. 如图,在边长为2的正方形ABCD 中,M ,N 分别是边BC ,CD 上的两个动点,且BM +DN=MN ,则AM →·AN →的最小值是 W.14. 设函数f (x )=⎪⎪⎪⎪2x -ax 2,若对任意x 1∈(-∞,0),总存在x 2∈[2,+∞),使得f (x 2)≤f (x 1),则实数a 的取值范围是 W.二、解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,已知AB ⊥BC ,E ,F 分别是A 1C 1,BC 的中点.求证:(1) 平面ABE ⊥平面B 1BCC 1;(2) C 1F ∥平面ABE .。

(完整)江苏省苏州市2019届高三第一学期期末考试数学试卷

(完整)江苏省苏州市2019届高三第一学期期末考试数学试卷

苏州市2018-2019学年第一学期学业质量阳光指标调研卷高三数学2019.1一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.........▲ .1.已知集合{1,2,3}A=,{3,4}B=,则集合A B=I▲ .2.复数12iiz+=(i )为虚数单位的虚部是▲ .3.某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60:80分的学生人数是▲ .4.连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为▲ .5.已知3sin()cosαπα-=,则tan()πα-的值是▲ .6.如图所示的流程图中,若输入的,a b分别为4,3,则输出n的值为▲ .7.在平面直角坐标系xOy中,中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(3,1)-,则该双曲线的离心率为▲ .注意事项学生在答题前请认真阅读本注意事项及各题答题要求1. 本调研卷共4页,包含填空题(第1题-第14题)、解答题(第15题-第20题).本调研卷满分160分,答题时间为120分钟.答题结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.8.曲线2e xy x =+在0x =处的切线与两坐标轴围成的三角形面积为 ▲ .9.如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为 ▲ .10.在平面直角坐标系xOy 中,过点(1,3)A ,(4,6)B ,且圆心在直线210x y --=上的圆的标准方程为 ▲ .11.设n S 是等比数列{}n a 的前n 项和,若51013S S =,则52010+S S S = ▲ . 12.设函数22,0()2,0x x x f x x x ⎧-+≥=⎨-<⎩若方程()3f x kx -=有三个相异的实根,则实数k 的取值范围是 ▲ .13.如图,在边长为2的正方形ABCD 中,,M N 分别是边,BC CD 上的两个动点,且BM DN MN +=,则AM AN u u u u r u u u rg 的最小值是 ▲ .14.设函数22()||,f x ax x=-若对任意1(,0)x ∈-∞,总存在2[2,)x ∈+∞,使得21()()f x f x ≤,则实数a 的取值范围 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)如图,在直三棱柱111ABC A B C -中,已知AB BC ⊥,,E F 分别是11A C ,BC 的中点 (1) 求证:平面ABE ⊥平面11B BCC ; (2) 求证:1//C F 平面ABE .▲ ▲ ▲16.(本题满分14分)在△ABC 中,角,,A B C 所对的边为,,a b c ,已知2cos 23b A c a =-. (1) 求B(2) 设函数3()cos sin()3f x x x π=+g,求()f A 的最大值 ▲ ▲ ▲如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6 (1) 求椭圆E 的标准方程; (2) 过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.▲ ▲ ▲18.(本题满分16分)如图,长途车站P 与地铁站O 的距离为5千米,从地铁站O 出发有两条道路12,l l ,经测量,12,l l 的夹角为45o,OP 与1l 的夹角θ满足1tan 2θ=(其中02πθ<<),现要经过P修一条直路分别与道路12,l l 交汇于,A B 两点,并在,A B 处设立公共自行车停放点. (1) 已知修建道路,PA PB 的单位造价分别为2/m 元千米和/m 元千米,若两段道路的总造价相等,求此时点,A B 之间的距离;(2) 考虑环境因素,需要对,OA OB 段道路进行翻修,,OA OB 段的翻修单价分别为/n 元千米和22/n 元千米,要使两段道路的翻修总价最少,试确定,A B 点的位置.▲ ▲ ▲已知函数32()4(,R)f x ax bx a a b =+-∈ (1) 当1a b ==时,求()f x 的单调增区间;(2) 当0a ≠,若函数()f x 恰有两个不同零点,求ba的值; (3) 当0a =时,若()ln f x x <的解集为(,)m n ,且(,)m n 中有且仅有一个整数,求实数b 的取值范围.▲ ▲ ▲20.(本题满分16分)定义:对任意*N n ∈,21n n n x x x +++-仍为数列{}n a 中的项,则称数列{}n x 为“回归数列”.(1) 已知*2(N n n a n =∈),判断{}n a 是否为“回归数列”,并说明理由;(2) 若数列{}n b 为“回归数列”,393,9b b ==,且对于任意*N n ∈,均有1n n b b +<成立① 求数列{}n b 的通项公式② 求所有的正整数,s t ,使得等式2123131s s t ss b b b ++-=+-成立 ▲ ▲ ▲苏州市2018-2019学年第一学期学业质量阳光指标调研卷数学Ⅱ(附加题)2019.121.【选做题】本题包括A ,B ,C 三小题,请选定其中两题,并在相应的答题区域.................内作答...,若多做题,则按作答的前两题评分,解答时应写出文字说明,证明过程或演算步骤 A.选修4-2,矩阵与变换(本小题满分10分)已知矩阵723m M ⎡⎤=⎢⎥⎣⎦的逆矩阵172n M m --⎡⎤=⎢⎥-⎣⎦,求实数,m nB.选修4-4,坐标系与参数方程(本小题满分10分)在极坐标系中,圆C 的方程是=4cos ρθ,在以极点为原点,极轴为x 轴正半轴的平面直角坐标系中,直线l的参数方程为22x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数),若直线l 与圆C 相切,求实数m 的值.C.选修4-5,不等式选讲(本小题满分10分) 设,,a b c 都是正数,求证:2221()2a b c a b c b c c a a b ++≥+++++【必做题】第22题,第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)已知正四棱锥S ABCD -的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围城的三角形面积为ζ. (1) 求概率(2)P ζ=; (2) 求ζ的分布列和数学期望.23. (本小题满分10分)如图,四棱锥P ABCD -中,已知底面ABCD 是边长为1的正方形,侧面PAD ⊥平面ABCD ,PA PD =,PA 与平面PBC 所成角的正弦值为217(1) 求侧棱PA 的长;(2) 设E 为AB 中点,若PA AB ≥,求二面角B PC E --的余弦值.。

江苏省苏州市2019届高三最后一卷高三数学练习卷 及答案含附加题

江苏省苏州市2019届高三最后一卷高三数学练习卷 及答案含附加题

高三数学练习卷一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1. 己知集合则= ▲ .2. 设i是虚数单位,复数的模为1,则正数a的值为▲ .3. 为了解某团战士的体重情况,采用随机抽样的方法,将样本体重数据整理后,画出了如图所示的频率分布直方图,己知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为▲ .4. 执行如图所示的程序框图,输出的k的值为▲ .5. 设记“以(x,y)为坐标的点落在不等式所表示的平面区域内”为事件A,则事件A发生的概率为▲ .6.已知△ABC的三边a,b,c所对的角分别为A,B,C,若a>b且则A= ▲ .7. 已知等比数列满足且则▲.8. 己知函数若则实数a的值是▲ .9. 如图,在一个圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则此圆柱底面的半径是▲ cm.10.在平面直角坐标系中,己知点A,F分别为椭圆的右顶点和右焦点,过坐标原点O的直线交椭圆C于P,Q两点,线段AP的中点为M,若Q,F,M三点共线,则椭圆C的离心率为▲ .11. 设函数若且则的取值范围是▲ .12.已知圆上存在两点A,B,P为直线x=5上的一个动点,且满足AP⊥BP,则点P的纵坐标取值范围是▲ .13. 如图,已知P是半径为2,圆心角为的一段圆弧AB上一点,则的最小值为▲ .14. 己知实数a,b,c满足(e为自然对数的底数),则的最小值是▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)己知向量(1)若a∥b,求的值;(2)若求的值.16.(本小题满分14分)如图,四棱锥P-ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB= PD,P A⊥PC,CD⊥PC,O、M分别是BD,PC的中点,连结OM.求证:(1) OM∥平面P AD;(2) OM⊥平面PCD.己知椭圆的左、右焦点分别为离心率为,P 是椭圆C上的一个动点,且面积的最大值为(1)求椭圆C的方程;(2)设斜率不为零的直线与椭圆C的另一个交点为Q,且PQ的垂直平分线交y轴于点求直线PQ的斜率.18.(本小题满分16分)如图为一块边长为2km的等边三角形地块ABC,为响应国家号召,现对这块地进行绿化改造,计划从BC的中点D出发引出两条成60°角的线段DE和DF,与AB和AC围成四边形区域AEDF,在该区域内种上草坪,其余区域修建成停车场,设∠(1)当时,求绿化面积;(2)试求地块的绿化面积的取值范围.数列的前n项和记为,且数列是公比为q的等比数列,它的前n项和记为若且存在不小于3的正整数k,m,使(1)若求(2)证明:数列为等差数列;(3)若是否存在整数m,k,使若存在,求出m,k的值;若不存在,说明理由.20.(本小题满分16分)若函数和同时在x=t处取得极小值,则称和为一对“P(t)函数”.(1)试判断与是否是一对“P(1)函数”;(2)若与是一对“P(t)函数”.①求a和t的值;②若a<0,若对于任意∞恒有求实数m的取值范围.高三数学练习卷附加题21. 【选做题】本题包括A,B,C三小题,请选定其中两小题作答,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A选修4-2:矩阵与变换变换是逆时针旋转的旋转变换,对应的变换矩阵是变换对应用的变换矩阵是求曲线的图象依次在变换的作用下所得曲线的方程.B.选修4-4:极坐标与参数方程在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为设点P是曲线上的动点,求P到直线l距离的最大值.C.选修4-5:不等式选讲已知函数若存在实数x,使不等式成立,求实数m的最小值,【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在四棱锥中∠△P AD为正三角形,且平面PAD⊥平面ABCD.(1)求二面角P-EC-D的余弦值;(2)线段PC上是否存在一点M,使得异面直线DM和PE所成的角的余弦值为?若存在,指出点M的位置;若不存在,请说明理由.23.(本小题满分10分)已知非空集合M满足M N*若存在非负整数使得当时,均有则称集合M具有性质P,记具有性质P的集合M的个数为(1)求的值;(2)求的表达式.。

江苏省苏州市2019届高三上学期期末考试数学Word版含答案

江苏省苏州市2019届高三上学期期末考试数学Word版含答案

2019.12019届高三模拟考试试卷(满分160分,考试时间120分钟)一、 填空题:本大题共 14小题,每小题5分,共70分.1. 已知集合 A = {1 , 3, 5}, B = {3 , 4},则集合 A A B = ____________ W .1+ 2i2. 复数z = —(i 为虚数单位)的虚部是 _________ W .3. 某班级50名学生某次数学考试成绩 (单位:分)的频率分布直方图如图所示, 则成绩在60〜80分的学生人数是 4. 5. 6. W .连续抛掷一颗骰子 2次,已知 3sin ( a — n )= COS a ,贝y tan (n — a 的值是如图所示的流程图中,若输入的 a , b 分别为4, 3,则输出n 的值为7•在平面直角坐标系 xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点 (—3, 1),则该双曲线的离心率为W .8.曲线y = x + 2e x 在x = 0处的切线与两坐标轴围成的三角形面积为 _____________ W .9•如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为W.10. 在平面直角坐标系xOy中,过点A(1, 3), B(4, 6),且圆心在直线x—2y—1 = 0上的圆的标准方程为 ____________ W.11. 设S n是等比数列{a n}的前n项和,若S5 =3,则S0S5S0=_____________W•9—x + 2x, x> 0,12. 设函数f(x)=弋若方程f(x) —kx= 3有三个相异的实根,则实数k的—2x, x<0,取值范围是W.BM + DN = MN,则AM • AN的最小值是______ W.214. 设函数f(x) = -― ax2,若对任意冯€ ( —a, 0),总存在[2 ,+^ ),使得f^)xw f(X1),则实数a的取值范围是_________ W .二、解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在直三棱柱ABCA1BQ1中,已知AB丄BC, E, F分别是A1C1, BC的中点.求证:(1) 平面ABE丄平面B1BCC1;(2) C1F //平面ABE.13.如图,在边长为2的正方形BC, CD上的两个动点,且16. (本小题满分14分)在厶ABC中,角A, B, C所对的边为a, b, c,已知2bccos A= 2c—3a.⑴求角B的大小;(2)设函数f(x) = cos x • sin(x+~3 —"J3),求f(A)的最大值.17. (本小题满分14分)1如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为-的椭圆E的左顶点为A,点A到右准线的距离为 6.(1) 求椭圆E的标准方程;3(2) 过点A且斜率为纟的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆E于点M,求点M的坐标.如图,长途车站P与地铁站0的距离为•亏千米,从地铁站0出发有两条道路丨1, 12,1 n经测量,11, 12的夹角为45°, 0P与11的夹角B满足tan 0 =寸(其中0<肚三),现要经过P修一条直路分别与道路11, 12交汇于A, B两点,并在A, B处设立公共自行车停放点•(1)已知修建道路PA, PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A, B之间的距离;(2)考虑环境因素,需要对0A, 0B段道路进行翻修,OA, 0B段的翻修单价分别为元/千米和2 ,2n元/千米,要使两段道路的翻修总价最少,试确定A, B点的位置•已知函数f(x) = ax3+ bx2—4a(a, b€ R).⑴当a= b = 1时,求f(x)的单调增区间;b(2) 当0时,若函数f(x)恰有两个不同的零点,求;的值;a(3) 当a= 0时,若f(x)<ln x的解集为(m, n),且(m, n)中有且仅有一个整数,求实数b 的取值范围•定义:对于任意n € N * ,X n+ X n+2 - X n +1仍为数列{x n}中的项,则称数列{X n}为“回归数列” (1)已知a n= 2n(n€ N*),判断数列{a n}是否为“回归数列”,并说明理由;⑵若数列{b n}为“回归数列”,b3= 3, b g= 9,且对于任意n€ N,均有b n<b n+1成立•①求数列{b n}的通项公式;b S+ 3s+1- 1②求所有的正整数s, t,使得等式b:2+ 3s_ [ = b t成立•2019届高三模拟考试试卷(四)数学附加题(满分40分,考试时间30分钟)21. 【选做题】在A , B, C三小题中只能选做2题,每小题10分,共20分•若多做, 则按作答的前两题计分•解答时应写出必要的文字说明、证明过程或演算步骤A. (选修42 :矩阵与变换)7 m 7 1" n —7]已知矩阵M = 的逆矩阵M —1= ,求实数m, n的值..23」」一2 mB. (选修44:坐标系与参数方程)在极坐标系中,圆C的方程是尸4cos B .在以极点为原点,极轴为x轴正半轴的平面直「返x=-^t + m,角坐标系中,直线I的参数方程是< 厂(t为参数).若直线I与圆C相切,求实数l y曹的值.C. (选修45:不等式选讲)设a, b, c都是正数,求证:bT-+ 匸+ *》詁 + b + c).b +c c+ a a+ b 2' '【必做题】第22, 23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤•22. 已知正四棱锥SABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为E⑴求概率P(E= 2);(2)求E的分布列和数学期望.23. 如图,在四棱锥PABCD中,已知底面ABCD是边长为1的正方形,侧面PAD丄平21面ABCD , PA = AD , PA与平面PBC所成角的正弦值为⑴求侧棱PA的长;设点E为AB中点,若PA> AB,求二面角BPCE的余弦值.2019届高三模拟考试试卷(苏州)数学参考答案及评分标准12. (— 2, 2— 2 3) 13. 8 2— 814. [0 , 1]15. 证明:(1)在直三棱柱ABCA 1B 1C 1中,BB 1丄底面ABC. 因为AB?平面ABC ,所以BB 1丄AB.(2分)因为 AB 丄 BC , BB 1n BC = B , BB 1, BC?平面 B 1BCC 1, 所以AB 丄平面B 1BCC 1.(4分) 又AB?平面ABE ,所以平面⑵取AB 中点G ,连结EG , FG. 因为E , F 分别是A 1C 1, BC 的中点,1所以 FG // AC ,且 FG = 2AC.(8 分) 因为 AC / A 1C 1,且 AC = A 1C 1, 所以 FG // EC 1,且 FG = EC 1,所以四边形FGE6为平行四边形,(11分) 所以 C 1F // EG.因为EG?平面ABE , C 1F?平面ABE , 所以C 1F //平面ABE.(14分) 16. 解:(1)在厶 ABC 中,因为 2bcos A = 2c — 3a ,所以 2sin Bcos A = 2sinC — 3sin A.(2 分) 在厶 ABC 中,sin C = sin(A + B), 所以 2sin Bcos A = 2sin(A + B) — . 3sin A ,即 2sin Bcos A = 2sin Acos B + 2cos AsinB —冷3sin A , 所以 3sin A = 2cos Bsin A , (4 分)n又 B € (0, n ),所以 B = —.(6 分)1. {3}2. — 13. 254. 365. 36. 37. 108. |9. 2 3 10. (x — 5)2+ (y — 2)2=17由正弦定理asin A b _ c sin B sin C ‘在厶ABC 中, sin A M 0,所以 cos B =1 n所以 f(A) = 2sin(2A+~—).n5 n在厶 ABC 中,B = 6,且 A + B + C = n ,所以 A € (0, ~^), (12 分)n nn n n1所以2A + 3€ (3, 2 n )所以当2A +~3 =—,即A = 时,f(A)的最大值为?.(14分) 2 217. 解:(1)设椭圆方程为 字+ by 2= 1(a>b>0),半焦距为c , 因为椭圆的离心率为 £所以c =1,即a = 2c.2 a 22因为A 到右准线的距离为6,所以a + 2 = 3a = 6, (2分) 解得 a = 2, c = 1, (4 分)2 2所以b 2= a 2— c 2= 3,所以椭圆E 的标准方程为 乡+卷=1.(6分) 3⑵ 直线AB 的方程为y = 2(x + 2), 3(y = 2( x + 2), 由 22得 x 2 + 3x + 2 = 0,解得 x =— 2或 x =— 1,则点B 的坐标为(一1, 3).(9 分)3由题意,得右焦点 F (1 , 0),所以直线BF 的方程为y = — 3(x — 1).(11分) 13得 7x 2— 6x — 13= 0,解得 x =— 1 或 x = — , (13 分)所以点M 坐标为(号,-詈).(14分)18. 解:(1)以O 为原点,直线 OA 为x 轴建立平面直角坐标系,n1 1因为 0<, tan 0 = ?,所以 OP : y =器.设 P (2t , t ),由 OP = .5,得 t = 1,所以 P (2 , 1).(2 分)(解法1)由题意得2m PA = m PB ,所以BP = 2PA ,所以点B 的纵坐标为3. 因为点B 在直线y = x 上,所以B (3, 3), (4分)(2) f(x) = cos x • (sin x • cos n n—+ cos x • sin —)—33(8分)1 =2sin xcos x +討—2x + 1)—1 n 八 2Sin(2x + 亍),(10 分)I y = — 3 (x—1),由2 2J — + = 1 4十 3 ',所以 AB = 3PB = 325.T T2 — b = 2 (a — 2),由BP = 2FA , 得 所以丫"-b =-2,l b = 3,所以 A(3, 0), B(3, 3), AB = , (3 — 2) 2+ 32=劣. 答:点A , B 之间的距离为 乎千米.(6分)⑵(解法 1)设总造价为 S,贝U S = n OA + 2 ,2n • 0B = (0A + 2 20B) n , 设y = 0A + 2 20B ,要使S 最小,只要y 最小.当 AB 丄x 轴时,A(2, 0),这时 0A = 2, 0B = 2 2, 所以 y = 0A + 2 20B = 2+ 8= 10.(8 分)当AB 与x 轴不垂直时,设直线 AB 的方程为y = k(x — 2) + 1(k 工0). 令y = 0,得点A 的横坐标为2 —1,所以0A = 2 —丄;k k 2k — 1令x = y ,得点B 的横坐标为2——"CO 分) 1 2k — 12-k>0,且 k — 1 >0,所以 k<0 或 k>1 , 一 厂一 1 4 (2k — 1) y = 0A +2 20B = 2—: +k k — 11— 4 —( k + 1)( 3k — 1)y'= k ^+(k —1)2 =k 2 (k — 1)2.(12 分)当k<0时,y 在( — a, — 1)上递减,在(—1, 0)上递增,3 3所以 y min = y|k =-1= 9<10,此时 A(3, 0), B(2 2); (14 分)当 k>1 时,y = 2—十 + 8 (k — : + 4 = 10+ k^ —十=10+ . 3k +1) >10.k k — 1 k — 1 k k ( k — 1)千米处.(16分)(解法2)如图,作为 P(2, 1),所以 0Q = 1.(解法2)由题意得2m PA = m PB ,所以BP = 2PA.设 A(a , 0)(a>0),又点 B 在射线 y = x(x>0)上,所以可设 B(b , b)(b>0),3a =Q ,(4 分)因为 此时 综上,要使0A , OB 段道路的翻修总价最少,A 位于距0点3千米处,B 位于距0点^2-Q ,作PN // 0B 交0A 于点N ,因因为/ BOQ = 45°,所以QM = 1 , 0M = _2, 所以PM = 1, PN = 0M = ,2.由 PM // OA , PN // oB ,得 O B =AA , O A = AB ,(8分)设总造价为 S ,贝U S = n OA + 2 2n • OB = (OA + 2 2OB ) n , 设y = OA + 2 2OB ,要使S 最小,只要y 最小.y = OA + 2迄OB = (OA + 2V20B )(O|+ OA ) = 5 + <2(^+ 2OB )> 9, (14 分) 当且仅当OA ={2OB 时取等号,此时 OA = 3, OB = 弩. 答:要使OA , OB 段道路的翻修总价最少, A 位于距O 点3千米处,B 位于距。

