八年级期末数学模拟试题

合集下载

2022—2023学年河南省平顶山市八年级下册数学期末专项模拟试卷(含解析)

2022—2023学年河南省平顶山市八年级下册数学期末专项模拟试卷(含解析)

2022—2023学年河南省平顶山市八年级下册数学期末专项模拟试卷注意事项:1.本试卷共4页,三个大题,满分125分,其中试题120分,卷面5分,考试时间100分钟.2.本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上,答在试卷上的答案无效.3.答题前,考生务必将本人姓名,准考证号填写在答题卡第一面的指定位置.一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形不能由旋转得到的是()A .B .C .D .2.下列各分式中,最简分式是()A .23x x x-B .()222x y x y -+C .2222y x xy x xy +++D .2222x y x y xy ++3.将长度为5cm 的线段向上平移所得线段长度是()A .10cm B .5cmC .15cmD .无法确定4.下列说法正确的是()A .平行四边形是轴对称图形B .平行四边形的邻边相等C .平行四边形的对角线互相垂直D .平行四边形的对角线互相平分5.()2n +边形的内角和比n 边形的内角和大()A .180°B .360°C .180n ⋅︒D .360n ⋅︒6.如图,在ABC △中,AB AC =,AD 是ABC △的角平分线.若13AB =,12AD =,则BC 的长为()A .5B .10C .20D .247.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A .()621031x x -=B .621031x =-C .621031x x-=D .62103x =8.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]1.41=.若352x +⎡⎤⎢⎥⎦=⎣,则x 的取值范围是()A .13x ≥B .16x ≤C .1316x ≤<D .1316x <≤9.如图所示,平面直角坐标系中,已知三点()–1,0A ,()2,0B ,()0,1C ,若以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 点的坐标不可能是()A .()3,1B .()3,1-C .()1,1-D .()1,310.如图,四边形中ABCD 中.AC BC ⊥,AD BC ∥,BD 为ABC ∠的平分线,6BC =,8AC =.E ,F 分别是BD ,AC 的中点,则EF 的长为()A .1B .1.5C .2D .2.5二、填空题(本大题共5小题,每小题3,共15分)11.分式121x x-+中的取值范围是_______.12.直角三角形中,两个锐角度数之比为1:5,则较小的锐角度数为_______.13.我们知道正五边形不能进行平面镶嵌,若将三个完全相同的正五边形按如图所示的方式拼接在一起,那么图中1∠的度数是________.14.若三角形ABC 的三边长a ,b ,c 满足22a ab c bc +=+,则三角形ABC 的形状是_______.15.如图,120AOB ∠=︒,点P 为AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:①PM PN =;②OM ON OP +=;③四边形PMON 的面积保持不变;④PMN △的周长保持不变.其中说法正确的是_______填序号.三、解答题(本大题共8小题,共75分)16.(1)(4分)分解因式2232x y xy y -+;(2)(5分)解方程24322112x x x-+=--17.(10分)先化简,再求值:211141x x x +⎛⎫⋅+ ⎪-+⎝⎭,其中x 是不等式组10523x x +≥⎧⎨->⎩的整数解.18.(8分)如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O 顺时针方向旋转90°、180°、270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A 的对应点依次为1A 、2A 、3A ,求四边形123AA A A 的面积;19.(10分)证明:两条边上的高相等的三角形是等腰三角形.20.(8分)“要致富,先修路!”甲乙两地相距360千米,为更好的促进甲、乙两地经济往来,新修的高速公路开通后,在甲乙两地间行驶的客运车辆平均车速提高了50%,而从甲到乙的时间比原来缩短了2小时,求原来车辆的平均速度是多少?21.(10分)在坐标系中直接作出函数2y x =+的图象,根据图象回答下列问题:(1)方程20x +=的解是______;(2)不等式21x +>的解________;(3)若22y -≤≤,则x 的取值范围是________.22.(9分)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替,不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式()()2241479x x x x -+-++进行因式分解的过程.解:设24x x y-=原式()()179y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =-+(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的_________;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:___________;(3)请你用换元法对多项式()()222221x x x x ++++进行因式分解.23.(11分)如图,AM 是ABC △的中线,D 是线段AM 上一动点(不与点A 重合).DE AB ∥交AC 于点F ,CE AM ∥,连接AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,MG DE ∥交CE 于点G ,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =,则CAM ∠=_________.答案解析一、选择题(每小题3分,共30分)1.A 2.D 3.B4.D 5.B 6.B 7.A 8.C 9.D 10.C 二、填空题(本大题共5小题,共15分)11.1x ≠-12.15°13.36°14.等腰三角形15.①②③三、解答题(本大题共8小题,共75分)16.解:(1)原式()()2222y x xy y y x y =-+=-;(2)去分母得:()242213x x -+-=-,解得:12x =,检验:把12x =代入得:210x -=,∴12x =是增根,分式方程无解.17.解:211141x x x +⎛⎫⋅+ ⎪-+⎝⎭()()111221x x x x x +++=⋅+-+()()21222x x x x +==+--由不等式组10523x x +≥⎧⎨->⎩得11x -≤<,∵x 是不等式组10523x x +≥⎧⎨->⎩的整数解,∴1x =-,0,∵当1x =-时,原分式无意义,∴0x =,当0x =时,原式11022==--18.解:(1)如图(2)如图,四边形123AA A A 的面积=四边形123BB B B 的面积4ABCS -△()2135435342=+-⨯⨯⨯=故四边形123AA A A 的面积为34.19.已知:如图,在ABC △中,,BE AC CD AB ⊥⊥,且BE CD =.求证:ABC △是等腰三角形.证明:∵,BE AC CD AB ⊥⊥,∴90CDB BEC ∠=∠=︒,在Rt BCD △与Rt CBE △中,CD BEBC CB==⎧⎨⎩∴()Rt Rt BCD CBE HL △≌△,∴ABC ACB ∠=∠,∴AB AC =,即ABC △是等腰三角形.20.解:设原来车辆的平均速度为x 千米/小时.由题意可得:()3603602150%x x -=+,解这个方程得:60x =.经检验:60x =是原方程的解.答:原来车辆的平均速度为60千米/小时.21.作图(1)2x =-;(2)1x >-;(3)40x -≤≤.22.解:(1)C ﹔(2)()42x -;(3)设22x x y +=,原式()()()()2242221211211y y y y y x x x =++=++=+=++=+23.解:(1)∵DE AB ∥,∴EDC ABM ∠=∠,∵CE AM ∥,∴ECD ADB ∠=∠,∵AM 是ABC △的中线,且D 与M 重合,∴BD DC =,∴ABD EDC △≌△,∴AB ED =,∵AB ED ∥,∴四边形A BDE 是平行四边形;(2)∵CE AM ∥,MG DE∥∴四边形DMGE 是平行四边形,∴ED GM =,且ED GM ∥,由(1)知,AB GM =,AB GM ∥,∴AB DE ∥,AB DE =,∴四边形ABDE 是平行四边形;(3)30°.。