2019年江苏省苏州市常熟杨园中学高三数学文期末试题含解析

2019年江苏省苏州市常熟杨园中学高三数学文期末试题含解析

2019年江苏省苏州市常熟杨园中学高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知复数z满足,则复数z的共轭复数在复平面内的对应点在A.第一象限B.第二象限C.第三象限 D.第四象限参考答案:A略2.设是空间三条直线,是空间两个平面,则下列命题为假命题的是()A.当B.当C.当D.当参考答案:答案:D3. 一个空间几何体的三视图如图所示,该几何体的表面积为(A) 96 (B) 136(C) 152 (D) 192参考答案:C略4. 设F1,F2分别是双曲线C: =1(a>0,b>0)的左、右焦点,点M(3,)在此双曲线上,且|MF1|与|MF2|的夹角的余弦值为,则双曲线C的离心率为()A.B.C.D.参考答案:A【考点】双曲线的简单性质.【分析】利用余弦定理求出|MF1||MF2|=9b2,利用点M(3,)在此双曲线上,得到﹣=1,结合向量的数量积公式建立方程关系求出a,c即可得到结论.【解答】解:如图,在△MF1F2中,由余弦定理,|F1F2|2=|MF1|2+|MF2|2﹣2|MF1||MF2|cos∠F1MF2,即4c2=(|MF1|﹣|MF2|)2+2|MF1||MF2|﹣2×|PF1||PF2|=4a2+|MF1||MF2|,则|MF1||MF2|=4c2﹣4a2=4b2,则|MF1||MF2|=9b2,∵?=|MF1||MF2|×=×9b2=7b2,?=(﹣c﹣3,﹣)?(c﹣3,﹣)=﹣(c2﹣9)+2=11﹣c2.∴11﹣c2=7b2,即11﹣a2﹣b2=7b2,则a2=11﹣8b2,∵M(3,)在此双曲线上,∴﹣=1,将a2=11﹣8b2,代入﹣=1得﹣=1,整理得4b4+7b2﹣11=0,即(b2﹣1)(4b2+11)=0,则b2=1,a2=11﹣8b2=11﹣8=3,c2=11﹣7b2=11﹣7=4,则a=,c=2,则离心率e===,故选:A5. 一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.36πB. 8πC.D.参考答案:B6. 为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000B.6000C.7000D.8000参考答案:C7. 已知定义域为R的函数,若关于的方程有3个不同的实根,则等于( )A.13 B.C. 5 D.参考答案:C8. 已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y 的最大值是()A.6 B.0 C.2 D.2参考答案:A【考点】简单线性规划.【专题】数形结合;不等式的解法及应用.【分析】由约束条件作出可行域,求出使可行域面积为4的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.9. 已知复数z满足z(3-i)=1-2i,则复数z在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:D因为z(3-i)=1-2i,所以,所以复数z在复平面内对应的点为,位于第四象限,故选D.10. 下列命题错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.若p∧q为假命题,则p,q均为假命题C.对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0D.“x>2”是“x2﹣3x+2>0”的充分不必要条件参考答案:考点:特称命题;命题的否定.专题:计算题.分析:利用命题与逆否命题的关系判断A的正误;复合命题的真假判断B的正误;命题的否定判断C的正误;充分必要条件判断D的正误.解答:解:命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确,满足命题与逆否命题的关系;若p∧q为假命题,则p,q均为假命题,由复合命题的真假判断可知p∧q中,p、q一假即假;对命题P:存在x∈R,使得x2+x+1<0,则¬p为:任意x∈R,均有x2+x+1≥0;满足特称命题与全称命题的否定关系,正确;“x>2”可以说明“x2﹣3x+2>0”,反之不成立,所以是充分不必要条件正确;故选B.点评:本题考查命题的否定,特称命题与全称命题,充要条件的应用,基本知识的灵活运用.二、填空题:本大题共7小题,每小题4分,共28分11. 已知圆C与y轴相切,圆心在x轴的正半轴上,并且截直线所得的弦长为2,则圆C的标准方程是________.参考答案:设圆心为(t,0),且t>0, ∴半径为r=|t|=t,∵圆C截直线所得的弦长为2,∴圆心到直线的距离d==∴t2-2t-3=0,∴t=3或t=-1(舍),故t=3,∴.故答案为12. 是圆O的直径,为圆O上一点,过作圆O的切线交延长线于点,若DC=2,BC=1,则 .参考答案:13. 函数f(x)=sin ()的导函数的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C为图像与x轴的两个交点,B为图像的最低点.(1)若,点P的坐标为(0,),则;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.参考答案:(1)3;(2)(lbylfx)(1),当,点P的坐标为(0,)时;(2)由图知,,设的横坐标分别为.设曲线段与x轴所围成的区域的面积为则,由几何概型知该点在△ABC 内的概率为.14. 设偶函数(的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与轴的交点,M为极小值点),∠KML=90°,KL=,则的值为_______.参考答案:略15. 已知若或,则的取值范围是____________.参考答案:(-4,0)略16. (5分)(2015?澄海区校级二模)定义在R上的函数f(x)满足f(x)=,则f(2013)的值为﹣3 .参考答案:【考点】:函数的周期性;函数的值;对数的运算性质.【专题】:函数的性质及应用.【分析】:利用分段函数判断当x>0时函数的周期性,然后利用周期性进行求值.解:由分段函数可知,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),∴f(x+1)=f(x)﹣f(x﹣1)=f(x﹣1)﹣f(x﹣2)﹣f(x﹣1),∴f(x+1)=﹣f(x﹣2),即f(x+3)=﹣f(x),∴f(x+6)=f(x),即当x>0时,函数的周期是6.∴f(2013)=f(335×6+3)=f(3)=﹣f(0)=﹣log2(8﹣0)=﹣log28=﹣3,故答案为:﹣3.【点评】:本题主要考查利用分段函数进行求值问题,利用函数的解析式确定当x>0时,满足周期性是解决本题的关键.17. 如图,三个半径都是5cm的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R是_________cm.参考答案:三、解答题:本大题共5小题,共72分。

苏州市2019届高三第一学期期末调研数学试卷(后附详尽解析及答案)

苏州市2019届高三第一学期期末调研数学试卷(后附详尽解析及答案)

苏州市2019届高三第一学期期末调研数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1、已知集合{}1>=x x A ,{}3<=x x B ,则集合=B A . 2、已知复数iiz 21-=,其中i 为虚数单位,则复数z 的虚部为 . 3、在平面直角坐标系xOy 中,双曲线16322=-y x 的离心率为 . 4、用分层抽样的方法从某高中校学生中抽取一个容量为45的样本,其中高一年级抽20 人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生总数为 . 5、一架飞机向目标投弹,击毁目标的概率为20.,目标未受损的概率为40.,则目标受损 但未完全击毁的概率为 .6、阅读下面的流程图,如果输出的函数)(x f 的值在区间],[2141内,那么输入的实数x 的 取值范围是 .7、已知实数y x ,满足⎪⎩⎪⎨⎧≥+≤-≤431y x x x y ,则目标函数y x z -=28、设n S 是等差数列{}n a 的前n 项和,若7772-==S a ,,则7a 9、在平面直角坐标系xOy 中,已知过点),(11M 的直线l 与圆52122=-++)()(y x 相切,且与直线01=-+y ax 垂直,则实数10、一个长方体的三条棱长分别为983,,,若在该长方体上面钻一个圆柱形的孔后其表面 积没有变化,则圆孔的半径为 . 11、已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为 . 12、若832παtantan =,则=-)tan(8πα .13、已知函数⎩⎨⎧>-≤-=05042x e x x x f x ,,)(,若关于x 的方程05=--ax x f )(恰有三个不同的实数解,则满足条件的所有实数a 的取值集合为 个.14、已知C B A ,,是半径为1的圆O 上的三点,AB 为圆O 的直径,P 为圆O 内一点(含圆周),则⋅+⋅+⋅的取值范围为 .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明 或演算步骤)15、已知函数212232--=x x x f cos sin )(. (1)求函数)(x f 的最小值,并写出取得最小值时的自变量x 的集合 (2)设ABC ∆的内角C B A ,,所对的边分别为c b a ,,,且3=c ,0=)(C f ,若A B sin sin 2=,求b a ,的值.16、如图,已知直四棱柱1111D C B A ABCD -的底面是菱形,F 是1BB 的中点,M 是线 段1AC 的的中点.(1)求证:直线//MF 平面ABCD ;(2)求证:平面⊥1AFC 平面11A ACC .17、已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.18、某湿地公园内有一条河,现打算建一座桥(图1)将河两岸的路连接起来,剖面设计图纸(图2)如下:其中,点E A ,为x 轴上关于原点对称的两点,曲线BCD 是桥的主体,C 为桥顶,且曲线 段BCD 在图纸上的图形对应函数的解析式为],[,22482-∈+=x xy ,曲线段DE AB ,均 为开口向上的抛物线段,且E A ,分别为两抛物线的顶点.设计时要求:保持两曲线在各衔 接处),(D B 的切线的斜率相等.(1)求曲线段AB 在图纸上对应函数的解析式,并写出定义域;(2)车辆从A 经B 到C 爬坡.定义车辆上桥过程中某点P 所需要的爬坡能力为:=P M (该点P 与桥顶间的水平距离)⨯(设计图纸上该点P 处的切线的斜率),其中P M 的单 位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力, 它们的爬坡能力分别为80.米,51.米,02.米,又已知图纸上一个单位长度表示实际长度1米,试问三种类型的观光车是否都可以顺利过桥?19、已知数列{}n a 的前n 项和为n S ,且22-=n n a S (*∈N n ).(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1211212121133221+-+--++-+=+n n n n b b b b a )( ,求数列{}n b 的 通项公式;(3)在(2)的条件下,设n n n b c λ+=2,问是否存在实数λ,使得数列{}n c (*∈N n )是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.20、已知函数x k x x f )(ln )(1--=(R ∈k ). (1)当1>x 时,求函数)(x f 的单调区间和极值;(2)若对于任意],[2e e x ∈,都有x xf ln )(4<成立,求实数k 的取值范围; (3)若21x x ≠,且)()(21x f x f =,证明:ke x x 221<.附加题21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. A . 选修4-1:几何证明选讲如图,E 是圆O 内两条弦AB 和CD 的交点,过AD 延长线上一点F 作圆O 的切线FG ,G 为切点,已知EF=FG ,求证:EF ∥CB.(第21-A 题)B . 选修4-2:矩阵与变换 已知矩阵A=2113⎡⎤⎢⎥⎣⎦,B=1101⎡⎤⎢⎥-⎣⎦,求矩阵C ,使得AC=B.C . 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1222x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0,已知直线l 与曲线C 相交于A ,B 两点,求线段AB 的长.D . 选修4-5:不等式选讲已知a ,b ,x ,y 都是正数,且a+b=1,求证:(ax+by )(bx+ay )≥xy.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3.第一次从口袋里任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上的数字之和为ξ.(1) ξ为何值时,其发生的概率最大?请说明理由;(2) 求随机变量ξ的数学期望E(ξ).23.在平面直角坐标系xOy中,已知两点M(1,-3),N(5,1),若点C的坐标满足=t+(1-t)(t∈R),且点C的轨迹与抛物线y2=4x交于A,B两点.(1) 求证:OA⊥OB;(2) 在x轴上是否存在一点P(m,0),使得过点P任作一条抛物线的弦,并以该弦为直径的圆都过原点?若存在,求出m的值及圆心的轨迹方程;若不存在,请说明理由.苏州市2019届高三第一学期期末考试答案1.(1,3)2.-12思路分析先化z=a+b i(a ,b ∈R)的形式或设z=a+b i(a ,b ∈R),再去分母.解法1z=(1-i )i 2i ·i=1+i-2=-12-12i,所以z 的虚部是-12.解法2设z=a+b i(a ,b ∈R),则2i(a+b i)=1-i,即-2b+2a i =1-i,所以-2b=1,得b=-12易错警示复数z=a+b i(a ,b ∈R)的虚部是b ,不是b i .3.3思路分析先求出a 2∶b 2∶c 2.由已知,得a 2∶b 2∶c 2=3∶6∶9,得e 2=22=3,所以e=3.4.900思路分析根据分层抽样的特点,建立比例式.设该校学生总数为n ,则300 =45-20-1045,得n=900.5.0.4设“目标受损但未完全击毁”为事件A ,则其对立事件 是“目标未受损或击毁目标”.P (A )=1-P ( )=1-(0.4+0.2)=0.4.解后反思在数学中,“但”与“且”的意义本质上是相同的.6.[-2,-1]流程图表示输出分段函数f (x )=2 ,∈[-2,2],2,∉[-2,2]的值.令f (x )得≤ ≤2,≤2≤12,解得-2≤x ≤-1.7.5思路分析先画出可行域,并解出.可行域是以A (3,1),B (3,2),C (2.5,1.5)为顶点的△ABC 及它的内部.z=2x-y=(2,-1)·(x ,y )≤(2,-1)·(3,1)=5.解后反思利用向量数量积的几何意义——一个向量的模与另一个向量在该向量上的投影的乘积,比平移直线更直观.8.-13思路分析可先求出基本量a 1,d ,再求a 7;也可利用S 7=7a 4先求出a 4.在等差数列{a n }中,S 7=7a 4=-7,所以a 4=-1.又a 2=7,所以公差d=-4,从而a 7=a 4+3d=-1-12=-13.9.12思路分析可用过圆上一点的切线方程求解;也可用垂直条件,设切线方程(x-1)-a (y-1)=0,再令圆心到切线的距离等于半径.因为点M 在圆上,所以切线方程为(1+1)(x+1)+(1-2)(y-2)=5,即2x-y-1=0.由两直线的法向量(2,-1)与(a ,1)垂直,得2a-1=0,即a=12.思想根源以圆(x-a )2+(y-b )2=r 2上一点T (x 0,y 0)为切点的切线方程为(x 0-a )(x-a )+(y 0-b )(y-b )=r 2.10.3思路分析先不考虑在哪个面上钻孔,考察圆柱半径与高的关系,再检验.设圆柱的底面半径为r ,高为h ,该长方体上面钻孔后其表面积少了两个圆柱底面,多了一个圆柱侧面.由题意,得πr 2+πr 2=2πrh ,得r=h.经检验,只有r=3符合要求,此时在8×9的面上打孔.易错警示实际应用问题须检验.11.94解法1令x+2=a ,y +1=b ,则a+b=4(a>2,b>1),4 +1 =14(a+b 4≥14(5+4)=94,当且仅当a=83,b=43,即x=23,y=13时取等号.解法2(幂平均不等式)设a=x+2,b=y+1,则4 +2+1+1=4 +1 =22+12 ≥(1+2)2 +=94.解法3(常数代换)设a=x+2,b=y+1,则4+2+1+1=4 +1 = ++ + 4 =54+ + 4 ≥94,当且仅当a=2b 时取等号.思想根源(权方和不等式)若a ,b ,x ,y ∈(0,+∞),则 2 + 2 ≥( + )2+,当且仅当 =时取等号.12.思路分析可先记t=tan π8,最后再代入化简.解法1记t=tan π8=1-cos π4sin π4=2-1,则tan α=32t.所以tan=32 - 1+32 2= 2+3 2解法2tan =32tan π8-tan π81+32tan 2π8=tan π82+3tan 2π8=sin π8cos π82cos 2π8+3sin 2π8sin π4解后反思有时,“硬做”也是必须的.13.-e ,-5ln5,2思路分析化为定曲线与两条动直线共有三个公共点.关键是两条动直线关于x 轴对称,其交点在x 轴上.方程|f (x )|-ax-5=0⇔f (x )=ax+5或f (x )=-ax-5.所以曲线C :y=f (x )与两条直线l :y=ax+5和m :y=-ax-5共有三个公共点.由曲线的形状可判断直线l 与曲线C 总有两个交点,所以可有情况是:直线m 与曲线C 相切,直线m 与曲线C 相交两点但其中一点是l ,m 的交点-5,0.由m 与C 相切,得当a>0时,y=-ax-5与f (x )图像在x ≤0的一侧相切.设切点为(x 0,y 0),则f'(x 0)=2x 0=-a ,x 0=-2.又切线方程为y-y 0=-a (x-x 0),得y=-ax+ax 0+y 0=-ax+a ·-+ 24-4=-ax- 24-4=-ax-5,得a=2.同理当a<0时,可得a=-e .由题易知a ≠0,从而m 与C 相切时,a=2或a=-e;由点-5,0在C 上,得当a>0时,交点位于f (x )图像在x ≤0的一侧,此时有f =25 2-4=0,a=52;当a<0时,交点位于f (x )图像在x>0的一侧,此时有f e -5-5=0,a=-5ln5,故由交点在C 上得a=52或a=-5ln5.经判断,a 的这四个值均满足要求.解后反思先确定a 的可能值,再检验,较易操作.也可考虑定曲线y=|f (x )|与动直线y=ax+b 的公共点的问题.14.-43,4思路分析固定顶点A ,B 后,就是一个双动点问题,与单个动点问题类似.解法1在平面直角坐标系xOy 中,设A (-1,0),B (1,0),C (cos α,sin α),P (r cos β,r sin β),其中α∈(0,π),r ∈[0,1],β∈R .· + · + · =3r 2-1-2r cos(β-α)∈[3r 2-2r-1,3r 2+2r-1]⊆-43,4,当r=13,β=α时,取得最小值-43;当r=1,β=π+α时,取得最大值4.解法2 · + · + · =( + )2-( - )24+ ·( + )=(2 )2-24+2 ·= 2+2 ·-1.以O 为坐标原点,建立直角坐标系,设P (x 0,y 0),C (cos θ,sin θ),则 2+2 · -1=3 02+3 02-2x 0cos θ-2y 0sin θ-1,其中x 0cos θ+y 0sin θ= 02+ 02sin(θ+φ)∈[- 02+ 02, 02+ 02].令t= 02+ 02∈[0,1],则3t 2-2t-1≤ 2+2 · -1≤3t 2+2t-1,得到 2+2 · -1∈-43,4.解法3 · + · + · =( + )2-( - )24+ ·( + )=(2 )2- 24+2 · = 2+2 ·-1.若知道 · =( - )·( + )=PO 2-OB 2, · + · =( + )· =2 · ,可加快计算速度.实际上,PO 2-OB 2=r 2-1,由向量数量积的定义知2 · =2 ·( - )∈[2r 2-2r ,2r 2+2r ].更进一步, · + · + · =3 2-2 · -1=3 -13 2-43.思想根源设G 是△ABC 的重心,P 是平面ABC 上任意一点,则 · + · + ·=3 2- 2+ 2+ 26.15.思路分析(1)首先把函数化简为f (x )=A sin(ωx+φ)+B 的形式,其中A>0,ω>0.(2)利用正弦、余弦定理,列出关于边a ,b 的方程组.规范解答(1)因为f (x )x-12(1+cos2x )-12(2分)=sin 2 1,(4分)所以函数f (x )的最小值是-2,(5分)此时2x-π6=2k π-π2,k ∈Z,得x=k π-π6,k ∈Z,即x 的取值集合为 = π-π6, ∈Z .(7分)(2)由f (C )=0,得sin 2 1.又C ∈(0,π),所以2C-π6=π2,得C=π3.(9分)由sin B=2sin A 及正弦定理,得b=2a.(11分)由余弦定理c 2=a 2+b 2-2ab cos C ,得a 2+b 2-ab=3.(13分)由=2 , 2+ 2- =3,解得 =1,=2.(14分)16.思路分析(1)要证MF ∥平面ABCD ,只要证MF 与平面ABCD 内的某直线平行.当F 沿 移到B 时,M 恰好移到AC 的中点E.也可以找MF 所在的平面AC 1F 与底面ABCD 的交线.(2)只要先证MF ⊥平面ACC 1A 1,只要证EB ⊥平面ACC 1A 1.规范解答(1)证法1如图1,连结AC ,取AC 的中点E ,连结ME ,EB.因为M ,E 分别是AC 1,AC 的中点,所以ME 12C 1C.(2分)又F 是B 1B 的中点,且B 1B C 1C ,得FB12C 1C ,所以MEFB ,四边形MFBE 是平行四边形,(4分)所以MF ∥EB.因为MF ⊄平面ABCD ,EB ⊂平面ABCD ,所以MF ∥平面ABCD.(7分)图1证法2如图2,延长C 1F ,CB 相交于点G ,连结AG.因为FB12C 1C ,所以F 是GC 1的中点.(2分)又因为M 是AC 1的中点,所以MF ∥AG.(4分)因为MF ⊄平面ABCD ,AG ⊂平面ABCD ,所以MF ∥平面ABCD.(7分)图2(2)如图1,因为底面ABCD 是菱形,得BA=BC ,又E 是AC 的中点,所以EB ⊥AC.因为A 1A ⊥平面ABCD ,EB ⊂平面ABCD ,所以A 1A ⊥EB.(9分)由(1)知,MF ∥EB ,所以MF ⊥AC ,MF ⊥A 1A.(11分)又因为A 1A ∩AC=A ,A 1A ,AC ⊂平面ACC 1A 1,所以MF ⊥平面ACC 1A 1.(13分)因为MF ⊂平面AFC 1,所以平面AFC 1⊥平面ACC 1A 1.(14分)17.思路分析(1)由e 求得a ∶b ∶c.(2)最简单直接的解法是:利用PA ,PB 的斜率互为相反数,直接求出A ,B 的坐标.规范解答(1)由e==得a ∶b ∶c=2∶1∶3,椭圆C 的方程为 24 2+ 22=1.(2分)把P (2,-1)的坐标代入,得b 2=2,所以椭圆C 的方程是 28+ 22=1.(5分)(2)由已知得PA ,PB 的斜率存在,且互为相反数.(6分)设直线PA 的方程为y+1=k (x-2),其中k ≠0.由+1= ( -2),2+4 2=8,消去y ,得x 2+4[kx-(2k+1)]2=8,即(1+4k 2)x 2-8k (2k+1)x+4(2k+1)2-8=0.(8分)因为该方程的两根为2,x A ,所以2x A =4(2 +1)2-81+4 2,即x A =8 2+8 -21+4 2.从而y A =4 2-4 -14 2+1.(10分)把k 换成-k ,得x B =8 2-8 -21+4 2,y B =4 2+4 -14 2+1.(12分)计算,得k AB = --=8-16 =-12,是定值.(14分)解后反思利用直线PA 与椭圆C 已经有一个交点P (2,-1),可使得解答更简单.由+1= ( -2), 2+4 2=8,得+1= ( -2),4( 2-1)=4- 2,当(x ,y )≠(2,-1)时,可得+1= ( -2),4 ( -1)=- -2.解得=8 2+8 -24 2+1,=4 2-4 -14 2+1.以下同解答.下面介绍一个更优雅的解法.由A ,B 在椭圆C :x 2+4y 2=8上,得(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0,所以k AB = 1- 2 1- 2=-14· 1+21+2.同理k PA =1+1 1-2=-14· 1+21-1,k PB =2+1 2-2=-14· 2+22-1.由已知,得k PA =-k PB ,所以1+1 1-2=-2+1 2-2,且1+2 1-1=-2+2 2-1,即x 1y 2+x 2y 1=2(y 1+y 2)-(x 1+x 2)+4,且x 1y 2+x 2y 1=(x 1+x 2)-2(y 1+y 2)+4.从而可得x 1+x 2=2(y 1+y 2).所以k AB =-14· 1+ 21+2=-12,是定值.18.思路分析(1)首先B (-2,1).设曲线段AB 对应函数的解析式为f (x ),则f (-2)=1且f'(-2)=12.(2)先算出M P 的最大值.规范解答(1)首先B (-2,1),由y'=-16 (4+ 2)2,得曲线段BCD 在点B 处的切线的斜率为12.(2分)设曲线段AB 对应函数的解析式为y=f (x )=a (x-m )2(x ∈[m ,-2]),其中m<-2,a>0.由题意,得 (-2)= (-2- )2=1,'(-2)=2 (-2- )=12,解得=-6,=116.(4分)所以曲线段AB 对应函数的解析式为y=116(x+6)2(x ∈[-6,-2]).(5分)(2)设P (x ,y ),记g (x )=M P =(0-x )+6), ∈[-6,-2],∈[-2,0].(7分)①当x ∈[-6,-2]时,g (x )的最大值为g (-3)=98;(10分)②当x ∈[-2,0]时,g (x )-g (-2)=-( 2-4)2(4+ 2)2≤0,即g (x )≤g (-2)=1,得g (x )的最大值为g (x )max =98.(13分)综上所述,g (x )max =98.(14分)因为0.8<98<1.5<2,所以,游客踏乘的观光车不能过桥,蓄电池动力、内燃机动力观光车能够顺利过桥.(16分)19.思路分析(1)利用a n =1, =1,- -1,≥2,得到a n+1与a n 的关系.(2)与(1)类似,相当于(-1) n 项和为1.当n ≥2时,(-1)n+1 2 +1=1 -1-1.(3)即c n+1-c n >0对n ∈N *恒成立.考虑分离出λ.规范解答(1)a 1=S 1=2.由a n+1=S n+1-S n =(2a n+1-2)-(2a n -2),得a n+1=2a n .(2分)所以数列{a n }是首项为2,公比为2的等比数列,a n =2n .(4分)(2)由1 1= 12+1,得b 1=32.(5分)当n ≥2时,1-1 -1=(-1)n+12 +1,得b n =(-1)n 2 +12.(8分)所以b n =1,1) 2 +12,≥2.(9分)(3)假设数列{c n }是单调增数列,则c n+1-c n =2n +λ(b n+1-b n )>0对n ∈N *恒成立.①当n=1时,由2+0,得λ<8;(11分)②当n ≥2时,b n+1-b n =(-1)n+12 +1+12 +1-(-1)n 2 +12=(-1)n+12 +2+32 +1.若n=2k ,k ∈N *,则λ<12-( -1)+3·2-(2 +1)恒成立,而12-( -1)+3·2-(2 +1)单调递增,当n=2时取最小值3219,得λ<3219;(13分)若n=2k+1,k ∈N *,则λ>-12-( -1)+3·2-(2 +1)恒成立,而-12-( -1)+3·2-(2 +1)单调递减,当n=3时取最大值-12835,得λ>-12835.(15分)综上所述,存在实数λ,且λ的取值范围是-12835(16分)解后反思特别要注意对n=1时的单独处理.20.思路分析(1)只要注意对k 的讨论.(2)分离出k ,转化为k>K (x )恒成立问题.(3)先说明0<x 1<e k <x 2,从而只要证e k <x 2<e 2 1,只要证f (x 1)=f (x 2)转化为关于x 1的不等式对0<x 1<e k 恒成立问题.规范解答(1)f'(x )=ln x-k ,其中x>1.(1分)①若k ≤0,则x>1时,f'(x )>0恒成立,f (x )在(1,+∞)上单调递增,无极值;(2分)②若k>0,则f (x )在(1,e k ]上单调递减,在[e k ,+∞)上单调递增,(4分)有极小值f (e k )=-e k ,无极大值.(5分)(2)问题可转化为k>1x-1对x ∈[e,e 2]恒成立.(7分)设K (x )=1x-1,则K'(x )=42ln x+11=4 2(ln x-1)+1.当x ∈[e,e 2]时,K'(x )≥1>0,所以K (x )在[e,e 2]上单调递增,K (x )max =K (e 2)=1-8e2.(9分)所以实数k 的取值范围是1-8e 2,+∞.(10分)(3)因为f'(x )=ln x-k ,所以f (x )在(0,e k ]上单调递减,在[e k ,+∞)上单调递增.不妨设0<x 1<e k <x 2.要证x 1x 2<e 2k ,只要证x 2<e 21.因为f (x )在[e k ,+∞)上单调递增,所以只要证f (x 1)=f (x 2)即要证(ln x 1-k-1)x 1<(k-ln x 1-1)e 21.(12分)令t=2(k-ln x 1)>0,只要证(t-2)e t +t+2>0.设H (t )=(t-2)e t +t+2,则只要证H (t )>0对t>0恒成立.H'(t )=(t-1)e t +1,H ″(t )=t e t >0对t>0恒成立.所以H'(t )在(0,+∞)上单调递增,H'(t )>H'(0)=0.(14分)所以H (t )在(0,+∞)上单调递增,H (t )>H (0)=0.综上所述,x 1x 2<e 2k .(16分)21.A.规范解答由切割线定理,得FG 2=FD ·FA.(2分)因为EF=FG ,所以EF 2=FD ·FA ,即 =.(5分)又因为∠EFA=∠DFE ,所以△EFA ∽△DFE.所以∠EAF=∠DEF.(8分)因为∠EAF=∠BAD=∠BCD ,所以∠DEF=∠BCD.所以EF ∥CB.(10分)B.规范解答因为AC=B ,所以C=A -1B.(2分)由|A|=2113=6-1=5,得A -13-112.(6分)所以3-112110-1341-3=35-15-3(10分)C.思路分析化曲线C 的极坐标方程为直角坐标方程,可利用直线l 的标准参数方程的几何意义求线段AB 的长.规范解答因为曲线C 经过极点,所以其极坐标方程也为ρ2sin 2θ-4ρcos θ=0,(2分)在平面直角坐标系xOy 中,曲线C 的直角坐标方程为y 2-4x=0.(4分)把直线l 的标准参数方程代入,得t 2+82t=0,解得t 1=0,t 2=-82.(8分)所以AB=|t 2-t 1|=82.(10分)易错警示必须先说明“曲线C 经过极点”,才能在方程ρsin 2θ-4cos θ=0两边同乘ρ,否则新方程表示的曲线可能比曲线C 多一个极点.D.思路分析化x 2+y 2为xy ,显然可用基本不等式x 2+y 2≥2xy.规范解答因为a ,b ,x ,y 都是正数,且a+b=1,所以(ax+by )(bx+ay )=ab (x 2+y 2)+(a 2+b 2)xy ≥ab ·2xy+(a 2+b 2)xy=(a+b )2xy=xy.(9分)当且仅当x=y 时,取等号.(10分)22.思路分析本质上就是要求出ξ的分布,否则怎么说明理由?规范解答(1)设第一次与第二次取到卡片上数字分别为X ,Y.则P (X=1)=P (Y=1)=P (X=2)=P (Y=2)=38,P (X=3)=P (Y=3)=28.随机变量ξ的可能取值为2,3,4,5,6.(2分)P (ξ=2)=P (X=1)P (Y=1)=964,P (ξ=3)=P (X=1)P (Y=2)+P (X=2)P (Y=1)=932,P (ξ=4)=P (X=1)P (Y=3)+P (X=3)P (Y=1)+P (X=2)P (Y=2)=2164,P (ξ=5)=P (X=2)P (Y=3)+P (X=3)P (Y=2)=316,P (ξ=6)=P (X=3)P (Y=3)=116.(7分)所以当ξ=4时,其发生的概率最大.(8分)(2)由(1)可知E (ξ)=2×964+3×1864+4×2164+5×1264+6×464=24064=154.(10分)解后反思利用ξ=X+Y 来计算P (ξ=k ),条理清楚,不易出错.思想根源实际上,因为ξ=X+Y ,所以E (ξ)=E (X )+E (Y )=158+158=154.23.思路分析可直接判断点C 的轨迹是直线MN ,也可设C (x ,y ),得关于(x ,y )的参数方程.(1)只要证 · =x 1x 2+y 1y 2=0.可利用根与系数的关系.(2)设弦为EF ,则 ·=0,可设直线EF 的方程为x-m=λy.规范解答(1)由 =t +(1-t ) ,得 - =t ( - ),即 =t .所以点C 的轨迹就是直线MN ,其轨迹方程为x-y-4=0.(2分)设A (x 1,y 1),B (x 2,y 2).由- -4=0,2=4 ,消去x ,得y 2-4y-16=0,所以y 1y 2=-16.而x 1x 2= 124· 224=16,所以 · =x 1x 2+y 1y 2=0.所以OA ⊥OB.(4分)(2)设经过点P (m ,0)的弦EF 所在的直线方程为x-m=λy.设E (x 1,y 1),F (x 2,y 2),则以EF 为直径的圆经过原点等价于x 1x 2+y 1y 2=0.由- = ,2=4 ,得y 2-4λy-4m=0.当Δ=16λ2+16m>0时,y 1+y 2=4λ,y 1y 2=-4m.从而x 1x 2=12 2216=m 2.所以m 2-4m=0,解得m=0或m=4.(6分)①若m=0,则λ≠0,此时圆心D (x ,y )满足 =2 2,=2 (λ≠0).圆心的轨迹方程为y 2=2x (y ≠0).(8分)②若m=4,则λ∈R,此时圆心D (x ,y )满足=2 2+4, =2 .圆心的轨迹方程为y 2=2(x-4).(10分)易错警示不要轻易舍去m=0的情况.。