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

山东省临沂市兰陵县2022-2023学年八年级数学第一学期期末教学质量检测模拟试题含解析

2022-2023学年八上数学期末模拟试卷考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题4分,共48分)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩2.如图,∠AOB =150°,OC 平分∠AOB ,P 为OC 上一点,PD ∥OA 交OB 于点D ,PE ⊥OA 于点E .若OD =4,则PE 的长为( )A .2B .2.5C .3D .43.如图,将一块含有30角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果268∠=︒,那么1∠的度数为( )A .38︒B .35︒C .34︒D .304.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2,P 2P 3,P 3P 4,P 4P 5来加固钢架,若P 1A=P 1P 2,∠P 5P 4B=95°,则a 等于( )A.18°B.23.75°C.19°D.22.5°5.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD6.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是( )A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD7.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( )A.0.45B.0.55C.45D.558.下列因式分解结果正确的有( )①32-(-1)x x x x =;②2-9(3)(-3)a a a =+;③2224(2)x x x ++=+;④322-412-(4-12)m m m m += A .1个B .2个C .3个D .4个9.等腰三角形是轴对称图形,它的对称轴是( ) A .中线 B .底边上的中线C .中线所在的直线D .底边上的中线所在的直线10.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ; ③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有( ) A .1组B .2组C .3组D .4组11.下列计算正确的是( ) A .339x x x = B .224x x x +=C .()()257xx x--= D .632x x x ÷=12.如图,观察图中的尺规作图痕迹,下列说法错误的是( )A .DAE EAC ∠=∠B .C EAC ∠=∠ C .//AE BCD .DAE B ∠=∠二、填空题(每题4分,共24分)13.函数x 1的自变量x 的取值范围是 .14.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________ 15.一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为____________16.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx --=⎧⎨--=⎩的解是 _______.17.比较大小23______5(填“>”或“<”) . 18.点P (3,-4)到 x 轴的距离是_____________. 三、解答题(共78分) 19.(8分)解方程: (1)4x 2=25 (2)(x ﹣2)3+27=020.(8分)小明在学了尺规作图后,通过“三弧法”作了一个ACD △,其作法步骤是: ①作线段AB ,分别以,A B 为圆心,取AB 长为半径画弧,两弧的交点为C ; ②以B 为圆心,AB 长为半径画弧交AB 的延长线于点D ; ③连结,,AC BC CD .画完后小明说他画的ACD △的是直角三角形,你认同他的说法吗,请说明理由.21.(8分)小慧根据学习函数的经验,对函数11y x =-+图像与性质进行了探究,下面是小慧的探究过程,请补充完整:(1)若()8,8A ,(),8B m 为该函数图像上不同的两点,则m = ,该函数的最小值为 .(2)请在坐标系中画出直线1132y x =+与函数11y x =-+的图像并写出当1y y ≤时x 的取值范围是 .22.(10分)一辆汽车开往距离出发地300km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度. 23.(10分)计算: (1231(2)510683-- (33224332⎛÷ ⎝a ab a b bb 24.(10分)新华中学暑假要进行全面维修,有甲、乙两个工程队共同完成,甲队单独完成这项工程所需天数是乙队单独完成所需天数的23,若由甲队先做10天,剩下的工程再由甲、乙两队合作,再做30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少秀?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,若由甲、乙两队合作,则工程预算的施工费用50万元是否够用?若不够用,需追加多少万元?25.(12分)(1)化简 22221244a b a b a b a ab b ---÷+++ (2)解方程21333x x x--=-- (3)分解因式 228168ax axy ay -+-26.如图,ABC ∆三个顶点的坐标分别为()1,1A 、()4,2B 、()3,4C .(1)若111A B C ∆与ABC ∆关于y 轴成轴对称,则111A B C ∆三个顶点坐标分别为1A _________,1B ____________,1C ____________;(2)若P 为x 轴上一点,则PA PB +的最小值为____________; (3)计算ABC ∆的面积.参考答案一、选择题(每题4分,共48分) 1、B【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 2、A【解析】分析:根据平行线的性质,可得∠PDO 的度数,然后过O 作OF⊥PD 于F ,根据平行线的推论和30°角所在的直角三角形的性质可求解. 详解:∵PD ∥OA ,∠AOB=150° ∴∠PDO+∠AOB=180°∴∠PDO=30° 过O 作OF⊥PD 于F ∵OD=4 ∴OF=12×OD=2 ∵PE ⊥OA ∴FO=PE=2. 故选A.点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE. 3、A【分析】先根据两直线平行内错角相等得出2=3∠∠,再根据外角性质求出1∠即得. 【详解】如下图:∵a ∥b ,268∠=︒ ∴2=3=68︒∠∠ ∵3=1+30︒∠∠ ∴1=330=38-︒︒∠∠故选:A . 【点睛】本题考查了平行线的性质及三角形外角性质,抓住直尺两边平行的性质是解题关键. 4、C【分析】已知∠A=α,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P 5P 4B=5α,且∠P 5P 4B=95°,即可求解. 【详解】∵P 1A=P 1P 2=P 2P 3=P 3P 4=P 4P 5 ∴∠A=∠AP 2P 1=α∴312132122P PP PP P A PP A ααα∠=∠=∠+∠=+=32434213223P P P P P P A PP P ααα∠=∠=∠+∠=+= 53435434234P P P P P P A P P P ααα∠=∠=∠+∠=+=∵∠P 5P 4B=3544595A P P P ααα∠+∠=+==︒ ∴19α=︒ 故选:C 【点睛】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和. 5、C【分析】根据等腰三角形的性质可得,ACB ABC ACB BDC ∠=∠∠=∠,再结合三角形的内角和定理可得DBC A ∠=∠. 【详解】AB AC =ACB ABC ∴∠=∠∵以B 为圆心,BC 长为半径画弧DB BC ∴=ACB BDC ∴∠=∠ACB BDC ABC ∴∠=∠=∠ 180180ACB ABC A ACB BDC DBC ∠+∠+∠=︒⎧⎨∠+∠+∠=︒⎩DBC A ∴∠=∠故选:C . 【点睛】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键. 6、A【详解】解:如图连接CD 、BD ,∵CA=CD ,BA=BD ,∴点C 、点B 在线段AD 的垂直平分线上, ∴直线BC 是线段AD 的垂直平分线, 故A 正确.B 、错误.CA 不一定平分∠BDA .C 、错误.应该是S △ABC =12•BC•AH . D 、错误.根据条件AB 不一定等于AD . 故选A . 7、A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可. 【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100, 故答案为:A . 【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法. 8、A【分析】根据提公因式法和公式法因式分解即可.【详解】①32(1)(1)(1)x x x x x x x -=-=+-,故①错误; ②()293(3)a a a =+--,故②正确;③2224(2)x x x ++≠+,故③错误; ④3224124(3)m m m m -+=--,故④错误. 综上:因式分解结果正确的有1个 故选A . 【点睛】此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底. 9、D【分析】根据等腰三角形的三线合一的性质,可得出答案.【详解】解:等腰三角形的对称轴是顶角的角平分线所在直线,底边高所在的直线,底边中线所在直线, A 、中线,错误; B 、底边上的中线,错误; C 、中线所在的直线,错误; D 、底边上的中线所在的直线,正确. 故选D . 【点睛】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称及对称轴的定义. 10、C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE ,BC=EF ,AC=DF ,则根据SSS 能使△ABC ≌△DEF ; ②若AB=DE ,∠B=∠E ,BC=EF ,则根据SAS 能使△ABC ≌△DEF ; ③若∠B=∠E ,AC =DF ,∠C=∠F ,则根据AAS 能使△ABC ≌△DEF ; ④若AB=DE ,AC=DF ,∠B=∠E ,满足有两边及其一边的对角对应相等,不能使△ABC ≌△DEF ;综上,能使△ABC ≌△DEF 的条件共有3组. 故选:C . 【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键. 11、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案. 【详解】A. 336x x x =,故此项错误; B. 2222x x x +=,故此项错误; C. ()()257xx x --=,故此项正确;D. 633x x x ÷=,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.12、A【分析】由作法知,∠DAE=∠B ,进而根据同位角相等,两直线平行可知AE ∥BC ,再由平行线的性质可得∠C=∠EAC.【详解】由作法知,∠DAE=∠B ,∴AE ∥BC ,∴∠C=∠EAC ,∴B 、C 、D 正确;无法说明A 正确.故选A.【点睛】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.二、填空题(每题4分,共24分)13、x≥1【解析】试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1. 考点:二次根式有意义14、1【分析】根据正比例函数的定义,m-1=0,从而求解.【详解】解:根据题意得:m-1=0,解得:m=1,故答案为1.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.15、-52.110【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数,0.000021=2.1×10-5,故答案为2.1×10-5. 16、40x y =-⎧⎨=⎩【分析】2y ax b --=是()0y ax b a =+≠图像上移2个单位,20y kx --=是()0y kx k =≠图像上移2个单位,所以交点P 也上移两个单位,据此即可求得答案.【详解】解:∵2y ax b --=是()0y ax b a =+≠图像上移2个单位得到, 20y kx --=是()0y kx k =≠图像上移2个单位得到,∴ 交点P (-4,-2),也上移两个单位得到P '(-4,0),∴++2+2y ax b y kx =⎧⎨=⎩的解为40x y =-⎧⎨=⎩, 即方程组220y ax b y kx --=⎧⎨--=⎩ 的解为40x y =-⎧⎨=⎩, 故答案为:40x y =-⎧⎨=⎩. 【点睛】此题主要考查了一次函数与二元一次方程(组):函数图像的交点坐标为两函数解析式组成的方程组的解.17、<【分析】根据算术平方根的意义,将,将5比较.【详解】解:∵又∵1225<,<即5<.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将,将5写成18、4【解析】试题解析:根据点与坐标系的关系知,点到x 轴的距离为点的纵坐标的绝对值, 故点P (3,﹣4)到x 轴的距离是4.三、解答题(共78分)19、(1)x =±52;(2)x =﹣1【分析】(1)由直接开平方法,即可求解;(2)先移项,再开立方,即可求解.【详解】(1)4x 2=25,x 2=254, ∴x =±52;(2)(x ﹣2)3+27=0,(x ﹣2)3=﹣27,x ﹣2=﹣3,∴x =﹣1.【点睛】本题主要考查解方程,掌握开平方和开立方运算,是解题的关键.20、同意,理由见解析【分析】利用等边对等角可得,A ACB D BCD ∠=∠∠=∠,再根据三角形内角和定理即可证明.【详解】同意,理由如下:解:∵AC=BC=BD ,∴,A ACB D BCD ∠=∠∠=∠,∵180A ACD D ∠+∠+∠=︒,∴2()180A ACB BCD D ACB BCD ∠+∠+∠+∠=∠+∠=︒,∴180ACB BCD ∠+∠=︒,∴∠ACD=90° ,即△ACD 是直角三角形.【点睛】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.21、(1)6-,1;(2)作图见解析,23x ≤或6x ≥ 【分析】(1)将(),8B m 代入函数解析式,即可求得m ,由10x -≥可知1y ≥; (2)采用描点作图画出图象,再根据图象判断直线1132y x =+在函数11y x =-+图象下方时x 的取值范围,即可得到1y y ≤时x 的取值范围.【详解】(1)将(),8B m 代入11y x =-+得:118-+=m ,解得8m =或-6∵()8,8A ,(),8B m 为该函数图像上不同的两点∴6m =-∵10x -≥∴111=-+≥y x 即函数的最小值为1,故答案为:-6,1.(2)当1x ≥时,函数11==-+y x x ,当1x <时,函数11=2=-+-y x x如图所示,设y 1与y 的图像左侧交点为A ,右侧交点为B解方程组1322y x y x ⎧=+⎪⎨⎪=-⎩得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,则A 点坐标为2833,⎛⎫- ⎪⎝⎭, 解方程组132y x y x⎧=+⎪⎨⎪=⎩得66x y =⎧⎨=⎩,则B 点坐标为()66, 观察图像可得:当直线1132y x =+在函数11y x =-+图象下方时, x 的取值范围为23x ≤-或6x ≥, 所以当1y y ≤时x 的取值范围是23x ≤-或6x ≥. 故答案为:23x ≤-或6x ≥. 【点睛】 本题考查了一次函数的图像与性质,熟练掌握一次函数交点的求法以及一次函数与不等式的关系是解题的关键.22、汽车前一小时的速度是75km/时【分析】设汽车前一小时的行驶速度为km/x 时,则一小时后的速度为1.2xkm/时,根据“原计划所需时间=1小时+提速后所用时间+半小时”的等量关系列方程求解.【详解】解:设汽车前一小时的行驶速度为km/x 时 根据题意得,30030011 1.22x x x -=++ 去分母得,360 1.23000.6x x x =+-+解得75x =经检验75x =是原方程的根答:汽车前一小时的速度是75km/时.【点睛】本题考查分式方程的应用,理解题意找准等量关系是解题关键,注意分式方程结果要检验.23、(1)42-;(2)2-【分析】(1)先进行二次根式的乘除法运算,再将二次根式化简,同时求出立方根,最后合并化简;(2)根据二次根式的性质和乘除法法则计算化简即可.【详解】解:(1)原式22422 ==+=-;(2)原式314()22 23=⨯-⨯==--【点睛】本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.24、(1)甲乙两队单独完成这项工程雷要60天和90天;(2)工程預算费用不够,需追要0.4万元.【分析】(1)由题意设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要23x天,根据题意列出方程求解即可;(2)由题意设甲乙两队合作完成这项工程需要y天,并根据题意解出y的值,进而进行分析即可.【详解】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完戒这项工程需要2 3 x天,依题意则有111 10301 2233xx x⎛⎫⎪++⨯⨯=⎪⎪⎝⎭解得90x=经检验,90x=是原分式方程的解,且符合题意22=90=6033x⨯(天)故甲乙两队单独完成这项工程雷要60天和90天.(2)设甲乙两队合作完成这项工程需要y天,则111 6090y⎛⎫+= ⎪⎝⎭解得y=36所需费用36(0.840.56)50.4⨯+=(万元)50.450∴>,∴工程預算费用不够,需追要0.4万元.【点睛】本题考查分式方程的应用,根据题意找到合适的等量关系列出方程是解决问题的关键.25、(1)b a b-+;(2)无解;(3)()28a x y -- 【分析】(1)直接根据分式知识化简即可;(2)去分母然后解方程即可;(3)先提公因式,再根据完全平方因式分解即可.【详解】解:(1)()()()2221a b a b a a a b b b --+++-· =21a b a b-++ =()()2a b a b a b+--+ =()()2a b a b a b+-++ =b a b-+; (2)21333x x x -+=-- 2139x x -+=-3x =检验:把x=3代入得:x-3=0,则x=3为方程的增根,故原方程无解;(3)原式=228168ax axy ay -+-=()2282a x xy y--+=()28a x y --.【点睛】 本题是对计算的综合考查,熟练掌握分式化简,分式方程及因式分解是解决本题的关键.26、(1)作图见解析,A 1(-1,1)、B 1(-4,2)、C 1(-3,4);(2)(3)72. 【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再首尾顺次连接即可得; (2)作出点A 的对称点,连接A'B ,则A'B 与x 轴的交点即是点P 的位置,则PA+PB 的最小值=A′B ,根据勾股定理即可得到结论;(3)根据三角形的面积公式即可得到结论.【详解】(1)如图所示,△A 1B 1C 1即为所求,由图知,A1的坐标为(-1,1)、B1的坐标为(-4,2)、C1的坐标为(-3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则PA+PB的最小值=A′B,∵223332+=∴PA+PB的最小值为32(3)△ABC的面积=1117 333112232222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质及利用轴对称性质求最短路径.。

2025届浙江省台州市“海山教育联盟”八年级数学第一学期期末联考模拟试题含解析

2025届浙江省台州市“海山教育联盟”八年级数学第一学期期末联考模拟试题含解析

2025届浙江省台州市“海山教育联盟”八年级数学第一学期期末联考模拟试题末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.在投掷一枚硬币100次的试验中,“正面朝下”的频数45,则“正面朝下”的频率为( )A.0.45B.0.55C.45D.552.下列各数中,无理数是()A.πB.C.D.3.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A.30°B.30°或150°C.60°或150°D.60°或120°4.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则a ba b+-的值是()A.15-B.15C.﹣5 D.55.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有()个.A.3 个B.4 个C.5 个D.6 个6.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°7.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A (3,1),B (2,2),则“宝藏”点C 的位置是( )A .(1,0)B .(1,2)C .(2,1)D .(1,1)8.下列四个图形中,不是..轴对称图形的是( ) A . B . C . D .9.下列运算中正确的是( )A .623x x x=B .1x yx y-+=-+ C .22222a ab b a b a b a b+++=-- D .11x x y y+=+ 10.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( ) A .三角形中有一个内角小于60° B .三角形中有一个内角大于60° C .三角形中每个内角都大于60° D .三角形中没有一个内角小于60°11.如下书写的四个汉字,其中为轴对称图形的是( ) A .B .C .D .12.某校要明买一批羽毛球拍和羽毛球,现有经费850元,已知羽毛球拍150元/套,羽毛球30元/盒,若该校购买了4套羽毛球拍,x 盒羽毛球,则可列不等式( )A .150304850x +⨯≤B .150304850x +⨯<C .150430850x ⨯+≤D .150430180x ⨯+≤二、填空题(每题4分,共24分)13.若二次根式4x -在实数范围内有意义,则x 的取值范围是_____________. 14.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15.如图,点E 为∠BAD 和∠BCD 平分线的交点,且∠B =40°,∠D =30°,则∠E =_____.16.已知直线y =kx +b 与x 轴正半轴相交于点A (m +4,0),与y 轴正半轴相交于点B (0,m ),点C 在第四象限,△ABC 是以AB 为斜边的等腰直角三角形,则点C 的坐标是______. 17.如果11m m -=-,那么221m m+=_______________. 18.如图1六边形的内角和123456∠+∠+∠+∠+∠+∠为m 度,如图2六边形的内角和123456∠+∠+∠+∠+∠+∠为n 度,则m n -=________.三、解答题(共78分) 19.(8分)化简求值:2232414442x x x x x +÷--+--,其中,x =2. 20.(8分)如图,在△ABC 中,AD 是BC 边的中线,E 是AD 的中点,过A 点作AF ∥BC 交BE 的延长线于点F ,连结CF .求证:四边形ADCF 是平行四边形.21.(8分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表: 学生 数与代数 空间与图形 统计与概率 综合与实践 平均成绩 方差 甲 87 93 85 91 89 乙8996809133.5(1)请计算甲的四项成绩的方差和乙的平均成绩;(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1计算,哪个学生数学综合素质测试成绩更好?请说明理由.22.(10分)某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用1.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元,商厦销售这种运动休闲衫时每件定价都是100元,最后剩下的150件按八折销售,很快售完.(1)商厦第一批和第二批各购进休闲衫多少件? (2)请问在这两笔生意中,商厦共盈利多少元?23.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元; (1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?24.(10分)如图,在ABC ∆中,AB BC =,D 为AC 上一点,且DA DB =,CB CD =,求DBC ∠的度数.25.(12分)如图,点E F 、在BC 上,AB CD =,BE CF =,AF DE =,AF 与DE 交于点O .(1)求证:A D ∠=∠;(2)若90EOF ∠=︒,试判断OEF ∆的形状,并说明理由.26.如图,已知点A 、B 以及直线l ,AE ⊥l ,垂足为点E . (1)尺规作图:①过点B 作BF ⊥l ,垂足为点F②在直线l 上求作一点C ,使CA =CB ;(要求:在图中标明相应字母,保留作图痕迹,不写作法)(2)在所作的图中,连接CA 、CB ,若∠ACB =90°,∠CAE =α,则∠CBF = (用含α的代数式表示)参考答案一、选择题(每题4分,共48分) 1、A【分析】根据事件发生的频率的定义,求得事件“正面朝下”的频率即可. 【详解】解:“正面朝下”的频数45,则“正面朝下”的频率为45=0.45100,故答案为:A.【点睛】本题考查了频率的定义,解题的关键是正确理解题意,掌握频率的定义以及用频数计算频率的方法.2、A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD ⊥AC , ∴∠BAD=90°-60°=30°, ∵∠BAD+∠BAC=180°, ∴∠BAC=150°∴三角形的顶角为150°, 故选:B . 【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键. 4、C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案. 【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称, ∴2a =,3b =, 则23523a b a b ++==---. 故选:C . 【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 5、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可. 【详解】解:作矩形的两条对称轴l 1和l 2,交于点P 1,根据对称性可知此时P 1满足题意;分别以A 、B 为圆心,以AB 的长为半径作弧,交l 1于点P 2、P 3; 分别以A 、D 为圆心,以AD 的长为半径作弧,交l 2于点P 4、P 1. 根据对称性质可得P 1 、P 2、P 3 、P 4、P 1均符合题意 这样的点P 共有1个 故选C .【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.6、D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.7、D【解析】根据题意首先确定原点的位置,进而得出“宝藏”的位置.【详解】根据两个标志点A(3,1),B(2,2)可建立如下所示的坐标系:由平面直角坐标系知,“宝藏”点C的位置是(1,1),故选:D.【点睛】考查了坐标确定位置,正确得出原点位置是解题关键.8、B【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、是轴对称图形,此项不符题意B、不是轴对称图形,此项符合题意C、是轴对称图形,此项不符题意D 、是轴对称图形,此项不符题意 故选:B . 【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键. 9、C【分析】A 、根据同底数幂的除法法则:底数不变,只把指数相减,得出结果,作出判断;B 、分子分母中不含有公因式,故不能约分,可得本选项错误;C 、把分子利用完全平方公式分解因式,分母利用平方差公式分解因式,找出分子分母的公因式+a b ,分子分母同时除以+a b ,约分后得到最简结果,即可作出判断;D 、分子分母中不含有公因式,故不能约分,可得本选项错误.【详解】解:A 、66333x x x x-==,本选项错误;B 、x y x y-++分子分母没有公因式,不能约分,本选项错误;C 、()()()222222a b a ab b a b a b a b a b a b++++==-+--,本选项正确; D 、11x y ++分子分母没有公因式,不能约分,本选项错误,故选:C . 【点睛】本题主要考查了分式的化简,熟练掌握分式的基本性质是解题关键. 10、C【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【详解】解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时, 第一步先假设三角形中每个内角都大于60°, 故选:C. 【点睛】此题考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立. 11、B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B. 【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成. 12、C【分析】根据题意,列出关于x 的不等式,即可. 【详解】根据题意:可得:150430850x ⨯+≤, 故选C. 【点睛】本题主要考查一元一次不等式的实际应用,根据题意,找到不等量关系,列出不等式,是解题的关键.二、填空题(每题4分,共24分) 13、x ≤4【分析】根据被开方数大于等于0列式计算即可. 【详解】解:由题意,得 4-x ≥0 解得 x ≤4. 故答案为x ≤4. 【点睛】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数. 14、15°或60°.【分析】分情况讨论:①DE ⊥BC ,②AD ⊥BC ,然后分别计算α的度数即可解答. 【详解】解:①如下图,当DE ⊥BC 时, 如下图,∠CFD =60°,旋转角为:α=∠CAD =60°-45°=15°; (2)当AD ⊥BC 时,如下图,旋转角为:α=∠CAD =90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键. 15、35°.【分析】根据两个三角形的有一对对顶角相等得:∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,两式相加后,再根据角平分线的定义可得结论.【详解】解:∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=12(∠B+∠D)∴∠E=12(30°+40°)=12×70°=35°;故答案为:35°;【点睛】此题考查了三角形内角和定理、角平分线的定义,掌握角平分线的定义和等量代换是解决问题的关键.16、(2,-2)【分析】根据等腰直角三角形的性质构造全等三角形,证明全等三角形后,根据全等的性质可得对应线段等,即可得到等量,列出方程求解即可得到结论;【详解】解:如图,过C作CF⊥x轴,CE⊥y轴,垂足分别为E、F,则四边形OECF 为矩形,∠BEC=∠CFA=90°,由题意可知,∠BCA=90°,BC=AC,∵四边形OECF为矩形,∴∠ECF=90°,∴∠1+∠3=90°,又∵∠2+∠3=90°,∴∠1=∠2,在△BEC和△AFC中,12BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEC ≌△AFC∴CE=CF ,AF=BE ,设C 点坐标为(a ,b ),则AF=m+4-a ,BE=m-b∴4m b m a a b -=+-⎧⎨=-⎩解得,22a b =⎧⎨=-⎩∴点C (2,-2)故答案为:(2,-2)【点睛】本题考查一次函数与坐标轴交点、等腰直角三角形性质、三角形全等性质和判定、两点间距离等知识点,画出图形,构造全等图形是解题的关键.17、1【分析】根据完全平方公式进行求解即可. 【详解】解:∵11m m -=-, ∴2221112m m m m ⎛⎫-==-+ ⎪⎝⎭, ∴2213m m+=, 故答案为1.【点睛】本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.18、0【分析】将两个六边形分别进行拆分,再结合三角形的内角和和四边形的内角和计算即可得出答案.【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴123456m =∠+∠+∠+∠+∠+∠=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴123456n =∠+∠+∠+∠+∠+∠=180°×4=720°∴m-n=0故答案为0.【点睛】本题考查的是三角形的内角和和四边形的内角和,难度适中,解题关键是将所求六边形拆分成几个三角形和四边形的形式进行求解.三、解答题(共78分)19、12(2)x -2 【分析】直接利用分式的性质分别化简进而把已知数据代入求出答案.【详解】解:原式=()()()()22231222-2+÷--+-x x x x x=()()()()22231222-2+-⨯-+-x x x x x =()312-22--x x =()3-22-2x =()12-2x当x =时,4. 【点睛】此题主要考查了分式的化简求值,能够正确化简分式是解题关键.20、证明见解析.【解析】试题分析:首先利用全等三角形的判定方法得出△AEF ≌△DEB (AAS ),进而得出AF =BD ,再利用一组对边平行且相等的四边形是平行四边形进而得出答案. 试题解析:证明:∵AF ∥BC ,∴∠AFE =∠EBD .在△AEF 和△DEB 中,∵AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DEB (AAS ),∴AF =BD ,∴AF =DC .又∵AF ∥BC ,∴四边形ADCF 为平行四边形.点睛:本题主要考查了平行四边形的判定以及全等三角形的判定与性质,得出△AEF ≌△DEB 是解题的关键.21、(1)10,89;(2)乙,见解析【分析】(1)根据平均数和方差(2)根据加权平均数的概念计算.【详解】解:(1)22221(8789)(9389)(8589)(9189)104S ⎡⎤=-+-+-+-=⎣⎦ 乙平均数=(89968091)489+++÷=(2)甲的分数=43118793859188.81010510⨯+⨯+⨯+⨯= 乙的分数=43118996809189.51010510⨯+⨯+⨯+⨯= 故乙的成绩更好 .【点睛】此题考查了平均数和加权平均数,用到的知识点是平均数和加权平均数,掌握它们的计算公式是本题的关键.22、(1)第一批购进衬衫1000件,第二批购进了2000件;(2)在这两笔生意中,商厦共盈利41000元.【分析】(1)设第一批购进x 件休闲衫,则第二批购进了2x 件,根据“第二批购进的单价比第一批购进的单价贵了8元”,列出分式方程,即可求解;(2)设这笔生意盈利y元,根据等量关系,列出方程,即可求解.【详解】(1)设第一批购进x件休闲衫,则第二批购进了2x件,依题意可得:176********8 2x x-=,解得:1000x=,经检验:1000x=是方程的解,且符合题意,22000x=,答:第一批购进衬衫1000件,第二批购进了2000件;(2)设这笔生意盈利y元,可列方程为:80000176000100(10002000150)80%100150 y++=⨯+-+⨯⨯,解得:41000y=.答:在这两笔生意中,商厦共盈利41000元.【点睛】本题主要考查分式方程的实际应用,根据等量关系,列出分式方程,是解题的关键.23、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.24、72°【分析】根据等腰三角形的“等边对等角”,由AB BC =可得A C ∠=∠,由DA DB =可得A ABD ∠=∠,由CB CD =可得CDB CBD ∠=∠,又根据“三角形的外角等于不相邻两内角和”可以得到CDB A ABD ∠=∠+∠,再由三角形内角和180°,可以求出DBC ∠的度数.【详解】解:AB BC =.A C ∴∠=∠.DA DB =.A ABD ∴∠=∠.CB CD =.CDB CBD ∴∠=∠.180A C ABC ∠+∠+∠=︒.设A C x ∠=∠=.2BDC DBC x ∠=∠=.3180x x x ∴++=︒.36x ∴=︒.故223672x DBC ==⨯︒=∠︒.【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,三角形的外角定理.掌握“等边对等角”以及运用三角形内角和定理和三角形的外角定理是解题的关键.25、 (1)详见解析;(2)OEF ∆为等腰直角三角形,理由详见解析.【分析】(1)利用等式的性质可证得BF CE =,利用SSS 可以证明ABF DCE ∆≅∆,由全等三角形的性质可以得到A D ∠=∠;(2)由全等三角形的性质可以得到AFB DEC ∠=∠,根据90EOF ∠=︒可得OEF ∆为等腰直角三角形.【详解】(1) 证明:BE CF =.∴BE EF CF EF +=+.在ABF ∆与DCE ∆中.AB CD AF DE BF CE =⎧⎪=⎨⎪=⎩∴ABF DCE ∆∆≌.∴A D ∠=∠.(2)ABF DCE ∆∆≌∴AFB DEC ∠=∠∴OE OF =90EOF ∠=︒∴OEF ∆为等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质以及等腰三角形的性质:等角对等边,正确证明两个三角形全等是解题的关键.26、(1)见详解;(2)见详解;(3)90α︒-【分析】(1)1、在直线l 外关于点B 的另一侧任意取点M ;2、以B 为圆心,AM 的长为半径作弧交l 于H 、G ; 3、分别以H 、G 为圆心,大于2HG 的长为半径作弧,两弧相交于点D ;4、作直线BD ,交直线l 与点F ,直线BF 即为所求;(2)1、连接AB ,分别以A 、B 为圆心,大于2AB 的长为半径作弧,两弧相交于点E 、N ;2、作直线EN ,交直线l 与点C ,点C 即为所求;(3)根据互余求解即可.【详解】解:(1)如图,直线BF 即为所求;(2)如图,点C 即为所求;(3)∵,,90AE l BF l ACB ⊥⊥∠=︒∴90,90,90CAE ACE ACE BCF BCF CBF ∠+∠=︒∠+∠=︒∠+∠=︒∴90CBF ACE CAE ∠=∠=︒-∠∵∠CAE =α∴90CBF ACE ∠=∠=︒-α故答案为:90α︒-.【点睛】本题考查的知识点是尺规作图,掌握尺规作图的基本方法是解此题的关键.。