2019年江苏省高三上册期末数学试题分类:函数与不等式、导数综合

2019年江苏省高三上册期末数学试题分类:函数与不等式、导数综合

八、函数与不等式(一)试题细目表1.(南通泰州期末·14)已知函数221,0,()ln(),0,x ax a x f x x x ⎧--+≥=⎨-<⎩2()12g x x a =+-.若函数(())y f g x =有4个零点,则实数a 的取值范围是.【答案】()1,⎫+∞⎪⎪⎝⎭2.(无锡期末·13)已知函数()f x =2212211,211log (),22x x x x x x ⎧+-≤-⎪⎪⎨+⎪>-⎪⎩,2()22g x x x =---.若存在a R ∈,使得()()0f a g b +=,则实数b 的取值范围是. 【答案】(2,0)-3.(镇江期末·9)已知函数f ()=2-+4对任意的∈[1,3],不等式f ()≥0恒成立,则实数的最大值为【答案】44.(镇江期末·13)已知a ,b ∈R ,a +b =4,则111122+++b a 的最大值为5.(镇江期末·14)已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为【答案】31(,1)e e ⎧⎫--⎨⎬⎩⎭6.(扬州期末·11)已知函数xx x x x f 241sin )(-+-=,则关于的不等式)75()1(2-+-x f x f <0的解集为_________.【答案】(2,3) 7.(扬州期末·13)已知函数,若在实数使得该函数的值域为 ,实数a 的取值范是______. 【案】1(,2]2.(扬州期末·14)已知正实数,y 满足52+4y-y 2=1,则122+8y-y 2的最小值为_________. 【答案】739.(常州期末·11)已知函数()ln f x bx x =+,其中b ∈R .若过原点且斜率为k 的直线与曲线()y f x =相切,则k b -的值为. 【答案】1e10.(南京盐城期末·7). 设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是. 【答案】(,2]-∞11.(南京盐城期末·11).设函数()f x 是偶函数,当≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值范围是. 【答案】9[1,)412.(苏州期末·5)已知42a =,log 2a x a =,则正实数x =. 【答案】1213(苏州期末·12) 已知正实数a ,b ,c 满足111a b +=,111a b c+=+,则的取值范围是. 【答案】4(1,]314(苏州期末·14)已知直线y =a 分别与直线22y x =-,曲线2e x y x =+交于点A ,B ,则线段AB 长度的最小值为. 【答案】3ln 22+15.(苏北四市期末·3)函数y =的定义域为.【答案】(0,1]16(苏北四市期末·13)已知函数2211()(1)1x x f x x x ⎧-+ ⎪=⎨- > ⎪⎩,≤,,,函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为.【答案】[2,2]-17.(苏北四市期末·10)在平面直角坐标系xOy 中,曲线:C xy =P 到直线:0l x =的距离的最小值为.九、导数(一)试题细目表(二)试题解析1.(南通泰州期末·10)若曲线ln y x x =在1x =与x t =处的切线互相垂直,则正数t 的值为.【答案】2e -2.(无锡期末·14)若函数2()(1)||f x x x a =+-在区间[1,2]-上单调递增,则实数a 的取值范围是. 【答案】7(,1][,)2-∞-+∞3.(南通泰州期末·19)已知函数32()g x x ax bx =++(,)a b R ∈有极值,且函数()()xf x x a e =+的极值点是()g x 的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(1)求b 关于a 的函数关系式;(2)当0a >时,若函数()()()F x f x g x =-的最小值为()M a ,证明:7()3M a <-.【答案】【解】(1)因为'()()x x f x e x a e =++(1)xx a e =++,令'()0f x =,解得1x a =--.列表如下.所以时,取得极小值. 因为2'()32g x x ax b =++,由题意可知'(1)0g a --=,且24120a b ∆=-> 所以23(1)2(1)0a a a b --+--+=, 化简得243b a a =---,由2412a b ∆=-2412(1)(3)0a a a =+++>,得32a ≠-. 所以243b a a =---,32a ⎛⎫≠-⎪⎝⎭. (2)因为()()()F x f x g x =-32()()x x a e x ax bx =+-++, 所以'()'()'()F x f x g x =-2(1)[32(1)(3)]x x a e x ax a a =++-+-++(1)(1)(33)x x a e x a x a =++-++-- (1)(33)x x a e x a =++-++记()33xh x e x a =-++,则'()3xh x e =-,令'()0h x =,解得ln3x =.列表如下.所以时,取得极小值,也是最小值, 此时,ln3(ln 3)3ln 33h ea =-++63ln3a =-+3(2ln3)a =-+23(ln )03e a a =+>>.令'()0F x =,解得1x a =--. 列表如下.所以时,取得极小值,也是最小值. 所以()(1)M a F a =--=132(1)((1)(1)(1))a a ea a ab a -------+--+--12(1)(2)a e a a --=--++.令1t a =--,则1t <-,记2()(1)tm t e t t =---32t e t t =-+-,1t <-, 则2'()32tm t e t t =-+-,1t <-. 因为10t e e --<-<,2325t t ->, 所以'()0m t >,所以()m t 单调递增. 所以17()2233t m t e -<--<--=-, 所以7()3M a <-.4.(无锡期末·20)已知函数()(32)xf x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程;(2)若对任意x R ∈,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.【答案】(1)设切点为00(,)x y ,'()(31)x f x e x =+,则切线斜率为00(31)xe x +, 所以切线方程为0000(31)()xy y e x x x -=+-,因为切线过(2,0), 所以00000(32)(31)(2)xxe x e x x --=+-,化简得200380x x -=,解得080,3x =.当00x =时,切线方程为2y x =-,当083x =时,切线方程为8833918y e x e =-.(2)由题意,对任意x R ∈有e (32)(2)xx a x -≥-恒成立,①当(,2)x ∈-∞时,max (32)(32)[]22x x e x e x a a x x --≥⇒≥--, 令(32)()2x e x F x x -=-,则22(38)'()(2)x e x x F x x -=-,令'()0F x =得0x =,max ()(0)1F x F ==,故此时1a ≥.②当2x =时,恒成立,故此时a R ∈.③当(2,)x ∈+∞时,min (32)(32)[]22x x e x e x a a x x --≤⇒≤--, 令8'()03F x x =⇒=,83min 8()()93F x F e ==,故此时839a e ≤.综上:8319a e ≤≤.(3)因为()()f x g x <,即(32)(2)xe x a x -<-, 由(2)知83(,1)(9,)a e ∈-∞+∞,令(32)()2x e x F x x -=-,则当(,2)x ∈-∞,存在唯一的整数0x 使得00()()f x g x <,等价于(32)2x e x a x -<-存在唯一的整数0x 成立,因为(0)1F =最大,5(1)3F e -=,1(1)F e =-,所以当53a e<时,至少有两个整数成立, 所以5[,1)3a e∈. 当(2,)x ∈+∞,存在唯一的整数0x 使得00()()f x g x <,等价于(32)2x e x a x ->-存在唯一的整数0x 成立,因为838()93F e =最小,且3(3)7F e =,4(4)5F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有34(7,5]a e e ∈. 综上:345[,1)(7,5]3a e e e∈. 5.(镇江期末·19)已知b >0,且b ≠1,函数f ()=e +b ,其中e 为自然对数的底数:(1)如果函数f ()为偶函数,求实数b 的值,并求此时函数的最小值; (2)对满足b >0,且b ≠1的任意实数b ,证明函数y =f ()的图像经过唯一定点; (3)如果关于的方程f ()=2有且只有一个解,求实数b 的取值范围.【答案】(1)由(1)(1)f f =-得:11e b e b +=+,解得b e =-(舍),1b e=, 经检验1()x x f x e e =+为偶函数,所以1b e=,又1()2x x f x e e=+≥,当且仅当0x =时取等号, 所以1()xx f x e e =+的最小值为2.(2)假设y = f ()过定点00(,)x y ,则000=x xy e b +对任意满足b >0,且b ≠1恒成立. 令b =2得:000=2xxy e +;令b =3得:000=3xxy e +所以0023xx=,03()12x =,解得唯一解00x =,所以0=2y . 经检验,当0x =,f (0)=2,所以函数y =f ()的图像经过唯一定点(0,2).………8分(3)令()()22x x g x f x e b =-=+-为R 上连续函数,且g (0)=0,则方程g ()=0存在一个解. 1°当b >1时,g ()为增函数,此时g ()=0只有一个解.2°0<b <1时,令()ln (1()ln )0x x x x bg x e b b e b e '=+=+=,解得(ln )0()log b e bx -=.因为0,01x b e e><<,令()1()ln x bh x b e =+,()h x 为增函数,所以当0(,)x x ∈-∞时,()0h x <,所以()0g x '<,()g x 为减函数,当0()x x ∈+∞,时,()0h x >,所以()0g x '>,()g x 为增函数, 所以0()()g x g x =极小值,又()g x 定义域为R ,所以min 0()()g x g x =①若00x >,()g x 在0(,)x -∞上为减函数,0()(0)0g x g <=,而ln 2ln 2(ln 2)220g b b =+-=>, 所以0(,ln 2)x x ∈时,()g x 至少存在另外一个零点,矛盾!②若00x <,()g x 在0()x +∞,上为增函数,0()(0)0g x g <=,而log 2log 2(log 2)220b b b g e e =+-=>, 所以0(log 2,)b x x ∈时,()g x 存在另外一个零点,矛盾! ③当(ln )0()logb e bx -==,则ln 1b -=,解得1b e=,此时方程为1()20x x g x e e =+-=,由(1)得,只有唯一解00x =,满足条件综上,当1b >,或1b e=时,方程f ()=2有且只有一个解.………16分6.(扬州期末·19)已知函数()xe xf =,()R b a b ax xg ∈+=,,.(1) 若()01=-g ,且函数()x g 的图像是函数()x f 图像的一条切线,求实数a 的值; (2) 若不等式()x f >2+m 对任意∈()+∞,0恒成立,求实数m 的取值范围;(3) 若对任意实数a ,函数()()()x g x f x F -=在()+∞,0上总有零点,求实数b 的取值范围.【答案】解:(1)由(1)0g -=知,()g x 的图象直线过点(1,0)-,设切点坐标为00(,)T x y ,由'()x f x e =得切线方程是000()x x y e e x x -=-此直线过点(1,0)-,故0000(1)x x ee x -=--,解得00x =,所以'(0)1a f ==.………3分 (2)由题意得2,(0,)xm ex x <-∈+∞恒成立,令2(),(0,)x m x e x x =-∈+∞,则'()2x m x e x =-,再令()'()2x n x m x e x ==-,则'()2x n x e =-, 故当(0,ln 2)x ∈时,'()0n x <,()n x 单调递减;当(ln 2,)x ∈+∞时,'()0n x >,()n x 单调递增, 从而()n x 在(0,)+∞上有最小值(ln 2)22ln 20n =->, 所以()m x 在(0,)+∞上单调递增,.………6分 所以(0)m m ≤,即1m ≤.………8分 注:漏掉等号的扣2分(3)若0a <,()()()x F x f x g x e ax b =-=--在(0,)+∞上单调递增,故()()()F x f x g x =-在(0,)+∞上总有零点的必要条件是(0)0F <,即1b >,………10分 以下证明当1b >时,()()()F x f x g x =-在(0,)+∞上总有零点。

江苏省苏州市2019届高三数学最后一卷试题(含解析)