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9 3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.76.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为.12.(4分)分解因式:3y2﹣12=.13.(4分)计算:=.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).16.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC 的角平分线,则点D到边AB的距离为.17.(4分)对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.20.(6分)先化简再求值:,其中x=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是.22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.2022-2023学年八年级(上)期末数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9【解答】解:A、4+5=9,不能构成三角形;B、8+8>15,能构成三角形;C、5+5<11,不能够组成三角形;D、3+6=9,不能构成三角形.故选:B.3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.【解答】解:(m+1)(m﹣1)=m2﹣1,故选项A正确;(﹣3a2)2=9a4,故选项B错误;a2⋅a3=a5,故选项C错误;2ab•(﹣ab)=﹣a2b2,故选项D错误;故选:A.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.6.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD【解答】解:A、符合HL定理,能推出△ABD≌△ACD,故本选项错误;B、符合SAS定理,能推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;D、符合SSS定理,能推出△ABD≌△ACD,故本选项错误;故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°【解答】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°.∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°﹣∠EBC=40°.故选:C.9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.【解答】解:A、BD=BA,不能得到AD+CD=BC,所以A选项错误;B、DA=DC,AD+CD=2CD,所以B选项错误;C、CD=CA,不能得到AD+CD=BC,所以C选项错误;D、BD=AD,则AD+CD=BD+CD=BC,所以D选项正确.故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个【解答】解:如图:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,交AB 于H,△BCF,△BCH就是等腰三角形;④分别作AB,BC,AC的垂直平分线,也可以得到三个分别以AB,BC,AC为底的等腰三角形.所以一共有1+1+2+3=7(个)三角形.故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为x≠﹣2.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣212.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)计算:=4.【解答】解:原式=3+1=4,故答案为:4.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.【解答】解:∵两个正方形的边长分别为2a,a,∴△ABC的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).【解答】解:小海慢跑的速度是a米/秒(a>0),则小东骑车的速度是3a米/秒,小海花的时间比小东花的时间多:﹣==(秒); 故答案为:. 16.(4分)如图,Rt △ABC 中,∠ABC =90°,AB =6,BC =8,BD 为△ABC 的角平分线,则点D 到边AB 的距离为 .【解答】解:过D 作DE ⊥AB 于E ,DF ⊥BC 于F ,∵BD 为△ABC 的角平分线,∴DE =DF ,设DE =DF =R ,∵∠ABC =90°,AB =6,BC =8,∴S △ABC ===24, ∴S △ABD +S △DBC =24,∵AB =6,BC =8,∴R +=24, 解得:R =,即DF =,∴点D 到边AB 的距离是, 故答案为:.17.(4分)对于两个不相等的实数a ,b ,我们规定符号Min {a ,b }表示a ,b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min(其中x ≠0)的解为 4 .【解答】解:(1)x>0时,∵Min(其中x≠0),∴﹣=﹣1,∴=1,解得:x=4.(2)x<0时,∵Min(其中x≠0),∴=﹣1,∴=1,解得:x=2,∵2>0,∴x=2不符合题意.综上,可得:方程Min(其中x≠0)的解为4.故答案为:4.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.【解答】解:原式=2x2﹣6xy+5xy﹣2x2=﹣xy.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.【解答】解:∵∠ANC=∠B+∠BAN,∴∠BAN=∠ANC﹣∠B=80°﹣50°=30°,∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B﹣∠BAC=70°.20.(6分)先化简再求值:,其中x=1.【解答】解:原式=(﹣)×=×=,当x=1时,原式==﹣.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是(2,0).【解答】解:(1)如图所示,△A1B1C1即为所求,点A1(﹣1,1).(2)S=3×3﹣×1×2﹣×1×3﹣×2×3=.△ABC(3)如图,点P即为所求作,P(2,0).22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?【解答】解(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=60+10=70,答:甲、乙两种救灾物资每件的价格分别为70元、60元;(2)设购买乙种物品件数为m件,根据题意得:2000﹣m≥1.5m,解得:m≤800,∴乙种物资最多能购买800件.答:乙种物资最多能购买800件.23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠CED=∠AEC﹣∠AED=60°,∵CD⊥BE,∴∠CDE=90°,∴∠DCE=30°,∴BD=CE=2DE=6.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,,∴,∴,∴,∴m2﹣2×(﹣1)+4m+2=0,∴m2+4m+4=0,∴(m+2)2=0,∴m=﹣2.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.【解答】解(1)证明:∵CD⊥BE,∴∠CDE=∠BAC=90°,∵∠CED=∠AEB,∴∠DCE=∠ABF,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS);(2)∵△ABF≌△ACD,∴AF=AD,∠BAF=∠CAD,∴∠BAC=∠F AD=90°,∴∠ADF=45°,∵∠ACB=∠ADB=45°,∠AED=∠BEC,∴∠DAE=∠CBE,∵∠DAF=∠COF=90°,∴AD∥OC,∴∠DAE=∠ACO,∴∠CBE=∠ACO,∵∠ACF=2∠CBF,∴∠ACF=2∠ACO,∴∠FCO=∠ACO.(3)过点D作DH⊥OC交OC于点H,∵∠AOC=∠COF=90°,∠ACO=∠FCO,∴∠OAC=∠OFC,∴AC=CF,∵CA=CF,CO⊥AF,∴OA=OF=2,∴AD=AF=4,∵AD∥OC,∴AO=DH=2,∵DH⊥OC,∠DCG=45°,∴DH=HC=2,∴OC=OH+HC=6.。

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

人教版2022-2023学年八年级数学上册期末模拟测试题(附答案)