江苏省苏州市2019届高三数学最后一卷试题(含解析)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

江苏省苏州市2019届高三数学最后一卷试题(含解析)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={}02x x <<,B ={}1x x >,则A I B = . 答案:(1,2) 考点:集合的运算 解析:∵02x <<,1x >∴12x <<∴A I B =(1,2) 2.设i 是虚数单位,复数i2ia z -=的模为1,则正数a 的值为 .考点:虚数 解析:i 1i 2i 22a az -==--,因为复数z 的模为1,所以21144a +=,求得a . 3.为了解某团战士的体重情况,采用随机抽样的方法.将样本体重数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,则全团共抽取人数为 .答案:48考点:频率分布直方图解析:15(0.03750.0125)0.75-⨯+= 212(0.75)6÷⨯=484.执行如图所示的程序框图,输出的k 的值为 .答案:7考点:算法初步解析:s 取值由3→9→45,与之对应的k 为3→5→7,所以输出k 是7.5.设x ∈[﹣1,1],y ∈[﹣2,2],记“以(x ,y )为坐标的点落在不等式221x y +≥所表示的平面区域内”为事件A ,则事件A 发生的概率为 . 答案:1﹣8π 考点:几何概型解析:设事件A 发生的概率为P ,P =88π-=1﹣8π. 6.已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,若a >b 且sin A cosCa b=,则A= . 答案:2π 考点:三角函数与解三角形 解析:因为sin A cosC a b =,所以sin A cosCsin A sin B=,则sinB =cosC ,由a >b ,则B ,C 都是锐角,则B +C =2π,所以A =2π.7.已知等比数列{}n a 满足112a =,且2434(1)a a a =-,则5a = . 答案:8考点:等比中项 解析:∵2434(1)a a a =-∴2334(1)a a =-,则3a =2∴223512812a a a ===. 8.已知函数221()log (1)1x a x f x x x ⎧+≤=⎨->⎩,,,若[(0)]2f f =,则实数a 的值是 .考点:分段函数解析:∵0(0)223f =+= ∴[(0)](3)log 2a f f f == ∵[(0)]2f f =∴log 22a =,解得a.9.如图,在一个圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,则此圆柱底面的半径是 cm .答案:4考点:圆柱、球的体积解析:设此圆柱底面的半径是r cm . 得:32243863r r r r πππ⨯+=⋅ 解得:r =410.在平面直角坐标系xOy 中,已知点A ,F 分别为椭圆C :22221x y a b+=(a >b >0)的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于P ,Q 两点,线段AP 的中点为M ,若Q ,F ,M 三点共线,则椭圆C 的离心率为 . 答案:13考点:椭圆的离心率解析:设点B 为椭圆的左顶点,由题意知AM ∥BQ ,且AM =12BQ ∴AM AFBQ BF =,则12a c a c-=+ 求得a =3c ,即e =13. 11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是 . 答案:(3π,+∞) 考点:三角函数的图像与性质解析:不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.12.已知圆C :22(1)(4)10x y -+-=上存在两点A ,B ,P 为直线x =5上的一个动点,且满足AP ⊥BP ,则点P 的纵坐标取值范围是 . 答案:[2,6] 考点:圆的方程解析:要使AP ⊥BP ,即∠APB 的最大值要大于或等于90°,显然当PA 切圆C 于点A ,PB 切圆C 于点B 时,∠APB 最大,此时∠CPA 最大为45°,则sin ∠CPA ≥22,即CA CP≥2,设点P(5,0y ),则201016(4)y +-≥2,解得2≤0y ≤6.13.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,AB 2BC =u u u r u u u r ,则PC PA⋅u u u r u u u r 的最小值为 .答案:5﹣13考点:平面向量数量积解析:取AC 中点M ,由极化恒等式得22219PC PA PM AC PM 44⋅=-=-u u u r u u u r u u u r u u u r u u u r ,要使PC PA ⋅u u u r u u u r 取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 有最小值为2﹣132,代入求得PC PA ⋅u u u r u u u r的最小值为5﹣1314.已知实数a ,b ,c 满足2121a cb c ee a b +--+≤++(e 为自然对数的底数),则22a b +的最小值是 . 答案:15考点:函数与导数解析:设()(1)xu x e x =-+,则()1xu x e '=-,可知()(0)0u x u ≥=,即1xe x ≥+;可知211221a cb c ee a c b c a b +--+≥+++-=++,当且仅当210a c b c +=--=时取等; 即2121a cb c ee a b +--+=++,210a c b c +=--=.解得22222(1)51144245c c a b c c ++=+=++≥,当且仅当15c =时,取等号. 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知向量a r =(sin θ,cos θ﹣2sin θ),b r=(1,2). (1)若a r ∥b r ,求2sin cos 13cos θθθ⋅+的值;(2)若a b =r r,0<θ<π,求θ的值.16.(本小题满分14分)如图,四棱锥P —ABCD 的底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,PB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC 的中点,连结OM .(1)求证:OM ∥平面PAD ; (2)求证:OM ⊥平面PCD .17.(本小题满分14分)已知椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为F1,F2,离心率为12,P是椭圆C上的一个动点,且△P F1F23.(1)求椭圆C的方程;(2)设斜率不为零的直线PF2与椭圆C的另一个交点为Q,且PQ的垂直平分线交y轴于点T(0,18),求直线PQ的斜率.18.(本小题满分16分)如图为一块边长为2km 的等边三角形地块ABC ,为响应国家号召,现对这块地进行绿化改造,计划从BC 的中点D 出发引出两条成60°角的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种上草坪,其余区域修建成停车场,设∠BDE=α.(1)当α=60°时,求绿化面积;(2)试求地块的绿化面积()S α的取值范围.19.(本小题满分16分)数列{}n a 的前n 项和记为A n ,且A n =1()2n n a a +,数列{}n b 是公比为q 的等比数列,它的前n 项和记为B n .若110a b =≠,且存在不小于3的正整数k ,m ,使k m a b =.(1)若11a =,35a =,求2a ; (2)证明:数列{}n a 为等差数列;(3)若q =2,是否存在整数m ,k ,使A k =86B m ,若存在,求出m ,k 的值;若不存在,说明理由.20.(本小题满分16分)若函数()()f x g x +和()()f x g x ⋅同时在x =t 处取得极小值,则称()f x 和()g x 为一对“()P t 函数”.(1)试判断()f x x =与2()g x x ax b =++是否是一对“(1)P 函数”;(2)若()xf x e =与2()1g x x ax =++是一对“()P t 函数”.①求a 和t 的值;②若a <0,若对于任意x ∈[1,+∞),恒有()()()()f x g x m f x g x +<⋅,求实数m 的取值范围.附加题21. 【选做题】本题包括A,B,C三小题,请选定其中两小题作答,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A选修4-2:矩阵与变换变换是逆时针旋转的旋转变换,对应的变换矩阵是变换对应用的变换矩阵是求曲线的图象依次在变换的作用下所得曲线的方程.B.选修4-4:极坐标与参数方程在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为设点P是曲线上的动点,求P到直线l距离的最大值.C.选修4-5:不等式选讲已知函数若存在实数x,使不等式成立,求实数m的最小值,【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在四棱锥△PAD为正三角形,且平面PAD⊥平面ABCD.(1)求二面角P-EC-D的余弦值;(2)线段PC上是否存在一点M,使得异面直线DM和PE所成的角的余弦值为若存在,指出点M的位置;若不存在,请说明理由.23.(本小题满分10分)已知非空集合M满足MN*若存在非负整数使得当时,均有则称集合M具有性质P,记具有性质P的集合M的个数为(1)求的值;(2)求的表达式.。

江苏省苏州市2019届高三数学上学期期末考试试题201902220160

江苏省苏州市2019届高三数学上学期期末考试试题201902220160

(2) 取 AB 中点 G,连结 EG,FG. 因为 E,F 分别是 A1C1,BC 的中点, 1 所以 FG∥AC,且 FG= AC.(8 分) 2 因为 AC∥A1C1,且 AC=A1C1, 所以 FG∥EC1,且 FG=EC1, 所以四边形 FGEC1 为平行四边形,(11 分) 所以 C1F∥EG. 因为 EG⊂平面 ABE,C1F⊄平面 ABE, 所以 C1F∥平面 ABE.(14 分) 16. 解:(1) 在△ABC 中,因为 2bcos A=2c- 3a, 由正弦定理 , sin C 所以 2sin Bcos A=2sinC- 3sin A.(2 分) 在△ABC 中,sin C=sin(A+B), 所以 2sin Bcos A=2sin(A+B)- 3sin A, 即 2sin Bcos A=2sin Acos B+2cos AsinB- 3sin A, 所以 3sin A=2cos Bsin A,(4 分) 3 在△ABC 中,sin A≠0,所以 cos B= . 2 π 又 B∈(0,π),所以 B= .(6 分) 6 sin A sin B (2) f(x)=cos x·(sin x·cos 3 π π +cos x·sin )- (8 分) 4 3 3
{
)
3 3 3 5 所以 A( ,0),B(3,3),AB= (3- )2+32= . 2 2 2 3 5 答:点 A,B 之间的距离为 千米.(6 分) 2 (2) (解法 1)设总造价为 S,则 S=n·OA+2 2n·OB=(OA+2 2OB)·n, 设 y=OA+2 2OB,要使 S 最小,只要 y 最小. 当 AB⊥x 轴时,A(2,0),这时 OA=2,OB=2 2, 所以 y=OA+2 2OB=2+8=10.(8 分) 当 AB 与 x 轴不垂直时,设直线 AB 的方程为 y=k(x-2)+1(k≠0). 1 1 令 y=0,得点 A 的横坐标为 2- ,所以 OA=2- ;

江苏省2019年高三上数学(理)期末考试试卷

江苏省2019年高三上数学(理)期末考试试卷

高三上学期期末考试数学(理科)试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。

请在答题卷上作答。

第I 卷 (选择题 共60分)一、选择题(共12小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项符合题目要求。

)1.已知集合{}|270 A x N x =∈-<, {}2|340 B x x x =--≤,则A B ⋂= ( )A. {}1,2,3B. {}0,1,2,3C. 7| 2x x ⎧⎫≤⎨⎬⎩⎭ D. 7|0 2x x ⎧⎫<≤⎨⎬⎩⎭ 2.复数()3111i i +-+(i 为虚数单位)的虚部是( ) A. 32i B. 32 C. 52i - D. 52-3.当4n =时,执行如图所示的程序框图,则输出的S 值为 ( ) A. 9 B. 15 C. 31 D. 634.等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( )A. 15B. 16C. 18D. 20 5.若3sin 25πα⎛⎫+=- ⎪⎝⎭,且,2παπ⎛⎫∈ ⎪⎝⎭,则()sin 2πα-=( )A. 2425-B. 1225-C. 1225D. 24256.设E , F 分别是正方形ABCD 的边AB , BC 上的点,且12A E A B =, 23BF BC =,如果EF mAB nAC =+(m , n 为实数),则m n +的值为( ). A. 12- B. 0 C. 12 D. 17.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为( ) A.992B. 61C. 62D. 738.设不等式组1{0 4x x y x y ≥-≤+≤表示的平面区域为M ,若直线2y kx =-上存在M 内的点,则实数k 的取值范围是( )A. []2,5B. ][(),13,-∞-⋃+∞C. []1,3D. ][(),25,-∞⋃+∞ 9.已知()21cos 4f x x x =+, ()'f x 为()f x 的导函数,则()'f x 的图像是( )A.B.C.D.10.已知函数()224,{ 31,x x x a f x x a--≤=->,若()()0f f x =存在四个互不相等的实数根,则实数a 的取值范围为( )A. )2,⎡+∞⎣B. )6,⎡+∞⎣C. ))2,26,⎡⎡⋃+∞⎣⎣D. )[)2,63,⎡⋃+∞⎣11.设函数()()1e1e ln 1x x f x a x -=--+存在零点0x ,且01x >,则实数a 的取值范围是A. (),1eln2-∞+B. ()eln2,-+∞C. (),eln2-∞-D. ()1eln2,++∞ 12.已知奇函数()f x 满足()()4f x f x =+,当()0,1x ∈时, ()4xf x =,则()4l o g 192f =( )A.43 B. 43- C. 34 D. 38-第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知正方体1111ABCD A BC D -的棱长为42,点M 是棱BC 的中点,点P 在底面ABCD 内,点Q 在线段11AC 上,若1PM =,则PQ 长度的最小值为_____. 14.在平面直角坐标系xOy 中,已知圆221:9O x y +=,圆()222:616O x y +-=,在圆2O 内存在一定点M ,过M 的直线l 被圆1O ,圆2O 截得的弦分别为AB , CD ,且34AB CD =,则定点M 的坐标为_______.15.已知函数()πsin 6f x x ⎛⎫=- ⎪⎝⎭,若对任意的实数5ππ,62α⎡⎤∈--⎢⎥⎣⎦,都存在唯一的实数[]0,m β∈,使()()0ff αβ+=,则实数m 的最小值是___.16.如图,为了测量河对岸A 、B 两点之间的距离,观察者找到一个点C ,从点C 可以观察到点A 、B ;找到一个点D ,从点可以观察到点A 、C ;找到一个点E ,从点可以观察到点B 、C ;并测量得到一些数据: 2CD =, 23CE =, 45D ∠=︒, 105ACD ∠=︒, 48.19ACB ∠=︒,75BCE ∠=︒, 60E ∠=︒,则A 、B 两点之间的距离为__________.(其中cos48.19︒取近似值23)三、解答题(共6小题 ,共70分。

2019-2020学年江苏省苏州市张家港乐余高级中学高三数学理上学期期末试卷含解析

2019-2020学年江苏省苏州市张家港乐余高级中学高三数学理上学期期末试卷含解析

2019-2020学年江苏省苏州市张家港乐余高级中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数的定义为,且函数的图像关于直线对称,当时,,若,则的大小关系是(A)(B) (C) (D)参考答案:B2. 函数()的图象大致是()参考答案:B3. 二项式的展开式的第二项的系数为,则的值为()A.3 B. C.3或 D.3或参考答案:B4. P为曲线上任意一点,O为坐标原点,则线段PO的中点M的轨迹方程是A. B.C. D.参考答案:A法一:设到的距离为,则到的距离为. 因到轴的距离为,故到轴的距离为,到直线的距离为. 由到的距离等于到直线的距离,可得的轨迹方程. 选A.法二:根据点的坐标关系,使用相关点代入法,求得的轨迹方程.5. 函数的图象如右图所示,则导函数的图象的大致形状是 ( )A B C D参考答案:D略6. 已知函数的最小正周期为,则该函数的图象()A. 关于点(,0)对称B. 关于直线x=对称C. 关于点(,0)对称D. 关于直线x=对称参考答案:A略7. 设全集,则右图中阴影部分表示的集合为()A. B.C. D.参考答案:B略8. 如图,圆被其内接三角形分为4块,现有5种颜色准备用来涂这4块,要求每块涂一种颜色,且相邻两块的颜色不同,则不同的涂色方法有()A.360种B.320种C.108种D.96种参考答案:B【考点】排列、组合及简单计数问题.【分析】由题意相邻两块的颜色不同,通过对涂色区域编号,分别选出2种颜色、3种颜色、4种颜色涂色,求出各自的涂色方案种数,即可得到结果.【解答】解:对涂色区域编号,如图:分别用2色、就是1一色,2、3、4同色,涂色方法为:C52A22=20;涂3色时,2、3同色,2、4同色,3、4同色,涂色方法是3C53A33=180;涂4色时涂色方法是A54=120,所以涂色方案有:20+180+120=320.故选B.【点评】本题是中档题,考查排列组合计数原理的应用,考查分类讨论思想的应用,考查计算能力.9. 已知数列为等比数列,,,则的值为()A.B.C.D.参考答案:D10. 若函数,则下列命题正确的是A.B.C.D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知x>-3,那么x+的最小值是.参考答案:12. 如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD AB于D 点,则CD= .参考答案:略13. 已知数列{a n}满足a1=1,,且,记S n为数列{b n}的前n项和,则S n=_______。

2019年江苏省苏州市新区第一中学高三数学理上学期期末试卷含解析

2019年江苏省苏州市新区第一中学高三数学理上学期期末试卷含解析

2019年江苏省苏州市新区第一中学高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是 ( )A. B. C. D.参考答案:B2. 世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲,乙两人被分配到同一展台的不同分法的种数(A)12种(B)10种(C)8种(D)6种i参考答案:D略3. (5分)(2015?浙江模拟)若a是实数,则“a2≠4”是“a≠2”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件参考答案:C【考点】:必要条件、充分条件与充要条件的判断.【专题】:简易逻辑.【分析】:根据充分必要条件的定义进行判断即可.解:若“a2≠4”,则“a≠2”,是充分条件,若“a≠2”,则推不出“a2≠4”,不是必要条件,故选:C.【点评】:本题考查了充分必要条件,考查了不等式问题,是一道基础题.4. 如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A. B. C. D.4参考答案:A略5. 已知函数若函数存在零点,则实数a的取值范围是()A B.C. D.参考答案:B【分析】分析函数f(x)解析式可知函数存在唯一零点x=0,则只需,从而得到a的范围.【详解】指数函数,没有零点,有唯一的零点,所以若函数存在零点,须有零点,即,则,故选:B.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;(2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6. ()A.B.C.D.参考答案:B.故选:B7. 已知球面上有A、B、C三点,且AB=AC=,BC=2,球心到平面ABC的距离为,则球的体积为()(A)(B)(C)(D)参考答案:B由题意,,可得,又由球心到截面ABC的距离为,正好是球心到BC的中点的距离,所以球的半径为,所以球的体积为,故选B.8. 阅读图的程序框图,运行相应的程序,当输入x的值为﹣36时,输出x的值为()A.0 B.1 C.3 D.15参考答案:A【考点】程序框图.【分析】根据题意,按照程序框图的顺序进行执行,当|x|≤1时跳出循环,输出结果.【解答】解:当输入x=﹣36时,|x|>1,执行循环,x=6﹣2=4;|x|=4>1,执行循环,x=2﹣2=0,|x|=0<1,退出循环,输出的结果为x=1﹣1=0.故选:A9. “”是“函数在上单调递增的”().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:A若在上单调递增,则恒成立,∴恒成立,∵,∴,∴“”是在上递增的充分不必要条件,选择.10. 若R,则=2是的A、充分而不必要条件B、必要而不充分条件C、充要条件C、.既不充分又不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 存在以下三个命题:①若,则;②若a、b∈R,则;③若,则;其中正确的是(填序号)参考答案:①②③略12. 已知点是曲线上任意一点,则点到直线的距离的最小值是_____________;参考答案:略13. 已知函数f(x)=x|x﹣2|,则不等式的解集为.参考答案:[﹣1,+∞)【考点】函数的图象.【专题】函数的性质及应用.【分析】化简函数f(x),根据函数f(x)的单调性,解不等式即可.【解答】解:当x≤2时,f(x)=x|x﹣2|=﹣x(x﹣2)=﹣x2+2x=﹣(x﹣1)2+1≤1,当x>2时,f(x)=x|x﹣2|=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1,此时函数单调递增.由f(x)=(x﹣1)2﹣1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥﹣1,∴不等式的解集为[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.14. 已知实数满足,则直线恒过定点,该直线被圆所截得弦长的取值范围为.参考答案:;考点:直线过定点的知识及直线截圆所得的弦长计算公式及运用.15. 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为.参考答案:【考点】几何概型.【分析】根据安全飞行的定义,则安全的区域为以棱长为1的正方体内,则概率为两正方体的体积之比.【解答】解:蜜蜂“安全飞行”区域为棱长为1的正方体,其体积为1.而棱长为3的正方体的体积为27.故所求概率为.故答案为:.16. 已知函数,若,则关于的方程的所有不同实数根的积为.参考答案:略17. 一副扑克牌(有四色,同一色有13张不同牌)共52张.现随机抽取3张牌,则抽出的3张牌有且仅有2张花色相同的概率为(用数值作答).参考答案:三、解答题:本大题共5小题,共72分。