2022-2023学年八年级数学上册期末模拟测试题(附答案)一.选择题(共8小题,满分24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x3•x3=2x3B.(2ab3)2=2a2b6C.(﹣1)﹣10=10D.(﹣)0=13.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD 折叠,使B点落在AC边上的E处,则∠ADE等于()A.25°B.30°C.35°D.40°4.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN5.已知a,b,c为△ABC的三边,且=0,|b﹣c|=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为()A.=+6B.=﹣6C.=﹣6D.=+67.如图,Rt△ABC的两条直角边AC,BC分别经过正五边形的两个顶点,则∠1+∠2等于()A.126°B.130°C.136°D.140°8.如图,把△ABC沿平行于BC的直线DE折叠,使点A落在边BC上的点F处,若∠B =50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°二.填空题(共7小题,满分21分)9.测得某人的头发直径为0.0000635米,这个数据用科学记数法表示为.10.在平面直角坐标系中,点P(﹣5,2)关于x轴的对称点的坐标是.11.因式分解:3x﹣12x3=.12.若一个正多边形的内角是外角的3倍,则这个正多边形的边数为.13.若分式的值为零,则x的值为.14.如图,在△ABC中,AB=6,BC=7,AC=4,直线m是△ABC中BC边的垂直平分线,P是直线m上的一动点,则△APC的周长的最小值为.15.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,则DH是EF的线.三.解答题(共11小题,满分75分)16.化简:(x﹣2)2+(x+3)(x+1).17.如图,F A⊥EC,垂足为E,∠C=20°,∠F=40°.求∠FBC的度数.18.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E.求∠AEC的度数.19.如图,F,C是AD上的两点,且AB=DE,AB∥DE,AF=CD.求证:BC∥EF.20.如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为°(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.21.先化简,再求值:,试从0,1,2,3四个数中选取一个你喜欢的数代入求值.22.已知:M=,N=.(1)当x>0时,判断M与N的大小关系,并说明理由;(2)设y=+N.①当y=3时,求x的值;②若x是整数,求y的正整数值.23.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.设每个乙商品的进价为x元.(1)每个甲商品的进价为元(用含x的式子表示);(2)求每个甲、乙商品的进价分别是多少?24.如图,△ABC是等边三角形,AB=6,动点P沿折线AB﹣BC以每秒1个单位长度的速度向终点C运动;同时,动点Q沿折线CA﹣AB﹣BC以每秒2个单位长度的速度向终点C运动,连接PQ,设点P的运动时间为t(s)(0<t<12).(1)用含t的式子表示BP的长;(2)当△APQ是等边三角形时,求t的值;(3)当线段PQ在△ABC的某条边上时,求t的取值范围;(4)在(3)的条件下,当以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形时,直接写出t的值.25.如图,在△ABC中,AB=AC,点D在边BC上(点D不与点B、点C重合),作∠ADE =∠B,DE交边AC于点E.(1)求证:∠BAD=∠CDE;(2)若DC=AB,求证:△ABD≌△DCE;(3)当∠B=50°,且△ADE是等腰三角形时,直接写出∠BDA的度数.26.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边的中点时,S△ABD:S△ACD=;(2)如图2,当AD平分∠BAC时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m、n的式子表示);(3)如图3,AD平分∠BAC,延长AD到E.使得AD=DE,连接BE,若AC=3,AB =5,S△BDE=10,求S△ABC的值.参考答案一.选择题(共8小题,满分24分)1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:∵x3•x3=x6≠2x3,∴选项A不符合题意;∵(2ab3)2=4a2b6≠2a2b6,∴选项B不符合题意;∵(﹣1)﹣10=1≠10,∴选项C不符合题意;∵(﹣)0=1,∴选项D符合题意;故选:D.3.解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED﹣∠A=65°﹣25°=40°.故选:D.4.解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.5.解:根据题意得,a2﹣2ab+b2=0,b﹣c=0,∴a=b,b=c,∴a=b=c,∴△ABC的形状是等边三角形.故选:B.6.解:∵每个B型纸箱比每个A型纸箱可多装15本,且每个A型纸箱可以装书x本,∴每个B型纸箱可以装书(x+15)本.依题意得:=﹣6.故选:C.7.解:如图:∵(5﹣2)×180°÷5×2=3×180°÷5×2=216°,∠3+∠4=180°﹣90°=90°,∴∠1+∠2=216°﹣90°=126°.故选:A.8.解:∵BC∥DE,∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.二.填空题(共7小题,满分21分)9.解:0.0000635米=6.35×10﹣5米.故答案为:6.35×10﹣5米.10.解:∵P(﹣5,2),∴点P关于x轴的对称点的坐标是(﹣5,﹣2).故答案为:(﹣5,﹣2).11.解:3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x),故答案为:3x(1+2x)(1﹣2x).12.解:设正多边形的边数为n,由题意得:(n﹣2)•180°=3×360°,解得:n=8,故答案为:8.13.解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.14.解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故答案为10.15.解:∵EH=FH,∴点H在EF的垂直平分线上;∵ED=FD,点D在EF的垂直平分线上,∴DH垂直平分EF.故答案为:垂直平分.三.解答题(共11小题,满分75分)16.解:原式=x2﹣4x+4+(x2+x+3x+3)=x2﹣4x+4+x2+x+3x+3=2x2+7.17.解:在△AEC中,F A⊥EC,∴∠AEC=90°,∴∠A=90°﹣∠C=70°.∴∠FBC=∠A+∠F=70°+40°=110°.18.解:∵∠B=48°,∴∠BAC+∠BCA=180°﹣48°=132°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣132=228°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=114°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣114°=66°.19.证明:∵AF=CD,∴AF+CF=CD+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.20.(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.21.解:=•=,当x=0时,原式==﹣.或者,当x=2时,原式==﹣1.22.解:(1)当x>0时,M≥N.理由如下:M﹣N=﹣=,∵x>0,∴(x﹣1)2≥0,2(x+1)>0,∴≥0,∴M≥N;(2)由题意得y=+=,①当y=3即=3时,∴x=1,经检验x=1是原分式方程的解,∴当y=3时,x的值是1.②y===2+.∵x,y是整数,∴是整数,∴x+1可以取±1,±2.当x+1=1,即x=0时,y=2+=4>0;当x+1=﹣1时,即x=﹣2时,y=2+=0(舍去);当x+1=2时,即x=1时,y=2+=3>0;当x+1=﹣2时,即x=﹣3时,y=2+=1>0;所以当x为整数时,y的正整数值是4或3或1.23.解:(1)设每个乙商品的进价为x元,则每个甲商品的进价为(x﹣2)元.故答案为:(x﹣2);(2)依题意得:=,解得x=10,经检验,x=10是原方程的解,且符合题意,∴x﹣2=8.答:每个甲商品的进价为8元,每个乙商品的进价为10元.24.解:(1)根据题意可得,①当0<t≤6时,点P在AB上运动,BP=6﹣t;②当6<t<12时,点P在BC上运动,BP=t﹣6;(2)当△APQ是等边三角形时,∵△APQ是等边三角形,∴AP=AQ,∴AQ=6﹣2t,AP=t∴6﹣2t=t,解得:t=2,∴当t=2s时,△APQ是等边三角形;(3)当点Q运动到点A时,2t=6,解得t=3;当点P到点B时,t=6,此时点Q与点B重合,∴当3≤t<12,且t≠6时,线段PQ在△ABC的某条边上;(4)根据题意有,如图①,当P、Q都在AB上时,满足AQ=BP时,△CPQ是等腰三角形,AQ=2t﹣6,BP=6﹣t,2t﹣6=6﹣t,j解得:t=4;如图②,当P、Q都在BC上时,满足BQ=CP时,△CPQ是等腰三角形,BQ=2t﹣12,CP=12﹣t,2t﹣12=12﹣t,解得:t=8;∴当t=4或t=8时,满足以点P、Q、A、C中的任意三个点为顶点构成的三角形是以PQ为底的等腰三角形.25.(1)证明:∠ADE=∠B,∠BAD+∠B=∠ADC,∠CDE+∠ADE=∠ADC,∴∠BAD=∠CDE;(2)证明:∵AB=AC,∴∠B=∠C,∵DC=AB,∠BAD=∠CDE;在△ABD和△DCE中,,∴△ABD≌△DCE(SAS);(3)解:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=∠B=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°;②当AD=AE时,∠AED=∠ADE=50°,∵∠ADE+∠AED+∠DAE=180°,∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.26.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(BD•AE):(CD•AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(AB•DE):(AC•DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=10,∴S△ABD=10,∵AC=3,AB=5,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=5:3,∴S△ACD=6,∴S△ABC=10+6=16,故答案为:16.。

山东省济南市2022-2023学年八年级上学期期末 数学模拟检测

山东省济南市2022-2023学年八年级上学期期末 数学模拟检测

2022-2023学年度上学期期末学业水平检测八年级数学期末模拟试题第I 卷(选择题) 共30分一、单选题(共30分 每题3分)1.下面的图形中对称轴最多的是()A .B .C .D .2.下列长度的四根木棒中,能与长为5,10的两根木棒围成一个三角形的是()A .4B .5C .9D .15 3.下列各组图形中,BD 是ABC 的高的图形是()A .B .C .D .4.下列运算正确的是()A .232496b a b a b ⋅= B .2312332b b ab a ÷= C .11223a a a+= D .2112111a a a -=-+- 5.如图,在△ABC 中,AB =3,AC =4,BC =5,EF 是BC 的垂直平分线,P 是直线EF 上的任意一点,则PA +PB 的最小值是()A .3B .4C .5D .6 6.分式293x x --,当x 等于()时分式的值为零. A .3B .3-C .3或3-D .无法确定 7.如图,在△MPN 中,H 是高MQ 和NR 的交点,且PM =HN ,已知MH =3,PQ =2,则PN 的长为()A .5B .7C .8D .118.如图,在四边形ABCD 中,∠C =40°,∠B=∠D =90°,E ,F 分别是BC ,DC 上的点,当ΔAEF 的周长最小时,∠EAF 的度数为()A .100°B .90°C .70°D .80°(第5题图)(第7题图)(第8题图) 9.当2021a =时,()211111a a a a a -⎛⎫-÷ ⎪++⎝⎭+的值是() A .2022B .2022.5C .2021D .2021.5 10.如图,在平面直角坐标系中,对ABC 进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A 的对应点的坐标为()A .(1,2)-B .(1,2)--C .(1,2)-D .(1,2)第II 卷(非选择题) 共70分二、填空题(共15分 每题3分)11. 若一个多边形外角和与内角和相等,则这个多边形是_____.12.若二次三项式x 2+mx+14为完全平方式,则m 的值为_____.13.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是_____.14在△ABC 中,AC =5cm ,AD 是△ABC 中线,若△ABD 周长比△ADC 的周长大2cm ,则BA =_______.15.装裱在我国具有悠久的历史和鲜明的民族特色,是我国特有的一种保护和美化书画以及碑帖的技术.如图,整个画框的长()3m n +分米,宽为()2m n +分米,中间部分是长方形的画心,长和宽均是()m n +分米,则画心外阴影部分面积是_________平方分米,并求当2m =,1n =时的阴影部分面积是_________平方米.第13题图第 15题图三、解答题(共55分)16.(本题6分)解分式方程231233x x x x -=--17.(本题6分)证明:若2220a b c ab bc ac ++---=,则a b c ==18.(本题6分)先化简,再求值()22x y xy -•222x x xy y -+÷222x yx y -,其中x =-1,y =1.19.(本题7分)如图,在ABC 中,BAC ∠的角平分线交BC 于D ,且AB AC CD =+.求证:2C B ∠=∠.20.(本题8分)如图,求:(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1顶点的A1坐标________,线段CC1的长度为________;(2)在y轴上存在一点P,使得AP+BP的值最小,则AP+BP的最小值为________;(3)在x轴正半轴上存在一点M,使得S△ABM=S△ABC,则点M的坐标为________.21.(本题10分)阅读材料,并完成下列问题:观察分析下列方程:①x+2x=3;②x+6x=5;③x+12x=7.由①得,方程的根为x=1或x=2,由②得,方程的根为x=2或x=3,由③得,方程的根为x=3或x=4.(1)观察上述方程及其根,可猜想关于x的方程x+2x=a+2a的根为________;(2)请利用你猜想的结论,解关于x的方程22211x xax a-+=+--.22.(本题12分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图1所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为;(3)如图3,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.。

2024届青海省海西数学八年级第二学期期末学业水平测试模拟试题含解析

2024届青海省海西数学八年级第二学期期末学业水平测试模拟试题含解析

2024届青海省海西数学八年级第二学期期末学业水平测试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .20202.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185 180 方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁3.下列各组数中,不是勾股数的为( ) A .3,4,5B .6,8,10C .5,12,13D .5,7,104.如图,一次函数y =kx +b 的图象经过点(﹣1,0)与(0,2),则关于x 的不等式kx +b >0的解集是( )A .x >﹣1B .x <﹣1C .x >2D .x <25.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( ) A .±3B .3C .5D .96.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm )如下表所示: 队员1 队员2 队员3 队员4 甲组 176 177 175 176 乙组178175177174设两队队员身高的平均数依次为,,方差依次为S 甲2,S 乙2,下列关系中完全正确的是( )A .=,S 甲2<S 乙2B .=,S 甲2>S 乙2C .<,S 甲2<S 乙2D .>,S 甲2>S 乙27.用一些相同的正方形,摆成如下的一些大正方形,如图第(1)个图中小正方形只有一个,且阴影面积为1,第(2)个图中阴影小正方形面积和3;第(3)个图中阴影小正方形面积和为5,第(9)个图中阴影小正方形面积和为( )A .11B .13C .15D .178.与23是同类二次根式的是( ) A .18B .31-C .9D .27-9.已知a 、b 是方程x 2-2x-1=0的两根,则a 2+a+3b 的值是( ) A .7 B .5 C .-5 D .-710.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,若AB=5,AC=6,则BD 的长是( )A .8B .7C .4D .311.3B 逆时针旋转30°,那么图中点M 的坐标为( )A .(3,1)B .(1,3)C .(3,32) D .(32,3) 12.若关于x 的一元二次方程2420kx x --+=有两个不相等的实数根,则k 的取值范围是( ) A .2k >-B .2k <-C .2k <且0k ≠D .2k >-且0k ≠二、填空题(每题4分,共24分)13.已知正比例函数y=kx 的图象经过点A (﹣1,2),则正比例函数的解析式为 .14.如图,某小区有一块直角三角形绿地,量得直角边AC=4m ,BC=3m ,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC 为一条直角边的直角三角形,则扩充的方案共有_____种.15.将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是_______________16.若代数式34x -有意义,则实数x 的取值范围______________ 17.一次函数y =2x -4的图像与x 轴的交点坐标为_______. 18.因式分解:a 2﹣4=_____. 三、解答题(共78分) 19.(8分)解方程组:20.(8分)解不等式组26,? {3(1)25,? x x x -<+≤+①②并将解集在数轴上表示出来.21.(8分)如图,线段与相交于点,,,,,且,求线段的长.22.(10分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC 折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求BFPC的值.23.(10分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x⩾0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数。

2024-2025学年人教版八年级数学上册期末检测模拟试卷(一)(解析版)

2024-2025学年人教版八年级数学上册期末检测模拟试卷(一)(解析版)