江苏省苏州市2019届高三数学上学期期末考试试题

江苏省苏州市2019届高三数学上学期期末考试试题

江苏省苏州市2019届高三数学上学期期末考试试题(满分160分,考试时间120分钟)2019.1一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,3,5},B ={3,4},则集合A ∩B = W.2. 复数z =1+2ii(i 为虚数单位)的虚部是 W.3. 某班级50名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示,则成绩在60~80分的学生人数是 W.4. 连续抛掷一颗骰子2次,则掷出的点数之和为8的概率为 W.5. 已知3sin(α-π)=cos α,则tan(π-α)的值是 W.6. 如图所示的流程图中,若输入的a ,b 分别为4,3,则输出n 的值为 W.7. 在平面直角坐标系xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点(-3,1),则该双曲线的离心率为 W.8. 曲线y =x +2e x在x =0处的切线与两坐标轴围成的三角形面积为 W.9. 如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为 W.10. 在平面直角坐标系xOy 中,过点A (1,3),B (4,6),且圆心在直线x -2y -1=0上的圆的标准方程为 W.11. 设S n 是等比数列{a n }的前n 项和,若S 5S 10=13,则S 5S 20+S 10= W. 12. 设函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,-2x ,x <0,若方程f (x )-kx =3有三个相异的实根,则实数k的取值范围是 W.13. 如图,在边长为2的正方形ABCD 中,M ,N 分别是边BC ,CD 上的两个动点,且BM +DN =MN ,则AM →·AN →的最小值是 W.14. 设函数f (x )=⎪⎪⎪⎪⎪⎪2x -ax 2,若对任意x 1∈(-∞,0),总存在x 2∈[2,+∞),使得f (x 2)≤f (x 1),则实数a 的取值范围是 W.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,已知AB ⊥BC ,E ,F 分别是A 1C 1,BC 的中点.求证: (1) 平面ABE ⊥平面B 1BCC 1; (2) C 1F ∥平面ABE .16. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知2bc cos A =2c -3a . (1) 求角B 的大小;(2) 设函数f (x )=cos x ·sin(x +π3-34),求f (A )的最大值.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6.(1) 求椭圆E 的标准方程;(2) 过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于点M ,求点M 的坐标.如图,长途车站P 与地铁站O 的距离为 5千米,从地铁站O 出发有两条道路l 1,l 2,经测量,l 1,l 2的夹角为45°,OP 与l 1的夹角θ满足tan θ=12(其中0<θ<π2),现要经过P 修一条直路分别与道路l 1,l 2交汇于A ,B 两点,并在A ,B 处设立公共自行车停放点.(1) 已知修建道路PA ,PB 的单位造价分别为2m 元/千米和m 元/千米,若两段道路的总造价相等,求此时点A ,B 之间的距离;(2) 考虑环境因素,需要对OA ,OB 段道路进行翻修,OA ,OB 段的翻修单价分别为n 元/千米和22n 元/千米,要使两段道路的翻修总价最少,试确定A ,B 点的位置.已知函数f (x )=ax 3+bx 2-4a (a ,b ∈R ). (1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b a的值;(3) 当a =0时,若f (x )<ln x 的解集为(m ,n ),且(m ,n )中有且仅有一个整数,求实数b 的取值范围.定义:对于任意n ∈N *,x n +x n +2-x n +1仍为数列{x n }中的项,则称数列{x n }为“回归数列”.(1) 已知a n =2n (n ∈N *),判断数列{a n }是否为“回归数列”,并说明理由;(2) 若数列{b n }为“回归数列”,b 3=3,b 9=9,且对于任意n ∈N *,均有b n <b n +1成立. ①求数列{b n }的通项公式;②求所有的正整数s ,t ,使得等式b 2s +3s +1-1b 2s +3s -1=b t 成立.2019届高三模拟考试试卷(四)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤m 723的逆矩阵M -1=⎣⎢⎡⎦⎥⎤ n -7-2 m ,求实数m ,n 的值.B. (选修44:坐标系与参数方程)在极坐标系中,圆C 的方程是ρ=4cos θ.在以极点为原点,极轴为x 轴正半轴的平面直角坐标系中,直线l 的参数方程是⎩⎪⎨⎪⎧x =22t +m ,y =22t (t 为参数).若直线l 与圆C 相切,求实数m 的值.C. (选修45:不等式选讲)设a ,b ,c 都是正数,求证:a 2b +c +b 2c +a +c 2a +b ≥12(a +b +c ).【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知正四棱锥SABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为ξ.(1) 求概率P(ξ=2);(2) 求ξ的分布列和数学期望.23. 如图,在四棱锥PABCD中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCD,PA=AD,PA与平面PBC所成角的正弦值为21 7.(1) 求侧棱PA的长;(2) 设点E为AB中点,若PA≥AB,求二面角BPCE的余弦值.2019届高三模拟考试试卷(苏州)数学参考答案及评分标准1. {3}2. -13. 254.536 5. 13 6. 3 7. 10 8. 239. 2 3 10. (x -5)2+(y -2)2=17 11. 11812. (-2,2-23) 13. 82-8 14. [0,1]15. 证明:(1) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥底面ABC . 因为AB ⊂平面ABC ,所以BB 1⊥AB .(2分)因为AB ⊥BC ,BB 1∩BC =B ,BB 1,BC ⊂平面B 1BCC 1, 所以AB ⊥平面B 1BCC 1.(4分)又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(6分)(2) 取AB 中点G ,连结EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .(8分)因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1,所以四边形FGEC 1为平行四边形,(11分) 所以C 1F ∥EG .因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .(14分)16. 解:(1) 在△ABC 中,因为2b cos A =2c -3a , 由正弦定理a sin A =b sin B =csin C ,所以2sin B cos A =2sin C -3sin A .(2分) 在△ABC 中,sin C =sin(A +B ),所以2sin B cos A =2sin(A +B )-3sin A ,即2sin B cos A =2sin A cos B +2cos A sin B -3sin A , 所以3sin A =2cos B sin A ,(4分) 在△ABC 中,sin A ≠0,所以cos B =32. 又B ∈(0,π),所以B =π6.(6分)(2) f (x )=cos x ·(sin x ·cos π3+cos x ·sin π3)-34(8分)=12sin x ·cos x +32cos 2x -34=14sin 2x +34(cos 2x +1)-34=12sin(2x +π3),(10分) 所以f (A )=12sin(2A +π3).在△ABC 中,B =π6,且A +B +C =π,所以A ∈(0,5π6),(12分)所以2A +π3∈(π3,2π),所以当2A +π3=π2,即A =π12时,f (A )的最大值为12.(14分)17. 解:(1) 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),半焦距为c ,因为椭圆的离心率为12,所以c a =12,即a =2c .因为A 到右准线的距离为6,所以a +a 2c=3a =6,(2分)解得a =2,c =1,(4分)所以b 2=a 2-c 2=3,所以椭圆E 的标准方程为x 24+y 23=1.(6分)(2) 直线AB 的方程为y =32(x +2),由⎩⎪⎨⎪⎧y =32(x +2),x 24+y 23=1,得x 2+3x +2=0,解得x =-2或x =-1,则点B 的坐标为(-1,32).(9分)由题意,得右焦点F (1,0),所以直线BF 的方程为y =-34(x -1).(11分)由⎩⎪⎨⎪⎧y =-34(x -1),x 24+y23=1,得7x 2-6x -13=0,解得x =-1或x =137,(13分)所以点M 坐标为(137,-914).(14分)18. 解:(1) 以O 为原点,直线OA 为x 轴建立平面直角坐标系, 因为0<θ<π2,tan θ=12,所以OP :y =12x .设P (2t ,t ),由OP =5,得t =1,所以P (2,1).(2分)(解法1)由题意得2m ·PA =m ·PB ,所以BP =2PA ,所以点B 的纵坐标为3. 因为点B 在直线y =x 上,所以B (3,3),(4分) 所以AB =32PB =352.(解法2)由题意得2m ·PA =m ·PB ,所以BP →=2PA →.设A (a ,0)(a >0),又点B 在射线y =x (x >0)上,所以可设B (b ,b )(b >0),由BP →=2PA →,得⎩⎪⎨⎪⎧2-b =2(a -2),1-b =-2,所以⎩⎪⎨⎪⎧a =32,b =3,(4分)所以A (32,0),B (3,3),AB =(3-32)2+32=352.答:点A ,B 之间的距离为352千米.(6分)(2) (解法1)设总造价为S ,则S =n ·OA +22n ·OB =(OA +22OB )·n , 设y =OA +22OB ,要使S 最小,只要y 最小. 当AB ⊥x 轴时,A (2,0),这时OA =2,OB =22, 所以y =OA +22OB =2+8=10.(8分)当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -2)+1(k ≠0). 令y =0,得点A 的横坐标为2-1k ,所以OA =2-1k;令x =y ,得点B 的横坐标为2k -1k -1.(10分) 因为2-1k >0,且2k -1k -1>0,所以k <0或k >1,此时y =OA +22OB =2-1k +4(2k -1)k -1,y ′=1k 2+-4(k -1)2=-(k +1)(3k -1)k 2(k -1)2.(12分)当k <0时,y 在(-∞,-1)上递减,在(-1,0)上递增, 所以y min =y |k =-1=9<10,此时A (3,0),B (32,32);(14分)当k >1时,y =2-1k +8(k -1)+4k -1=10+4k -1-1k =10+3k +1k (k -1)>10.综上,要使OA ,OB 段道路的翻修总价最少,A 位于距O 点3千米处,B 位于距O 点322千米处.(16分)(解法2)如图,作PM ∥OA 交OB 于点M ,交y 轴于点Q ,作PN ∥OB 交OA 于点N ,因为P (2,1),所以OQ =1.因为∠BOQ =45°,所以QM =1,OM =2, 所以PM =1,PN =OM = 2. 由PM ∥OA ,PN ∥OB ,得2OB=PA AB ,1OA =PBAB,(8分)所以2OB+1OA =PA AB +PBAB=1.(10分)设总造价为S ,则S =n ·OA +22n ·OB =(OA +22OB )·n , 设y =OA +22OB ,要使S 最小,只要y 最小.y =OA +22OB =(OA +22OB )(2OB+1OA)=5+2(OA OB +2OBOA)≥9,(14分) 当且仅当OA =2OB 时取等号,此时OA =3,OB =322.答:要使OA ,OB 段道路的翻修总价最少,A 位于距O 点3千米处,B 位于距O 点322千米处.(16分)19. 解:(1) 当a =b =1时,f (x )=x 3+x 2-4,f ′(x )=3x 2+2x .(2分) 令f ′(x )>0,解得x >0或x <-23,所以f (x )的单调增区间是(-∞,-23)和(0,+∞).(4分)(2) (解法1)f ′(x )=3ax 2+2bx ,令f ′(x )=0,得x =0或x =-2b 3a .(6分)因为函数f (x )有两个不同的零点,所以f (0)=0或f (-2b3a )=0.当f (0)=0时,得a =0,不合题意,舍去;(8分) 当f (-2b 3a )=0时,代入得a (-2b 3a )3+b (-2b 3a )2-4a =0,即-827(b a )3+49(b a )3-4=0,所以ba =3.(10分)(解法2)由于a ≠0,所以f (0)≠0,由f (x )=0,得b a =4-x 3x 2=4x2-x (x ≠0).(6分)设h (x )=4x 2-x ,h ′(x )=-8x3-1,令h ′(x )=0,得x =-2.当x ∈(-∞,-2)时,h ′(x )<0,h (x )单调递减;当x ∈(-2,0)时,h ′(x )>0,h (x )单调递增;当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增. 当x >0时,h (x )的值域为R ,故不论b a 取何值,方程b a =4-x 3x 2=4x2-x 有且仅有一个根;(8分)当x <0时,h (x )min =h (-2)=3,所以b a =3时,方程b a =4-x 3x 2=4x2-x 恰有一个根-2,此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分)(3) 当a =0时,因为f (x )<ln x ,所以bx 2<ln x . 设g (x )=ln x -bx 2,则g ′(x )=1x -2bx =1-2bx2x(x >0).当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0,所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分) 当b >0时,令g ′(x )=1-2bx2x=0,得x =12b, 所以g (x )在(0,12b )上递增,在(12b,+∞)上递减, 所以g (x )max =g (12b)=ln 12b -12. 要使g (x )>0有解,首先要满足ln12b -12>0,解得b <12e①.(13分) 因为g (1)=-b <0,g (e 12)=12-b e>0,要使f (x )<ln x 的解集(m ,n )中只有一个整数,则⎩⎪⎨⎪⎧g (2)>0,g (3)≤0,即⎩⎪⎨⎪⎧ln 2-4b >0,ln 3-9b ≤0,解得ln 39≤b <ln 24 ②.(15分)设h (x )=ln x x ,则h ′(x )=1-ln xx2. 当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e ,+∞)时,h ′(x )<0,h (x )递减. 所以h (x )max =h (e)=1e >h (2)=ln 22,所以12e >ln 24.由①②,得ln 39≤b <ln 24.(16分)20. 解:(1) 假设数列{a n }是“回归数列”, 则对任意n ∈N *,总存在k ∈N *,使a n +a n +2-a n +1=a k 成立,即2n +4·2n -2·2n =2k ,即3·2n =2k,(2分)此时等式左边为奇数,右边为偶数,不成立,所以假设不成立, 所以数列{a n }不是“回归数列”.(4分) (2) ① 因为b n <b n +1,所以b n +1<b n +2,所以b n +b n +2-b n +1>b n 且b n +b n +2-b n +1=b n +2-(b n +1-b n )<b n +2. 又数列{b n }为“回归数列”,所以b n +b n +2-b n +1=b n +1, 即b n +b n +2=2b n +1,所以数列{b n }为等差数列.(6分)因为b 3=3,b 9=9,所以b n =n (n ∈N *).(8分)②因为b 2s +3s +1-1b 2s +3s -1=b t ,所以t =3s +1+s 2-13s +s 2-1(*).因为t -3=2(1-s 2)3s +s 2-1≤0,所以t ≤3. 又t ∈N *,所以t =1,2,3.(10分)当t =1时,(*)式整理为3s=0,不成立.(11分) 当t =2时,(*)式整理为s 2-13s=1.设c n =n 2-13n (n ∈N *),因为c n +1-c n =2n (1-n )+33n +1, 所以当n =1时,c n <c n +1;当n ≥2时,c n >c n +1, 所以(c n )max =c 2=13<1,所以s 无解.(14分)当t =3时,(*)式整理为s 2=1,因为s ∈N *,所以s =1.综上所述,使得等式成立的所有的正整数s ,t 的值是s =1,t =3.(16分)2019届高三模拟考试试卷(四)(苏州) 数学附加题参考答案及评分标准21. A. 解:由MM -1=⎣⎢⎡⎦⎥⎤m 723⎣⎢⎡⎦⎥⎤ n -7-2 m =⎣⎢⎡⎦⎥⎤mn -1402n -6-14+3m =⎣⎢⎡⎦⎥⎤1001,(4分) 所以⎩⎪⎨⎪⎧mn -14=1,2n -6=0,-14+3m =1,(8分)解得⎩⎪⎨⎪⎧m =5,n =3.(10分)B. 解:由ρ=4cos θ,得ρ2=4ρcos θ,所以x 2+y 2=4x ,即圆C 的方程为(x -2)2+y 2=4.(3分)又由⎩⎪⎨⎪⎧x =22t +m ,y =22t ,消t ,得x -y -m =0.(6分)因为直线l 与圆C 相切,所以|2-m |2=2,所以m =2±2 2.(10分)C. 证明:因为(a +b +c )(a 2b +c +b 2a +c +c 2a +b)=12[(a +b )+(b +c )+(c +a )](a 2b +c +b 2a +c +c 2a +b )(4分) ≥12⎣⎢⎡⎦⎥⎤a +b c 2a +b+b +ca 2b +c+c +ab 2c +a 2=12(a +b +c )2,(8分) 所以a 2b +c+b 2a +c +c 2a +b ≥12(a +b +c ).(10分)22. 解:(1) 当ξ=2时,所取三点是底面ABCD 的四个顶点中的任三个, 所以P (ξ=2)=C 34C 35=410=25.(2分)(2) ξ的可能取值为2,5,2 2.P (ξ=2)=25;P (ξ=5)=4C 35=25;(4分)P (ξ=22)=C 12C 35=15.(6分)所以ξ的分布列为ξ 2 5 2 2 P25 25 15(8分)ξ的数学期望为E (ξ)=2×25+5×25+22×15=22+25+45.(10分)23. 解:(1) 取AD 中点O ,BC 中点M ,连结OP ,OM , 因为PA =AD ,所以OP ⊥AD . 因为平面PAD 上平面ABCD ,OP ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以OP ⊥平面ABCD , 所以OP ⊥OA ,OP ⊥OM .又四边形ABCD 是正方形,所以OA ⊥OM .以O 为原点,OA ,OM ,OP 为x ,y ,z 轴建立空间直角坐标系Oxyz ,如图,(1分) 则A (12,0,0),D (-12,0,0),B (12,1,0),C (-12,1,0).设P (0,0,c )(c >0),则PB →=(12,1,-c ),CB →=(1,0,0).设平面PBC 的一个法向量为n 1=(x 1,y 1,z 1),(3分)则⎩⎪⎨⎪⎧12x 1+y 1-cz 1=0,x 1=0,取z 1=1,则y 1=c ,从而n 1=(0,c ,1).设PA 与平面PBC 所成角为α,因为PA →=(12,0,-c ),所以sin α=|cos 〈PA →,n 1〉|=|PA →·n 1||PA →|·|n 1|=c14+c 2·c 2+1=217, 解得c 2=34或c 2=13,所以PA =1或PA =216.(5分)(2) 由(1)知,PA ≥AB =1,所以PA =1,c =32. 由(1)知,平面PBC 的一个法向量为n 1=(0,c ,1)=(0,32,1).(6分) 设平面PCE 的一个法向量为n 2=(x ,y ,z ),而CE →=(1,-12,0),PC →=(-12,1,-32),所以⎩⎪⎨⎪⎧x -12y =0,-12x +y -32z =0,取x =1,则y =2,z =3,即n 2=(1,2,3).(8分)设二面角BPCE 的平面角为β, 所以|cos β|=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2372×22=67=427. 根据图形得β为锐角,所以二面角BPCE 的余弦值为427.(10分)。