2024—2025年度第一学期人教版八年级数学期末检测考试数学模拟试题(一)(考试时间:120分钟试卷满分:150分)1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1. 下列图形中,不是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】本题考查了轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.根据轴对称图形的概念逐项分析判断即可得出答案.【详解】解:A. 是轴对称图形,故选项A不符合题意;B. 是轴对称图形,故选项B不符合题意;C. 是轴对称图形,故选项C不符合题意;D. 不是轴对称图形,故选项D 符合题意;故选:D .2. ABC 中,作AC 边上的高,以下作法正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查了三角形高线的作法,正确把握相关定义是解题关键,经过三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是三角形的一条高.根据三角形高的定义,即可求解.【详解】解:在ABC 中,画出边AC 上的高,即是过点B 作AC 边的垂线段,正确的是C . 故选:C .3. 如图,ABC 中40,30B C ∠=°∠=°,延长BA 到点D ,则CAD ∠的度数是( )A. 50°B. 70°C. 80°D. 110°【答案】B【解析】 【分析】本题考查三角形的外角,根据三角形的外角等于与它不相邻的两个内角的和,进行求解即可.【详解】解:∵CAD ∠是ABC 的一个外角,∴403070CAD B C ∠=∠+∠=°+°=°,故选B .4. 如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若4AB =,5BC =,9ABC S = ,则DE 的长为( )A. 2B. 3C. 4D. 5【答案】A【解析】 【分析】本题考查了角平分线的性质定理,掌握角平分线的性质得到DE DF =是解题的关键. 过点D 作DF AB ⊥于点F ,由角平分线的性质可得DE DF =,根据三角形的面积计算方法()1·92ABC S DE AB BC =+= ,由此即可求解. 【详解】解:如图所示,过点D 作DF AB ⊥于点F ,∵BBBB 是ABC ∠的角平分线,,DE BC DF AB ⊥⊥,∴DE DF =, ∵()111 (9222)ABC ABD BCD S S S AB DF BC DE DE AB BC =+=+=+= , ∴1818245DE AB BC ===++, 故选:A .5. 在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个因式分解的等式,则这个等式是( )A. 222()2a b a ab b −=−+B. 22()()a b a b a b +−=−C. 22()()a b a b a b −=+−D. 2()a ab a a b −=−【答案】C【解析】 【分析】本题考查了平方差公式与几何图形.解题的关键在于正确表示两个图形中阴影部分的面积.根据阴影部分面积相等列等式即可.【详解】解:由面积相等可知22()()a b a b a b −=+−,故选:C .6. 下列运算中结果正确的是 ( ).A. 6³²a a a ⋅=B. 623623÷=a a aC. ()6²³a a −=− D. ()222422ab a b −=【答案】C【解析】 【分析】本题考查同底数幂的乘法运算、单项式除以单项式、同底数幂的除法运算、积的乘方运算及幂的乘方运算,熟练掌握相关运算法则是解决问题的关键.根据同底数幂的乘法运算、单项式除以单项式、同底数幂的除法运算、积的乘方运算及幂的乘方运算分别求解即可得到结论.详解】解:A 、323256a a a a a +⋅==≠,该选项不符合题意;B 、62624362333a a a a a −÷==≠,该选项不符合题意;C 、()326a a −=−,该选项符合题意;D 、()222424242ab a b a b −=≠,该选项不符合题意; 故选:C .7. 化简211m m m m −−÷ 的结果是( ) A. m B. 1m C. 1m − D. 11m − 【答案】A【解析】 【分析】本题主要考查了分式的除法运算等知识点,根据分式的除法运算法则即可求出答案,解题的关键是熟练运用分式的除法运算法则.【【详解】211m m m m−−÷ 211m m m m −×−= m =,故选:A .8. 如图,已知点D 在AC 上,点B 在AE 上,ABC DBE ≌,5DB =,12AE =,则BC 的长为( )A. 7B. 5C. 12D. 6【答案】A【解析】 【分析】本题考查了全等三角形的性质,由全等三角形的性质得出5AB DB ==,BC BE =,结合BC BE AE AB ==−计算即可得解.【详解】解:∵点D 在AC 上,点B 在AE 上,ABC DBE ≌,∴5AB DB ==,BC BE =,∴1257BC BE AE AB ==−=−=,故选:A .9. 如图,在ABC 中,点E 是边AD 的中点,2BD CD =,若6BDE S = ,则阴影部分的面积为( )A. 6B. 3C. 4D. 2【答案】B【解析】 【分析】本题考查了三角形的中线与面积关系,解题的关键是掌握三角形的中线将三角形分成面积相等的两部分.根据E 是边AD 的中点,得ACE DCE S S =△△,ABE DBE S S = ,再根据CDE 和BDE 同高,根据两底的关系,得出面积关系,即可得出结论.【详解】解: 点E 是边AD 的中点,6BDE S = ,6ABE DBE S S ∴==△△,AE DE =,ACE DCE S S =△△,以BD 边为底的BDE 和以DC 边为底的CDE 的高相等,2BD CD =, ∴132DCE BDE S S ==△△, ∴3ACE DCES S ==△△, 故选:B .10. 关于x 的方程233x k x x =−−−无解,则k 的值为( ) A. 3±B. 3C. 3−D. 无法确定 【答案】B【解析】【分析】本题考查了分式方程无解问题,先将分式方程移项,去分母,合并同类项得6x k =−,再由原方程无解得30x −=,联立方程组,求解即可.23k x =−, 去分母得:()23x k x −=−,合并同类项得:6x k =−,原方程无解,∴630x k x =− −=, 解得3k =,故选:B .11. 如图,将正五边形一角沿直线MN 折叠,折叠后得到点D ,则12∠+∠=( )A. 108°B. 72°C. 216°D. 144°【答案】C【解析】 【分析】本题考查折叠的性质,正多边形的内角和,先确定108D ∠=°,再根据折叠的性质得108D D ′∠=∠=°,再根据四边形内角和及邻补角的定义可得结论.解题的关键是掌握:.正多边形每个内角和:()2180n −×°,每个内角度数:()2180n n−×°. 【详解】解:∵五边形ABCDE 是正五边形, ∴()521801085D −×°∠==°,∵将正五边形一角沿直线MN 折叠,折叠后得到点D ,∴108D D ′∠=∠=°, ∴36023602108144DND DMD D ′′∠+∠=°−∠=°−×°=°,∵1180DND ′∠=°−∠,2180DMD ′∠=°−∠,∴()12360360144216DND DMD ∠+∠=°−∠+∠=°−°=′′°. 故选:C .12. 某同学在计算()()234141++时,把3写成41−后,发现可以连续运用两数和乘以这两数差公式计算:()()()()()()()22222341414141414141161255++=−++=−+=−=.请借鉴该同学的经验,计算:2481511111111122222   +++++=       ( ) A. 15122− B. 16122+ C. 1 D. 2【答案】D【解析】【分析】本题考查平方差公式,将原式乘以1212×−之后,连续使用平方差公式进而得出答案. 【详解】解:2481521111111112222   +++++       24815111111211111222222    =×−+++++         1615112122=×−+ 151511222=−+ 2=,故选:D .二、填空题(本大题共4小题,每小题4分,满分16分)13. 若221a a +=,那么多项式()()2(1)222a a a −−+−的值是______. 【答案】8【解析】【分析】本题考查的是整式的混合运算,化简求值,先计算整式的乘法运算,再合并同类项得到化简的结果,再把221a a +=代入计算即可.【详解】解:221a a += ,()()2(1)222a a a ∴−−+−()222124a a a =−+−−222128a a a =−+−+229a a =−−+ ()229a a =−++ 19=−+8=.故答案为:8.14. 当m =_________时,方程233x m x x =−−−无解. 【答案】3−【解析】 【分析】本题考查了分式方程无解的情况,熟悉掌握分式方程无解的含义是解题的关键. 去分母后,根据无解时x 的取值情况运算求解即可. 【详解】解:对233x m x x =−−−进行去分母可得:()23x x m =−−, 整理可得:6x m ,∵当30x −=时,此分式方程无解,∴3x =,∴36m =+,解得:3m =−,故答案为:3−.15. 如图,在ABC (AB AC >)中,AD 、AE 分别为三角形的角平分线、中线,若713AB AC =,ED kDC =,则k 的值为_____.【答案】37【解析】【分析】本题考查了角平分线的性质,三角形中线的性质,掌握角平分线的性质是解题的关键.过点D 作DM AB ⊥于点M ,DN AC ⊥于点N ,根据三角形角平分线的性质得出DM DN =,设BC 边上的高为h ,根据等面积法得出AB BD AC DC =,则可得出720CD BC =,根据AE 为ABC 中,BC 边的中线,得出320DE =,据此求解即可. 【详解】解:如图,过点D 作DM AB ⊥于点M ,DN AC ⊥于点N ,∵AD 为BAC ∠角平分线,∴DM DN =,设BC 边上的高为h , ∴11221122ABD ADC AB DM BD h S S AC DN DC h ⋅⋅==⋅⋅ , ∴AB BD AC DC=, ∵713AB AC =, ∴137AB AC = ∴137BD DC =,即137BD CD =, ∴720CD BC =, ∵AE 为ABC 中,BC 边的中线, ∴12BE EC BC ==, ∴320DE EC CD BC =−=, ∵ED kDC =, ∴37DE k DC == 故答案为:37. 【点睛】本题考查了角平分线的性质,三角形中线的性质,掌握角平分线的性质是解题的关键. 16. 如图,在等边三角形ABC 中,E 是AC 边的中点,P 是ABC 的中线AD 上的动点,且9AD =,则EP CP +的最小值是_______.的【答案】9【解析】【分析】本题主要考查了轴对称-最短路线问题以及等边三角形的性质,熟练掌握等边三角形和轴对称的性质是解题的关键.要求EP CP +的最小值,需考虑通过作辅助线转化,EP CP 的值为,BP EP ,从而找出其最小值求解即可.【详解】连接BE ,交AD 于点F ,连接BP ,如图所示.ABC 是等边三角形,AD 是BC 边上的中线,AD BC ∴⊥,AD ∴是BC 的垂直平分线,PB PC ∴=,PC PE PB PE ∴+=+.当,,B P E 三点共线时,BP PE +最小,EP CP +有最小值,∴当点P 在点F 处时,EP CP +BE 的长.E 是AC 边的中点,BE ∴是ABC 的中线,BE AC ∴⊥,11,22ABC AC BC S AC BE BC AD ==×=× △, 9BE AD ∴==,即EP CP +的最小值为9.三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤) 17. 解方程(1)1111a a a+=−−(2)12132163x x −=−− 【答案】(1)无解 (2)4x =【解析】【分析】本题考查了分式方程的解法,熟悉掌握分式方程的运算法则是解题的关键.(1)根据分式方程的运算法则进行运算即可;(2)根据分式方程运算法则进行运算即可;【小问1详解】 解:1111a a a+=−− 解:整理可得:1111a a a −=−−, 所有项同乘1a −可得:11a a −=−,移项可得:11a a −−=−−,合并可得:22a −=−,系数化为1可得:1a =,检验:把1a =代入1a −可得:110−=,∴此方程无解;【小问2详解】12132163x x −=−− 解:整理可得: ()121321321x x −=−−, 所有项同乘()321x −可得:2161x −−= ,移项可得:2116x =++ ,合并可得:28x =,系数化为1可得:4x =,检验:把4x =代入()321x −可得:()3241210×−≠,∴4x =是原方程的解. 18. 先化简,再求值:()32342236334xy x y x y xy x y −+÷−,其中,21x y ==,. 的【答案】223124x xy y −+−,2. 【解析】 【分析】此题考查了整式混合运算-化简求值,原式利用单项式乘多项式,多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值,熟练掌握运算法则是解本题的关键. 【详解】解:原式()4234252236334x y x y x y x y −+÷− ()()()4222342225223363334x y x y x y x y x y x y ÷−−÷−+÷− 223124x xy y =−+−, 当2x =,1y =时,原式2312221114124=−×+××−=−+−=. 19. 如图,在ABC 中,90BAC ∠=°,1C ∠=∠,(1)求证:AD BC ⊥(2)如果3AB =,4AC =,5BC =,求AD 的长.【答案】(1)详见解析(2) 2.4AD =【解析】【分析】本题考查三角形的内角和定理、垂直定义、三角形的面积:(1)利用三角形的内角和定理求得90ADC ∠=°即可;(2)利用三角形的等面积求解即可.【小问1详解】证明:∵90BAC ∠=°,1C ∠=∠,∴190C CAD CAD BAC ∠+∠=∠+∠=∠=°,在ADC △中,()1801809090ADCC CAD ∠=°−∠+∠=°−°=°, ∴AD BC ⊥;【小问2详解】解:∵90BAC ∠=°,AD BC ⊥,的∴1122ABC S AB AC BC AD =⋅=⋅ , ∵3AB =,4AC =,5BC =, ∴34 2.45AB AC AD BC ⋅×===. 20. 如图,在四边形ABCD 中,CA 平分BCD ∠,AB BC ⊥,AD CD ⊥,垂足分别为B ,D ,E 为AC 上一点,连接EB ,ED .求证:(1)BC CD =;(2)EB ED =.【答案】(1)见解析 (2)见解析【解析】【分析】本题主要考查了全等三角形的判定和性质,角平分线的性质,垂直的定义,熟练掌握全等三角形的判断方法是解题的关键.(1)根据题意推出ABC ADC △≌△,即可得到答案BC CD =;(2)证明出EBC EDC △≌△EB ED =.【小问1详解】证明:∵CCCC 平分BCD ∠,∴ACB ACD ∠=∠,∵,AB BC AD CD ⊥⊥,∴90ABC ADC ∠=∠=°,∵AC AC =,∴ABC ADC △≌△()AAS ,∴BC CD =;【小问2详解】证明:由(1)知ACB ACD ∠=∠,BC CD =,∵EC EC =,∴()SAS ECB ECD △≌△∴EB ED = .21. 如图,ABC 中,点D 在BC 边上,100BAD ∠=°,ABC ∠的平分线交AC 于点E ,过点E 作EF AB ⊥,垂足为F ,且55AEF ∠=°,连接DE .(1)求证:DE 平分ADC ∠(2)若8,6,10AB AD CD ===,三角形ACD 的面积是16,求ABE 的面积. 【答案】(1)见解析 (2)8【解析】【分析】本题考查了角平分线的判定和性质,三角形的内角和定理,三角形面积公式,熟练掌握角平分线上的点到角的两边的距离相等是解题关键.(1)过点E 作EG AD ⊥,EH BC ⊥,根据角平分线的性质得到EF EG =,EF EH =,进而得到EG EH =,再根据角平分线的判定定理即可证明结论;(2)根据三角形的面积公式求出2EH =,再根据三角形的面积公式计算,即可求出ABE 的面积.【小问1详解】证明:过点E 作EG AD ⊥交AD 于点G ,EH BC ⊥交BC 于点H ,∵90F ∠=°,55AEF ∠=°,∴905535EAF ∠=°−°=°,∴180145BAC EAF ∠=°−∠=°,∴35CAD BAC BAD ∠=∠−∠=°,AE ∴平分FAD ∠,EF AF ⊥ ,EG AD ⊥,EF EG ∴=,BE 平分ABC ∠,EF BF ⊥,EH BC ⊥,EF EH ∴=,EG EH ∴=,EG AD ⊥ ,EH BC ⊥,DE ∴平分ADC ∠;【小问2详解】解:16ACD S = ,16ADE CDE S S ∴+= ,111622AD EG CD EH ∴⋅+⋅=, 6AD = ,10CD =,EG EH =, ∴()1162AD CD EG +⋅=, ∴2EG EH ==,∴2EF EG ==,8AB = ,1182822ABE S AB EF ∴=⋅=××= . 22. 如图,ABC 在平面直角坐标系中,顶点()20A ,.(1)画出ABC 关于x 轴对称的图形A B C ′′′ ,其中、、A B C 分别和A B C ′′′、、对应;并写出B ′点的坐标;(2)若y 轴上有一点P ,且满足APC ABC S S = ,直接写出点P 坐标.【答案】(1)见解析,()3,3B ′−(2)90,2P 或50,2 −【解析】【分析】本题考查了轴对称作图及坐标系中求面积,熟知关于x 轴对称的点的坐标特点是解题关键. (1)根据关于x 轴对称的点的坐标特点画出A B C ′′′ ,根据点在坐标系的位置写出B ′点的坐标即可; (2)先用割补法求出ABC S ,进而利用12APC PC OA S ⋅⋅= 求出PC 长,即可求出结论.【小问1详解】解:根据关于x 轴对称的点的坐标特征,分别找出点、、A B C 关于x 轴的对称点,顺次连接A B C ′′′、、,如图:A B C ′′′ 即为所求;()3,3B ′−,;【小问2详解】 解:1117331312232222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= , APC ABC S S = ,72APC S ∴= , ()20A ,,即2OA =,17222PC ∴⨯⋅=, 72PC ∴=, ()0,1C ,90,2P ∴ 或50,2 −. 23. (1)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:大巴与小车的平均速度各是多少?(2)某一工程,在工程招标时,接到甲乙两个工程队的投标书.施工一天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.工程领导们根据甲乙两队的投标书测算,可有三种施工方案:方案A :甲队单独完成这项工程刚好如期完成;方案B :乙队单独完成这项工程比规定日期多用5天;方案C :若甲乙两队合作4天后,余下的工程由乙队单独做也正好如期完成.在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?【答案】(1)40,60(2)方案C【解析】【分析】本题考查分式方程的应用.(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;(2)设甲单独完成这一工程需x 天,则乙单独完成这一工程需(5)x +天.根据方案C ,可列方程得444155x x x x −++=++,解方程即可解决问题. 【详解】解:(1)设大巴的平均速度为x 公里/小时,则小车的平均速度为1.5x 公里/小时, 根据题意,得:9090111.524x x =++, 解得:40x =,经检验:40x =是原方程的解, 1.540 1.560x =×=,答:大巴平均速度为40公里/小时,小车的平均速度为60公里/小时;(2)设甲单独完成这一工程需x 天,则乙单独完成这一工程需(5)x +天.根据方案C ,可列方程得444155x x x x −++=++, 解这个方程得20x ,经检验:20x 是所列方程的根.即甲单独完成这一工程需20天,乙单独完成这项工程需25天.所以A 方案的工程款为1.52030×=(万元), B 方案的工程款为1.12527.5×=(万元),但乙单独做超过了日期,因此不能选, C 方案的工程款为1.54 1.14 1.11628×+×+×=(万元), ∵2830<,的∴在不耽误工期的前提下,选择C 方案最节省工程款.24. 现有长与宽分别为a 、b 的小长方形若干个,用两个这样的小长方形拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:(1)根据图1,教材已给出关于a 、b 的关系式:222()2a b a ab b +=++;根据图2,关于a 、b 的关系式可表示为:______;根据上面的思路与方法,解决下列问题:(2)①若22440m n +=,28m n +=,则mn =______; ②若()()456m m −−=,则22(4)(5)m m −+−=______. (3)如图3,点C 是线段AB 上的一点,以AC ,BC 为边向两边作正方形,设7AB =,两正方形的面积和1216S S +=,求图中阴影部分面积. 【答案】(1)22()4()a b ab a b −+=+;(2)①6;②13;(3)16.5 【解析】【分析】本题考查完全平方公式的几何背景,完全平方公式的变形应用,整式化简求值,解题的关键是掌握完全平方公式的应用.(1)两种方法计算大正方形的面积可得答案;(2)①由28m n +=,可得224464m n mn ++=,而22440m n +=,故6mn =; ②由22[(4)(5)](1)1m m −−−=−=,知22(4)(5)2(4)(5)1m m m m −+−−−−=,又(4)(5)6m m −−=,故22(4)(5)13m m −+−=; (3)由7AC BC +=,得22249AC BC AC BC ++⋅=,又2216AC BC +=,故16.5AC BC ⋅=;即图中阴影部分面积为16.5.【详解】解:(1)大正方形的面积用面积公式计算为()2a b +,用小正方形面积加上4个长方形面积为()24a b ab −+,∴关于a 、b 的关系式可表示为:()()224a b ab a b −+=+; 故答案为:22()4()a b ab a b −+=+;(2)①28m n += , 2(2)64m n ∴+=,224464m n mn ∴++=, 22440m n += ,40464mn ∴+=,6mn ∴=;故答案为:6;②22[(4)(5)](1)1m m −−−=−= ,22(4)(5)2(4)(5)1m m m m ∴−+−−−−=,(4)(5)6m m −−= ,22(4)(5)261m m ∴−+−−×=,22(4)(5)13m m ∴−+−=,故答案为:13;(3)根据题意得:7AC BC +=, 22249AC BC AC BC ∴++⋅=, 1216S S += ,2216AC BC ∴+=,16.5AC BC ∴⋅=; 16.5CD BC ∴⋅=; ∴图中阴影部分面积为16.5.25. (1)如图①,在ABC 中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DEAD =,再连接BE ,这样就把AB ,AC ,2AD 集中在ABE 中,则中线AD 的取值范围是 ;(2)问题解决:如图②,在ABC 中,D 是BC 边的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断此时:BE CF +与EF 的大小关系,并说明理由?(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=°,CB CD =,160BCD ∠=°,以C 为顶点作80ECF ∠=°,边CE ,CF 分别交AB ,AD 于E ,F 两点,连接EF ,判断此时:BE 、DF 与EF 的数量关系, 并说明理由【答案】(1)14AD <<;(2)EF EB CF <+,见解析;(3)BE DF EF +=【解析】【分析】本题考查全等三角形的综合应用,涉及三角形全等的判定及性质,三角形三边关系,线段垂直平分线的性质,添加常用辅助线构造全等三角形是解题的关键.(1)延长AD 到点E 使DE AD =,再连接BE ,证明(SAS)ADC EDB ≌△△,可得AC BE =,再由三角形三角关系可得14AD <<;(2)延长FD 至G ,使FD DG =,连接BG ,证明()SAS CFD BGD ≌,可得BG FC =,连接EG ,可知EFG 是等腰三角形,则EF EG =,在EBG 中,利用三角形的三边关系可求解;(3)延长AB 至H 使BH DF =,连接CH ,证明(SAS)CBH CDF ≌,可推导出80ECH ECF ∠=∠=°,再证明()SAS HCE FCE ≌,则EH EF =,能推导出BE DF EF +=.【详解】解:(1)延长AD 到点E 使DE AD =,再连接BE ,CD BD = ,ADC BDE ∠=∠,AD DE =,()SAS ADC EDB ∴ ≌,3AC BE ∴==,在ABE 中,AB BE AE AB BE −<<+,28AE ∴<<,2AE AD = ,14AD ∴<<,故答案为:14AD <<;(2)EF EB CF <+.理由:延长FD 至G ,使FD DG =,连接BG ,CD BD = ,CDF BDG ∠=∠,FD DG =, ()SAS CFD BGD ∴ ≌, BG FC ∴=,连接EG ,ED FD ⊥ ,FD DG =, ∴EG 是FG 的垂直平分线, EF EG ∴=,在EBG 中,EG EB BG <+,即EF EB CF <+; (3)延长AB 至H 使BH DF =,连接CH ,180ABC D∠+∠=° ,180ABC CBH ∠+∠=°, CBH D ∴∠=∠,CB CD = ,BH DF =, ()SAS CBH CDF ∴ ≌, CH CF ∴=,BCH DCF ∠=∠, 160BCD ∠=° ,80ECF ∠=°,80DCF ECB BCH ECB ∴∠+∠=∠+∠=°, 80ECH ECF ∴∠=∠=°, CH FC = ,EC EC =,()SAS HCE FCE ∴ ≌, EH EF ∴=,BE BH EH ,+=∴+=.BE DF EF。

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题含解析

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题含解析

2024届内蒙古乌兰察布市北京八中学分校八年级数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.92D.2542.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有()A.1个B.2个C.3个D.4个3.下列根式中,与不是同类二次根式的是()A.B.C.D.4.若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为()A.12019B.2020 C.2019 D.20185.点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大D.A组,B组平均数相等,A组方差大7.小宸同学的身高为1.8m,测得他站立在阳光下的影长为0.9m,紧接着他把手臂竖直举起,测得影长为1.2m,那么小宸举起的手臂超出头顶的高度为()A.0.3m B.0.5m C.0.6m D.2.1m8.一个多边形的每一个外角都等于40°,则这个多边形的内角和是.()A.360°B.980°C.1260°D.1620°9.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355axx x-=---有正整数解,则满足条件的整数a的值之积为()A.28 B.﹣4 C.4 D.﹣210.下列各图中,∠1>∠2的是( )A.B.C.D.11.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为()A.4 B.16 C.5D.512.已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是()A.a>1 B.a<﹣1C.﹣1<a<1 D.﹣1<a<0或0<a<1二、填空题(每题4分,共24分)13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.已知a =32-,b =3+2,则a 2-2ab +b 2的值为____________.15.某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.16.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点123A A A 、、、…在直线l 上,点123C C C 、、、 …在y 轴正半轴上,则点n B 的横坐标是__________________。