2019-2020学年江苏省苏州市高三(上)期末数学试卷

2019-2020学年江苏省苏州市高三(上)期末数学试卷

2019-2020学年江苏省苏州市高三(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)I.1.(5分)已知集合{|1}B=-,0,1,4},则A B=A x x=…,{12.(5分)已知i是虚数单位,复数(1)(2)=++的虚部为3,则实数b的值为.z bi i3.(5分)从2名男生和1名女生中任选2名参加青年志愿者活动,则选中的恰好是一男一女的概率为.4.(5分)为了了解苏州市某条道路晚高峰时段的车流量情况,随机抽查了某天单位时间内通过的车辆数,得到以下频率分布直方图(如图),已知在[5,7)之间通过的车辆数是440辆,则在[8,9)之间通过的车辆数是.5.(5分)如图是一个算法流程图,若输入的x值为5,则输出的y值为.6.(5分)已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要” )7.(5分)在平面直角坐标系xOy 中,已知点1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 的坐标为(0,)b ,若12120F PF ∠=︒,则该双曲线的离心率为 . 8.(5分)若x ,y 满足约束条件0010x x y x y ⎧⎪-⎨⎪+-⎩…„„,则3z x y =+的最大值为 .9.(5分)如图,某品牌冰淇淋由圆锥形蛋筒和半个冰淇淋小球组成,其中冰淇淋小球的半径与圆锥底面半径相同,已知圆锥形蛋筒的侧面展开图是圆心角为25π,弧长为4cm π的扇形,则该冰淇淋的体积是 3cm .10.(5分)在平面直角坐标系xOy 中,若直线20()x my m m R +++=∈上存在点P ,使得过点P 向圆22:2O x y +=作切线PA (切点为)A ,满足2PO PA =,则实数m 的取值范围为 .11.(5分)在平面直角坐标系xOy 中,已知直线1:2l y =与函数()sin()(0)6f x x πωω=+>的图象在y 轴右侧的公共点从左到右依次为1A ,2A ⋯,若点1A 的横坐标为1.则点2A 的横坐标为 .12.(5分)如图,在平面四边形ABCD 中,已知3AD =,4BC =,E ,F 为AB ,CD 的中点,P ,Q 为对角线AC ,BD 的中点,则PQ EF u u u r u u u rg的值为 .13.(5分)已知实数x ,y 满足2()12x x y y +=+,则2254x y -的最小值为 . 14.(5分)已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩…(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(14分)已知向量3(sin ,)4a x =r,(cos ,1)b x =-r .(1)当//a b rr 时,求tan 2x 的值;(2)设函数()2()f x a b b =+r r r g,且(0,)2x π∈,求()f x 的最大值以及对应的x 的值. 16.(14分)如图,在三棱柱111ABC A B C -中,CA CB =,D ,E 分别是AB ,1B C 的中点. (1)求证://DE 平面11ACC A ; (2)若DE AB ⊥,求证:1AB B C ⊥.17.(14分)为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB 中,23AOB π∠=,23OB =(百米),荒地内规划修建两条直路AB ,OC ,其中点C 在¶AB 上(C 与A ,B 不重合),在小路AB 与OC 的交点D 处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设BDC θ∠=,蜂巢区的面积为S (平方百米).(1)求S 关于θ的函数关系式;(2)当θ为何值时,蜂巢区的面积S 最小,并求此时S 的最小值.18.(16分)如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P 作x 轴的垂线交其“辅圆”于点Q ,当点Q 在点P 的上方时,称点Q 为点P 的“上辅点”.已知椭圆2222:1(0)x y E a b a b +=>>上的点3(1,)的上辅点为(1,3).(1)求椭圆E 的方程; (2)若OPQ ∆的面积等于12,求上辅点Q 的坐标; (3)过上辅点Q 作辅圆的切线与x 轴交于点T ,判断直线PT 与椭圆E 的位置关系,并证明你的结论.19.(16分)已知数列{}n a 满足12n n S na a =+,34a =,其中n S 是数列{}n a 的前n 项和. (1)求1a 和2a 的值及数列{}n a 的通项公式;(2)设*1231111()2462n n T n N S S S S n=+++⋯+∈++++. ①若23k T T T =,求k 的值;②求证:数列{}n T 中的任意一项总可以表示成该数列其他两项之积. 20.(16分)已知函数()()a lnxf x a R x+=∈. (1)求函数()f x 的单调区间;(2)当函数()f x 与函数()g x lnx =图象的公切线l 经过坐标原点时,求实数a 的取值集合;(3)证明:当1(0,)2a ∈时,函数()()h x f x ax =-有两个零点1x ,2x ,且满足12111x x a +<.2019-2020学年江苏省苏州市高三(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.(5分)已知集合{|1}A x x =…,{1B =-,0,1,4},则A B =I {1,4} . 【解答】解:{|1}A x x =Q …,{1B =-,0,1,4}, {1A B ∴=I ,4}.故答案为:{1,4}.2.(5分)已知i 是虚数单位,复数(1)(2)z bi i =++的虚部为3,则实数b 的值为 1 . 【解答】解:(1)(2)(2)(21)z bi i b b i =++=-++Q 的虚部为3,213b ∴+=,即1b =.故答案为:1.3.(5分)从2名男生和1名女生中任选2名参加青年志愿者活动,则选中的恰好是一男一女的概率为23. 【解答】解:从2名男生和1名女生中任选2名参加青年志愿者活动, 基本事件总数233n C ==,选中的恰好是一男一女包含的基本事件个数11212m C C ==, 则选中的恰好是一男一女的概率为23m p n ==. 故答案为:23. 4.(5分)为了了解苏州市某条道路晚高峰时段的车流量情况,随机抽查了某天单位时间内通过的车辆数,得到以下频率分布直方图(如图),已知在[5,7)之间通过的车辆数是440辆,则在[8,9)之间通过的车辆数是 100 .【解答】解:由频率分布直方图得:在[5,7)之间通过的车辆的频率为0.240.200.44+=, 在[8,9)之间通过的车辆的频率为0.10, 设在[8,9)之间通过的车辆数为n . Q 在[5,7)之间通过的车辆数是440辆,∴4400.440.1n=,解得100n =. 则在[8,9)之间通过的车辆数为100. 故答案为:100.5.(5分)如图是一个算法流程图,若输入的x 值为5,则输出的y 值为2 .【解答】解:输入5x =,不满足0x <,所以运行2log (51)2y =-=, 故答案为:26.(5分)已知等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的 充分不必要 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要” ) 【解答】解:在等比数列{}n a 中,10a >,则由12a a <,得11a a q <,即1q >,∴243115a a q a q a =<=;反之,由243115a a q a q a =<=,得21q >,即1q >或1q <-,当1q <-时,112a a q a >=.∴等比数列{}n a 中,10a >,则“12a a <”是“35a a <”的充分不必要条件.故答案为:充分不必要.7.(5分)在平面直角坐标系xOy 中,已知点1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 的坐标为(0,)b ,若12120F PF ∠=︒,则该双曲线的离心率为. 【解答】解:在平面直角坐标系xOy 中,已知点1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 的坐标为(0,)b , 由12120F PF ∠=︒,可得:cb,即222233()c b c a ==-, 即2223c a =,所以双曲线的离心率为:c e a ==. 8.(5分)若x ,y 满足约束条件0010x x y x y ⎧⎪-⎨⎪+-⎩…„„,则3z x y =+的最大值为 3 .【解答】解:作出不等式组0010x x y x y ⎧⎪-⎨⎪+-⎩…„„对应的平面区域如图:设3z x y =+得1133y x z =-+,平移直线1133y x z =-+,由图象可知当直线1133y x z =-+经过点(0,1)A 时,直线1133y x z =-+的截距最大,此时z 最大,此时3z =,故答案为:3.9.(5分)如图,某品牌冰淇淋由圆锥形蛋筒和半个冰淇淋小球组成,其中冰淇淋小球的半径与圆锥底面半径相同,已知圆锥形蛋筒的侧面展开图是圆心角为2 5π,弧长为4cmπ的扇形,则该冰淇淋的体积是161663π+3cm.【解答】解:Q圆锥形蛋筒的侧面展开图是圆心角为25π,弧长为4cmπ的扇形,∴圆锥底面半径为422rππ==,圆锥母线长41025lππ==,圆锥的高为2210246h=-∴半个冰淇淋小球的半径2R=,∴该冰淇淋的体积是:2311422323V ππ=⨯⨯⨯+⨯⨯⨯=.. 10.(5分)在平面直角坐标系xOy 中,若直线20()x my m m R +++=∈上存在点P ,使得过点P 向圆22:2O x y +=作切线PA (切点为)A ,满足PO =,则实数m 的取值范围为 {|0m m „或4}3m … .【解答】解:根据题意,圆22:2O x y +=,其圆心为O ,半径r =若点P 向圆22:2O x y +=作切线PA ,满足PO ,又由OA r == 则有222||||||2PO PA OA -==,变形可得2PO =,若直线20()x my m m R +++=∈上存在点P2,变形可得:2340m m -…, 解可得:0m „或43m …,即m 的取值范围为{|0m m „或4}3m …;故答案为:{|0m m „或4}3m ….11.(5分)在平面直角坐标系xOy 中,已知直线1:2l y =与函数()sin()(0)6f x x πωω=+>的图象在y 轴右侧的公共点从左到右依次为1A ,2A ⋯,若点1A 的横坐标为1.则点2A 的横坐标为 3 .【解答】解:因为点1A 的横坐标为1,即当1x =时,1()sin()62f x πω=+=,所以266k ππωπ+=+或52()66k k Z ππωπ+=+∈, 又直线1:2l y =与函数()sin()(0)6f x x πωω=+>的图象在y 轴右侧的公共点从左到右依次为1A ,2A ⋯,所以566ππω+=, 故23πω=, 所以:函数的关系式为2()sin()36f x x ππ=+.当23x =时,f (3)21sin(3)362ππ=⨯+=, 即点2A 的横坐标为3,1(3,)2为二函数的图象的第二个公共点.故答案为:3.12.(5分)如图,在平面四边形ABCD 中,已知3AD =,4BC =,E ,F 为AB ,CD 的中点,P ,Q 为对角线AC ,BD 的中点,则PQ EF u u u r u u u r g 的值为 74- .【解答】解:如图,连接FP ,FQ ,EP ,EQ ,E Q ,F 为AB ,CD 的中点,P ,Q 为对角线AC ,BD 的中点,∴四边形EPFQ 为平行四边形,∴1()2PQ EQ EP AD BC =-=-u u u r u u u r u u u ru u ur u u u r ,1()2EF EP EQ AD BC =+=+u u u r u u u r u u u r u u u r u u u r ,且3AD =,4BC =, ∴2217()44PQ EF AD BC =-=-u u u r u u u r u u u r u u u r g .故答案为:74-.13.(5分)已知实数x ,y 满足2()12x x y y +=+,则2254x y -的最小值为 4 . 【解答】解:实数x ,y 满足2()12x x y y +=+, 化为:(2)()1x y x y +-=,令2x y m +=,x y n -=,则1mn =.解得23m nx+=,3m ny-=.则222222222221116116545()4()(2816)(28)(228)4 33999m n m nx y m mn n m mm m+--=-=++=+++=g…,当且仅当212mn=⎧⎪⎨=⎪⎩,212mn=-⎧⎪⎨=-⎪⎩时,即112xy=⎧⎪⎨=⎪⎩,112xy=-⎧⎪⎨=-⎪⎩时取等号.2254x y∴-的最小值为4.故答案为:4.14.(5分)已知函数,2()48,25xexxef xxxx⎧⎪⎪=⎨-⎪>⎪⎩„(其中e为自然对数的底数),若关于x的方程22()3|()|20f x a f x a-+=恰有5个相异的实根,则实数a的取值范围为12{}[2eU,4)5.【解答】解:当2x„时,令()10xef xe'=-=,解得1x=,所以当1x„时,()0f x'>,则()f x单调递增,当12x剟时,()0f x'<,则()f x单调递减,当2x>时,4848()555xf xx x-==-单调递减,且()[0f x∈,4)5作出函数()f x的图象如图:(1)当0a=时,方程整理得2()0f x=,只有2个根,不满足条件;(2)若0a>,则当()0f x<时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a++=++=,则()20f x a=-<,()0f x a=-<,此时各有1解,故当()0f x>时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a-+=--=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩„,解得245a e <„,故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意.综上:a 的范围是12{}[2e U ,4)5故答案为12{}[2e U ,4)5二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(14分)已知向量3(sin ,)4a x =r,(cos ,1)b x =-r .(1)当//a b rr 时,求tan 2x 的值;(2)设函数()2()f x a b b =+r r r g,且(0,)2x π∈,求()f x 的最大值以及对应的x 的值. 【解答】解:(1)Q //a b rr ,∴3sin cos 04x x --=, ∴3tan 4x =-,∴232tan 242tan 2917116x x tan x -===---; (2)()2()f x a b b =+r rr g 222a b b =+rr r g232sin cos 222x x cos x =-++ 3sin 2cos22x x =++32sin(2)42x π=++,Q (0,)2x π∈,∴52(,)444x πππ+∈, ∴242x ππ+=,即8x π=时,()f x 取得最大值322+. 16.(14分)如图,在三棱柱111ABC A B C -中,CA CB =,D ,E 分别是AB ,1B C 的中点. (1)求证://DE 平面11ACC A ; (2)若DE AB ⊥,求证:1AB B C ⊥.【解答】证明:(1)取AC 、1CC 的中点分别为M 、N ,D Q ,M 分别为AB ,AC 的中点,//DM BC ∴,且12DM BC =,E Q 、N 分别为1CB ,1CC 的中点,11//EN B C ∴,且1112EN B C =, 又11//BC B C ,11BC B C =,//DM EN ∴,且DM EN =,∴四边形DENM 为平行四边形,//DE MN ∴,又DE 不在平面11ACC A 内,MN 在平面11ACC A ,//DE ∴平面11ACC A ;(2)连接CD ,由CA CB =,且D 为AB 的中点可知CD AB ⊥,又DE AB ⊥,CD DE D =I ,且CD 、DE 都在平面CDE 内,AB ∴⊥平面CDE ,又1B C 在平面CDE 内, 1AB B C ∴⊥.17.(14分)为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB 中,23AOB π∠=,23OB =(百米),荒地内规划修建两条直路AB ,OC ,其中点C 在¶AB 上(C 与A ,B 不重合),在小路AB 与OC 的交点D 处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.设BDC θ∠=,蜂巢区的面积为S (平方百米).(1)求S 关于θ的函数关系式;(2)当θ为何值时,蜂巢区的面积S 最小,并求此时S 的最小值.【解答】解:(1)23AO OB ==,23AOB π∠=, 由余弦定理得:222(23)(23)22323cos 63AB π=+-⨯⨯⨯=, 在BDO ∆中,由正弦定理得sin sin BD BOBOD BDO=∠∠,∴23sin()6BD πθ=-, 23sin()6sin BD πθθ-∴=,23sin()66sin AD πθθ-=-, ∴蜂巢区的面积:AOD CDB AOD BDO COB S S S S S S ∆∆∆∆=+=+-扇形2116sin sin 26226AO AD AO BO BD πθππππ-=+-g g g g g g g ,整理,得S 关于θ的函数关系式为:36tan S θπθ=+-,5(,)66πθπ∈. (2)对36tan S θπθ=+-求导,得236S sin θ'=-, 令0S '=,解得4πθ=或34πθ=, 当(,)64ππθ∈时,0S '<,S 递减,当3(,)44ππθ∈时,0S '>,S 递增,当3(4πθ∈,5)6π时,0S '<,S 递减,综上所述,S 的最小值只可有在4πθ=或θ趋近56π时取得, 当4πθ=时,32S π=+,当56πθ=时,43332S ππ=->+, ∴当θ为4π时,蜂巢区的面积S 最小,S 的最小值为32π+.18.(16分)如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P 作x 轴的垂线交其“辅圆”于点Q ,当点Q 在点P 的上方时,称点Q 为点P的“上辅点”.已知椭圆2222:1(0)x yE a ba b+=>>上的点3(1,)的上辅点为(1,3).(1)求椭圆E的方程;(2)若OPQ∆的面积等于12,求上辅点Q的坐标;(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.【解答】解:(1)Q椭圆2222:1(0)x yE a ba b+=>>上的点3)的上辅点为3),∴辅圆的半径为132R=+=,椭圆长半轴为2a R==,将点3代入椭圆方程22214x yb+=中,解得1b=,∴椭圆E的方程为2214xy+=;(2)设点(Q x,)y,则点(P x,1)y,将两点坐标分别代入辅圆方程和椭圆方程可得,22004x y+=,22114xy+=,故22014y y=,即012y y=,又00111()22OPQS x y y∆=-=,则011x y=,将011x y=与22114xy+=联立可解得2x=2y=∴点Q的坐标为(2,2);(3)直线PT与椭圆E相切,证明如下:设点(Q x,)y,由(2)可知,001(,)2P x y,与辅圆相切于点Q的直线方程为000()xy y x xy-=--,则点4(,0)Tx,直线PT 的方程为:00001420()4y y x x x x -=--,整理得00022x y y y =-+,将00022x y y y =-+与椭圆2214x y +=联立并整理可得,2200222000210x x x x y y y -+=, 由一元二次方程的判别式22004400440x x y y =-=V ,可知,上述方程只有一个解,故直线PT 与椭圆E 相切.19.(16分)已知数列{}n a 满足12n n S na a =+,34a =,其中n S 是数列{}n a 的前n 项和. (1)求1a 和2a 的值及数列{}n a 的通项公式; (2)设*1231111()2462n n T n N S S S S n=+++⋯+∈++++. ①若23k T T T =,求k 的值;②求证:数列{}n T 中的任意一项总可以表示成该数列其他两项之积.【解答】解:(1)Q 数列{}n a 满足12n n S na a =+,34a =,其中n S 是数列{}n a 的前n 项和; 221121222()0S a a a a a ∴=+=+⇒=;331123232232()242S a a a a a a a a =+=++⇒==⇒=;猜想2(1)n a n =-; 当2(1)n a n =-时; 左边[02(1)]222(1)2n n n S n n +-=⨯=-;右边12(1)02(1)n na a n n n n +=⨯-+=-; 两边相等; 即猜想成立2(1)n a n ∴=-;(1)n S n n =-;(2)∴11112(1)1n S n n n n n ==-+++; ∴1231111111111112462223111n n nT S S S S n n n n n =+++⋯+=-+-+⋯+-=-=+++++++;①23k T T T =⨯Q ;∴23111342k k k =⨯=⇒=+. ②对于给定的*n N ∈,若存在k ,t n ≠,k ,*t N ∈,使得n k t T T T =g ;1n n T n =+Q ,只需111n k tn k t =⨯+++, 两边取倒数,即111(1(1)(1)n k t +=++,即1111n k t kt =++;即kt nt nk n =++,(1)n k t k n+=-;取1k n =+,则(2)t n n =+; 1(2)n n n n T T T ++=⨯;∴对数列{}n T 中的任意一项,总可以表示成该数列其他两项之积.20.(16分)已知函数()()a lnxf x a R x+=∈. (1)求函数()f x 的单调区间;(2)当函数()f x 与函数()g x lnx =图象的公切线l 经过坐标原点时,求实数a 的取值集合;(3)证明:当1(0,)2a ∈时,函数()()h x f x ax =-有两个零点1x ,2x ,且满足12111x x a +<.【解答】解:(1)对()a lnx f x x +=求导,得21()a lnxf x x --'=, 令()0f x '=,解得1a x e -=,当1(0,)a x e -∈时,()0f x '>,()f x 单调递增. 当1(a x e -∈,)+∞时,()0f x '<,()f x 单调递减.(2)设公切线l 与函数()g x lnx =的切点为0(x ,0)y ,则公切线l 的斜率001()k g x x ='=, 公切线l 的方程为:0001()y y x x x -=-,将原点坐标(0,0)代入,得01y =,解得0x e =. 公切线l 的方程为:1y x e =,将它与()a lnx f x x +=联立,整理得21a x lnx e=-.令21()m x x lnx e=-,对之求导得:22()x e m x ex -'=,令()0m x '=.当x ∈时,()0m x '<,()m x 单调递减,值域为2(,)2ln +∞,当)x ∈+∞时,()0m x '>,()m x 单调递增,值域为2(,)2ln +∞, 由于直线l 与函数()f x 相切,即只有一个公共点,因此.故实数a 的取值集合为2{}2ln .(3)证明:2()a lnx ax h x x+-=,要证()h x 有两个零点,只要证2()k x ax lnx a =--有两个零点即可.k (1)0=,即1x =时函数()k x 的一个零点.对()k x 求导得:1()2k x ax x '=-,令()0k x '=,解得x当x >时,()0k x '>,()k x 单调递增;当0x <时,()0k x '<,()k x 单调递减.当x =()k x取最小值,(1)0k k <=,22221()(1)12k x ax lnx a ax x a ax x a ax x =-->---=-+->-+,必定存0x >在使得二次函数2001()02u x ax x =-+>, 即00()()0k x u x >>.因此在区间上0)x 必定存在()k x 的一个零点.综上所述,()h x 有两个零点,一个是1x =,另一个在区间)+∞上.下面证明12111x x a+<. 由上面步骤知()h x 有两个零点,一个是1x =,另一个在区间)+∞上.不妨设11x =,2x >12211111x x x +=+<+,下面证明11a+即可.令1()1v a a =,对之求导得21()0v a a '=-<, 故v (a)在定义域内单调递减,11()1()02v a v a =>=,即11a. 证明完毕.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2019届上学期高三期末调研考试数学试题一、填空题1.已知集合{|22},{|1}A x x B x x =-<<=≤,则A B = .2.已知23(,,ia bi ab R i i+=+∈为虚数单位),则a b += . 3.已知函数()sin()5f x kx π=+的最小正周期是3π,则正数k 的值为 .4.某课题组进行城市空气质量监测,按地域将24个城市分成甲、乙、丙三组,对应区域城市数分别为4、12、8.若用分层抽样抽取6个城市,则乙组中应该抽取的城市数为 . 5.已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为 . 6.运行如图所示的流程图,如果输入1,2a b ==, 则输出的a 的值为 .7.以抛物线24y x =的焦点为顶点,顶点为中心, 离心率为2的双曲线标准方程为 . 8.设{1,1},{2,0,2}x y ∈-∈-,则以(,)x y 为坐标 的点落在不等式21x y +≥所表示的平面区域内的 概率为 . 9.已知函数()lg(1)2x a f x =-的定义域是1(,)2+∞, 则实数a 的值为 .10.已知一个圆锥的母线长为2,侧面展开是半圆,则该圆锥的体积为 . 11.如图,在ABC ∆中,已知4,6,60AB AC BAC ==∠=︒, 点,D E 分别在边,AB AC 上,且2,3AB AD AC AE ==, 点F 为DE 中点,则BF DE 的值为 . 12.已知函数24,()43,f x x x ⎧=⎨+-⎩,.x m x m ≥<若函数()()2g x f x x =-恰有三个不同的零点,则实数m 的取值范围是 .13.已知圆22:(1)(1)4M x y -+-=,直线:60,l x y A +-=为直线l 上一点,若圆M 上存在两A DFEB C点,B C ,使得60BAC ∠=︒,则点A 的横坐标的取值范围是 .14.已知,a b 为正实数,且2a b +=,则2221a b a b +++的最小值为 . 二、解答题15.已知向量(sin ,2),(cos ,1)a b θθ==,且,a b 共线,其中(0,)2πθ∈.(1)求tan()4πθ+的值;(2)若5cos(),02πθϕϕϕ-=<<,求ϕ的值.16.如图,在正方体1111ABCD A B C D -中,,E F 分别是1,AD DD 中点. 求证:(1)EF ∥平面1C BD ; (2)1A C ⊥平面1C BD .ABCDA 1B 1C 1D 117.如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120,,AB AC ︒的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP,AQ 总长度为200米,如何围可使得三角形地块APQ 的面积最大? (2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?18.如图,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上.(1)求直线AB 的方程;(2)若点P 为椭圆C 上异于A 、B 的动点,且直线AP,BP 分别交直线y x =于点M 、N ,证明:OM ON 为定值.APQBC19.已知函数()(1)xf x e a x =--,其中,a R e ∈为自然对数底数. (1)当1a =-时,求函数()f x 在点(1,(1))f 处的切线方程; (2)讨论函数()f x 的单调性,并写出相应的单调区间;(3)已知b R ∈,若函数()f x b ≥对任意x R ∈都成立,求ab 的最大值.20.已知数列{}n a 中1111,33n n n a n a a a n+⎧+⎪==⎨⎪-⎩((n n 为奇数)为偶数).(1)是否存在实数λ,使数列2{-}n a λ是等比数列?若存在,求λ的值;若不存在,请说明理由; (2)若n S 是数列{}n a 的前n 项和,求满足0n S >的所有正整数n .数 学数学Ⅱ 附加题部分注意事项1.本试卷共2页,均为解答题(第21题~第23题,共4题).本卷满分为40分,考试时间为30分钟。