2024届湖北省十堰市八年级数学第二学期期末复习检测模拟试题含解析

2024届湖北省十堰市八年级数学第二学期期末复习检测模拟试题含解析

2024届湖北省十堰市八年级数学第二学期期末复习检测模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每题4分,共48分)1.下列命题中是正确的命题为A .有两边相等的平行四边形是菱形B .有一个角是直角的四边形是矩形C .四个角相等的菱形是正方形D .两条对角线互相垂直且相等的四边形是平行四边形2.若实数m 使关于x 的不等式组5,52x x x m<⎧⎨-≥+⎩有且只有四个整数解,且实数m 满足关于y 的方程2211y m m y y ++=--的解为非负数,则符合条件的所有整数m 的和为( )A .1B .2C .-2D .-33.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .44.已知a b <,下列不等式中错误的是( )A .33a b <B .55a b +<+C .55-<-a bD .33a b -<- 5.如图,函数的图象经过点,与函数的图象交于点,则不等式组的解集为( )A .B .C .D .6.在□ABCD 中,∠B +∠D=260°,那么∠A 的度数是( )A .50°B .80°C .100°D .130°7.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )A .90°B .60°C .120°D .45°8.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差9.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )A .B .C .D .10.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,则第2018个正方形的边长为A .22017B .22018C .20172D .2018211.已知△ABC 的三边长分别是a ,b ,c ,且关于x 的一元二次方程22220x ax c b -+-=有两个相等的实数根,则可推断△ABC 一定是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形 12.已知关于x 的方程()21210x m x m -++-=的两根互为倒数,则m 的值为( )A .1-B .12C .1D .12- 二、填空题(每题4分,共24分)13.如图是一辆慢车与一辆快车沿相同路线从A 地到B 地所行的路程与时间之间的函数图象,已知慢车比快车早出发2小时,则A 、B 两地的距离为________ km .14.已知函数32y x =-+ 的图像经过点A(1,m)和点B(2,n),则m ___n(填“>”“<”或“=”).15.计算1555÷⨯所得的结果是______________。

2024届湖北省武汉二中学数学八年级第二学期期末联考模拟试题含解析

2024届湖北省武汉二中学数学八年级第二学期期末联考模拟试题含解析

2024届湖北省武汉二中学数学八年级第二学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AO=CO D.AC⊥BD2.计算()23-的结果是A.﹣3 B.3 C.﹣9 D.93.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣54.如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是( )A .B .C .D .5.若关于x 的方程x 2-bx +6=0的一根是x =2,则另一根是( )A .x =-3B .x =-2C .x =2D .x =3 6.若成立,则下列不等式成立的是( ) A .B .C .D . 7.已知△ABC 的三边分别是a 、b 、c ,下列条件中不能判断△ABC 为直角三角形的是( )A .a 2+b 2=c 2B .∠A+∠B=90°C .a=3,b=4,c=5D .∠A :∠B :∠C=3:4:58.下列各数:2,0,3,0.020000,,9,π-其中无理数的个数是( )A .4B .3C .2D .1 9.不等式组1048x x ->⎧⎨≤⎩的解集在数轴上表示为( ) A .B .C .D .10.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) 中位数众数 平均数 方差 9.29.3 9.1 0.3 A .中位数 B .众数 C .平均数 D .方差11.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .12.如图,已知反比例函数a y x =和一次函数y kx b =+的图象相交于点()11,A y -、()24,B y 两点,则不等式a kx b x≤+的解集为( )A .1x ≤-或4x ≥B .14x -≤≤C .4x ≤D .1x ≤-或04x <≤二、填空题(每题4分,共24分) 13.如右图,一只蚂蚁沿着边长为2的正方体表面从点A 出发,经过3个面爬到点B ,如果它运动的路径是最短的,则此最短路径的长为 .14.若一元二次方程2210mx x -+=有两个不相同的实数根,则实数m 的取值范围________.15.一个弹簧不挂重物时长12cm ,挂上重物后伸长的长度与所挂重的质量成正比。

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题含答案

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题含答案

浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题学校_______ 年级_______ 姓名_______注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形2.下列各数中,无理数是()A.0.101001B.0C.5D.2 3 -3.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=54.下列各式中,能用完全平方公式进行因式分解的是() .A.2x4x4-+B.2x1+C.2x2x2--D.2x4x1++5.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的大小为()A.30°B.34°C.36°D.40°6.如图为某居民小区中随机调查的10户家庭一年的月平均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是().A.6.5,7B.6.5,6.5C.7,7D.7,6.57.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60 70 80 90 100人数(人)7 12 10 8 3A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在下列交通标识图案中,不是轴对称图形的是()A.B.C.D.+⨯的值应在()10.估计5210A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 二、填空题(每题4分,共24分) 13.若112x y+=,则分式22x xy y x xy y -+++的值为__________.14.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.15.已知点A (x ,2),B (﹣3,y ),若A ,B 关于x 轴对称,则x +y 等于_____. 16.分解因式:3x 2-6x+3=__.17.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别在AB 、BC 上,连接DE 并延长交AC 的延长线于点F ,若AF AB BE =+,2BCA BED ∠=∠,5AB =,3CE =,则BD 的长为_________.18.如图,ABC ∆和EBD ∆都是等腰三角形,且100ABC EBD ∠=∠=︒,当点D 在AC 边上时,BAE ∠=_________________度.三、解答题(共78分)19.(8分)已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =20°,∠C =60°.求∠DAE 的度数.20.(8分)已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)21.(8分)如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm .(2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?22.(10分)在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M在线段AD的延长线上,点N在线段AC上,(1)中其他条件不变.①线段AM 的长为;②求线段AN的长.23.(10分)用消元法解方程组35,43 2.x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.24.(10分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?25.(12分)龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本26.(12分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+22b =1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC 交x轴于点F.①求证:CF=12 BC;②直接写出点C到DE的距离.参考答案一、选择题(每题4分,共48分)1、C2、C3、D4、A5、B6、B7、C8、B9、D10、B11、D12、B二、填空题(每题4分,共24分)13、114、0.115、﹣1.16、3(x-1)217、118、1三、解答题(共78分)19、20°20、见详解.21、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.22、(13;(223、(1)解法一中的计算有误;(2)原方程组的解是12 xy=-⎧⎨=-⎩.24、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.25、(1)A、B两种笔记本每本的进价分别为20 元、30 元;(2)至少购进A种笔记本35 本26、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末学业质量监测
八年级数学
(时间120分钟,满分120分)
注意事项:
答卷前,考生务必将试题密封线内及答题卡上面的项目填涂清楚;所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.
一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请
把正确的选项选出来,每小题选对得3分,满分36分. 多选、不选、错选均记零分.)
1. 下列命题是真命题的是
A. 如果a >b ,a >c ,那么b =c
B. 相等的角是对顶角
C. 一个角的补角大于这个角
D. 一个三角形中至少有两个锐角
2. 如图,在平行四边形ABCD 中,AD =4,点E ,F 分别是BD ,CD 的中点,则EF 等于
A .2
B .3
C .4
D .5
3. 如图,△ABC ≌△ADE ,点D 落在BC 上,且∠EDC =70°,则∠B 的度数等于 A. 50° B. 55° C. 60° D. 65°
4. 某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是
A .87
B .87.6
C .87.8
D .88
5. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为 A. AB >AC=CE B. AB=AC >CE C. AB >AC >CE D. AB=AC=CE
6. 若
5z 7y 2x ==,则x
z -y x +的值是 A. 1 B. 2 C. 3 D. 4
7. 某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行读书时间(小时)
7 8 9 10 11 学生人数
6
10
9
8
7
A. 9,8
B. 9,9
C. 9.5,9
D. 9.5,8 8. 下列命题中,逆命题为真命题的是
A. 菱形的对角线互相垂直
B. 矩形的对角线相等
C. 平行四边形的对角线互相平分
D. 正方形的对角线垂直且相等
9. 如图,在△ABC 中,∠A =40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 等于 A .80° B .100° C .110° D .120° 10. 若把分式
2xy
x y
+中的x 和y 同时扩大为原来的3倍,则分式的值 A. 扩大3倍 B. 缩小6倍 C. 缩小3倍 D. 保持不变 11. 已知x 为整数,且分式
1
-x 2
-x 22的值为整数,则满足条件的所有整数x 的和是 A. -4 B. -5 C. 1 D. 3
12. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC=16,F 是DE 上一点,连接AF 、CF ,DE=4DF ,若∠AFC=90°,则AC 的长度为
A .11
B .12
C .13
D .14
二、填空题(本题共6小题,共18分,只要求填写最后结果.)
13.若a :b=1:3,b :c=2:5,则a :c= . 14.已知点A (a ,1)与点B (5,b)关于y 轴对称,则
b
a
a b += . 15.如图,在梯形ABCD 中,AD ∥BC ,若AB=AD=DC=3,∠A=120°,则梯形ABCD 的周长为 .
(第15题图) (第16题图) (第18题图)
16.如图,依据尺规作图的痕迹,则∠α= . 17.若分式方程
2x
-3a -3-x x =有增根,则a= .
18.如图所示,在△ABC 中,AD 是∠BAC 的平分线,G 是AD 上一点,且AG =DG ,连接BG 并延长BG 交AC 于E ,又过C 作AD 的垂线交AD 于H ,交AB 为F ,则下列说法: ①D 是BC 的中点; ②BE ⊥AC ; ③∠CDA >∠2;
④△AFC 为等腰三角形;
⑤连接DF ,若CF =6,AD =8,则四边形ACDF 的面积为24. 其中正确的是 (填序号).
三、解答题(本题共6个小题,共66分.解答应写出文字说明、推理过程或演算步骤)
19.(本题满分12分,第1小题5分,第2小题7分)
(1)计算:22
22
x-2y x -4xy 4y 1x y x -y +-÷+ (2)先化简,再求值:⎪⎭

⎝⎛÷⎪⎭⎫
⎝⎛++9-x x 3-x 3x 92,其中2x =-.
20. (本题满分10分)
垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分.已知运动员甲测试成绩的中位数和众数都是7.
测试序号 1 2 3 4 5 6 7 8 9 10 成绩(分)
7
6
8
7
a
6
8
6
8
b
(1)填空:a= ; b= .
(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?
21.(本题满分10分)
过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .
(1)求证:四边形AECF 是菱形;
(2)若AB =6,AC =10,EC =4
25
,求EF 的长.
22.(本题满分10分)
阅读理解: 关于x 的方程:c 1c x 1x +=+
的解为;
,c
1
x c x 21== c 1-c x 1-x =(可变形为c 1-c x 1-x +=+)的解为;
,c 1
-x c x 21== c 2c x 2x +=+的解为;
,c 2
x c x 21== c 3c x 3x +=+的解为;
,c
3
x c x 21== … …
(1)归纳结论:根据上述方程与解的特征,得到关于x 的方程c
m
c x m x +=+
(m≠0)的解为 .
(2)应用结论:解关于y 的方程 1
-y 3
-1-a 3a -y =

23.(本题满分12分)
某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的
3
2
,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.
(1)求甲,乙两木工组单独修理这批桌凳的天数;
(2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.
24. (本题满分12分)
如图1,点E 为正方形ABCD 的边AB 上一点,EF ⊥EC ,且EF =EC ,连接AF .过点F 作FN 垂直于BA 的延长线于点N . (1)求∠EAF 的度数;
(2)如图2,连接FC 交BD 于M ,交AD 于H .求证:BD=AF+2DM.。

相关文档
最新文档