考试结束后,请将本试卷和答题卡一并交回.2.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其它位置作答一律无效. 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并在相应的答题区域内作答.............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .选修4-1:几何证明选讲(本小题满分10分)如图,过圆O 外一点P 作圆O 的切线PA ,切点为A ,连结OP 与圆O 交于点C ,过C 作AP 的算线,垂足为D ,若PA =12cm ,PC =6cm ,求CD 的长。

B .选修4-2:矩阵与变换(本小题满分10分)已知矩阵,A =1211⎡⎤⎢⎥⎣⎦,向量21β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=.C .选修4-4:坐标系与参数方程(本小题满分10分)在极坐标系中,已知圆3cos ρθ=与直线2cos 4sin 0a ρθρθ++=相切,求实数a 的值.D .选修4-5:不等式选讲(本小题满分10分)设实数x ,y ,z 满足,的最小值,并求此时x ,y ,z 的值。

【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,1AB AF==.(1)求二面角A-DF-B的大小;(2)试在线段AC上确定一点P,使PF与BC所成角为60︒.23、(10分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不陪不赚,这三种情况发生的概率分别为111,,244;如果投资乙项目,一年后可能获利20%,可能损失20%,这两种情况发生的概率分别为α和β(α+β=1). (1)如果把10万元投资甲项目,用X表示投资收益(收益=回收资金-投资资金),求X的概率分布列及数学期望E(X).(2)若10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.ABCDE FA 1B 1C 1D 1苏州市2019届高三调研测试 数学Ⅰ试题 2019.1 参考答案与评分标准1.(-2,1]2.13.6 4.3 5.26.97.2213y x -= 8.12 910π 11.4 12.(]1,2 13.[1,5]14.33+ 15.解 (1)∵a ∥b ,∴sin 2cos 0θθ-=,即tan 2θ=. ………………………………4分 ∴π1tan 12tan()341tan 12θθθ+++===---. ………………………………………………7分(2)由(1)知tan 2θ=,又π(0,)2θ∈,∴sin θθ==, …………9分∴5cos()θϕϕ-=,∴5(cos cos sin sin )θϕθϕϕ+=ϕϕϕ+=, ∴cos sin ϕϕ=,即tan 1ϕ=, ………………………………………………………12分 又02πϕ<<,∴4πϕ=. ……………………………………………………………14分16.证明:(1)连结A1D ,∵ E ,F 分别是AD 和DD1的中点,∴ EF ∥AD 1. …………………………………2分 ∵ 正方体ABCD -A1B1C1D1, ∴ AB ∥D1C1,AB=D1C1.∴ 四边形ABC1D1为平行四边形,即有A1D ∥BC1 ………………………………………4分 ∴ EF ∥BC1.又EF ⊄平面C1BD ,BC1⊂平面C1BD ,∴ EF ∥平面AB1D1. ……………………………………7分 (2)连结AC ,则AC ⊥BD .∵ 正方体ABCD -A1B1C1D1,∴AA1⊥平面ABCD , ∴ AA1⊥BD .又1AA AC A =I ,∴BD ⊥平面AA1C ,∴ A1C ⊥BD . ……………………………………………11分同理可证A1C ⊥BC1.又1BD BC B =I ,∴A1C ⊥平面C1BD . ……………………………………………… 14分17.解 设AP x =米,AQ y =米. (1)则200x y +=,APQ ∆的面积1sin12024S xy xy =︒=. …………………………………………………………3分∴S 2)2x y += 当且仅当100x y ==时取“=”. …………………………………………………………6分 (注:不写“=”成立条件扣1分)(2)由题意得100(1 1.5)20000x y ⨯⋅+⋅=,即 1.5200x y +=. …………………8分 要使竹篱笆用料最省,只需其长度PQ 最短,所以2222cos120PQ x y xy =+-︒22x y xy =++22(200 1.5)(200 1.5)y y y y =-++- 21.7540040000y y =-+(40003y <<) ………………………………………11分当8007y =时,PQ 有最小值7,此时2007x =. …………………………13分答:(1)当100AP AQ ==米时,三角形地块APQ 的面积最大为 (2)当2007AP =米800,7AQ =米时,可使竹篱笆用料最省.……………………… 14分18.解:(1)设点E (m ,m ),由B (0,-2)得A (2m ,2m+2). 代入椭圆方程得224(22)1124m m ++=,即22(1)13m m ++=,解得32m =-或0m =(舍). ………………………………………………3分 所以A (3-,1-),故直线AB 的方程为360x y ++=. …………………………………………………6分(2)设00(,)P x y ,则22001124x y +=,即220043x y =-. 设(,)M M M x y ,由A ,P ,M 三点共线,即AP AM uu u r uuu rP , ∴00(3)(1)(1)(3)M M x y y x ++=++, 又点M 在直线y=x 上,解得M 点的横坐标000032M y x x x y -=-+,……………………………9分设(,)N N N x y ,由B ,P ,N 三点共线,即BP BN u u r u u u rP , ∴00(2)(2)N N x y y x +=+,点N 在直线y=x 上,,解得N 点的横坐标00022N x x x y -=--. …………………………12分所以OM ·0|0|M N x x --=2||||M N x x ⋅=200003||2y x x y --+0002||2x x y -⋅--=2000200262||()4x x y x y ---=2000220000262||23x x y x x x y ---=2000200032||3x x y x x y --=6.…………………… 16分19.解:(1)当1a =-时,()'e 1xf x =+,()'1e 1f =+,()1e f =, ………………2分∴函数()f x 在点()()1,1f 处的切线方程为()()e e 11y x -=+-,即()e 11y x =+-. ……………………………………………………………………4分 (2)∵()'e xf x a =-,①当0a ≤时,()'0f x >,函数()f x 在R 上单调递增;………………………………6分 ②当0a >时,由()'e 0xf x a =-=得ln x a =,∴(),ln x a ∈-∞时,()'0f x <,()f x 单调递减;()ln ,x a ∈+∞时,()'0f x >,()f x 单调递增.综上,当0a ≤时,函数()f x 的单调递增区间为(,)-∞+∞;当0a >时,函数()f x 的单调递增区间为()ln ,a +∞,单调递减区间为(),ln a -∞. ……………………………………9分 (3)由(2)知,当0a <时,函数()f x 在R 上单调递增,∴()f x b ≥不可能恒成立; ………………………………………………………………10分 当0a =时,0b ≤,此时0ab =; ………………………………………………………11分 当0a >时,由函数()f x b ≥对任意x ∈R 都成立,得()min b f x ≤,∵()()min ln 2ln f x f a a a a ==-,∴2ln b a a a -≤ ………………………………13分 ∴222ln ab a a a -≤,设()()222ln 0g a a a a a =->,∴ ()()'42ln 32ln g a a a a a a a a =-+=-,由于0a >,令()'0g a =,得3ln 2a =,32e a =, 当320,e a ∈⎛⎫ ⎪⎝⎭时,()'0g a >,()g a 单调递增;32e ,a ∈+∞⎛⎫⎪⎝⎭时,()'0g a >,()g a 单调递减.∴()3max e 2g a =,即ab 的最大值为3e 2,此时33221e ,e 2a b ==. ………………………………………………………………… 16分20.解:(1)设2n n b a λ=-,因为()21122221213n n n n n n a n b a b a a λλλλ+++++--==--()()222211621133n n n n a n n a a a λλλλ-++-+-==--. …………………………………2分若数列{}2n a λ-是等比数列,则必须有22113n n a q a λλ+-=-(常数),即()211103n q a q λ-+-+=⎛⎫ ⎪⎝⎭,即()103110q q λ-=-+=⎧⎪⎨⎪⎩⇔1332q λ==⎧⎪⎪⎨⎪⎪⎩, …………………5分 此时1213131102326b a a =-=+-=-≠, 所以存在实数32λ=,使数列{}2n a λ-是等比数列………………………………………6分 (注:利用前几项,求出λ的值,并证明不扣分) (2)由(1)得{}n b 是以16-为首项,13为公比的等比数列, 故123111126323n n n n b a -⎛⎫⎛⎫=-=-⋅=-⋅ ⎪ ⎪⎝⎭⎝⎭,即2113232n n a ⎛⎫=-⋅+ ⎪⎝⎭,…………………8分 由()2211213n n a a n -=+-,得()1212111533216232n n n a a n n --⎛⎫=--=-⋅-+ ⎪⎝⎭,……10分 所以12121111692692333n n n n n a a n n --⎡⎤⎛⎫⎛⎫⎛⎫+=-⋅+-+=-⋅-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦, ()()()21234212n n n S a a a a a a -=++++++L()211126129333n n n ⎡⎤⎛⎫⎛⎫=-+++-++++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦L L 11133(1)2691213n n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=-⋅-⋅+-()221113631233n n n n n ⎛⎫⎛⎫=--+=--+ ⎪ ⎪⎝⎭⎝⎭,………………………………………………………………12分 显然当*n N ∈时,{}2n S 单调递减,又当1n =时,2703S =>,当2n =时,4809S =-<,所以当2n ≥时,20n S <; 2212231536232n n n n S S a n n -⎛⎫=-=⋅--+ ⎪⎝⎭, 同理,当且仅当1n =时,210n S ->.S 的所有正整数n为1和2.……………………………………………16分综上,满足0n。

相关文档
最新文档