(付鹏飞)四档辛普森行星齿轮变速器的结构

合集下载

辛普森3挡和四档齿轮机构

辛普森3挡和四档齿轮机构

阳轮不转,自由)
内圈转速快于外圈,锁止状态,如B0不工作时。(太阳
轮顺2转021/2,/2 被锁)
24
皮肌炎图片——皮肌炎的症状表现
皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时伴 有恶性肿瘤。它的1症状表现如下:
1、早期皮肌炎患者,还往往伴有 全身不适症状,如-全身肌肉酸痛, 软弱无力,上楼梯时感觉两腿费力 ;举手梳理头发时,举高手臂很吃 力;抬头转头缓慢而费力。
液力机自械动自变动速变器速器
液力变矩器 齿轮变速机构 换档执行机构 行星齿轮系统
2021/2/2
1
齿轮系统
一、辛普森式变自速动机变构速器
辛普森式三档行星齿轮变速机构 辛普森式四档行星齿轮变速机构 运用实例—丰田A341E
二、串联式变速机构--辛普森2型齿系
三、拉维娜式行星齿轮机构
四、定轴常啮合式齿轮机构
2021/2/2
47
47
(二)辛普森三档行星齿轮机构的工作原理
有无发动机制动与某类构件是否参与工作相关?
使用单向离合器的档位没有发动机制动,如:D1、21、D2 档位。 使用制动器代替单向离合器的档位有发动机制动,如:L、 22、D3档位。
2021/2/2
48
48
A341E结构
作业: 1、如图所示变速器那些档位有发动机制动作用?
三、拉维娜式行星齿轮机构
四、定轴常啮合式齿轮机构
2021/2/2
17
辛普森式四档行星齿轮变速机构
1、超速行星齿轮组安装位置
增加超速行星排,获得第四个前进档(OD档)。
2021/2/2
位置 1
18
18
辛普森式四档行星齿轮变速机构

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线

辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线辛普森式自动变速器结构原理及各挡位传动路线不同车型自动变速器在结构上往往有很大差异,主要表现在:前进挡的挡数不同,离合器,制动器及单向超越离合器的数目和布置方式不同,所采用的行星齿轮机构的类型不同.前进挡的数目越多,行星齿轮变速系统中的离合器,制动器及单向超越离合器的数目就越多.离合器,制动器,单向超越离合器的布置方式主要取决于行星齿轮变速系统前进挡的挡数及所采用的行星齿轮机构的类型.轿车自动变速器所采用的行星齿轮机构的类型主要有2类,即辛普森式和拉维萘赫式行星齿轮机构. 辛普森式行星齿轮机构由2个内啮合式单排行星齿轮机构组合而成, 庞成立其结构特点是:前后2个行星排的太阳轮连接为一体,称为前后太阳轮组件;前一个行星排的行星架和后一个行星排的齿圈连接为一体,称为前行星架和后齿圈组件;输出轴通常与前行星架和后齿圈组件连接.经过上述的组合后,该机构成为一种具有4个独立元件的行星齿轮机构.这4个独立元件是:前齿圈,前后太阳轮组件,后行星架,前行星架和后齿圈组件.根据前进挡的挡数不同,可将行星齿变速系统分为3挡行星齿轮变速系统和4挡行星齿轮变速系统2种.1.辛普森式3挡行星齿轮变速系统的结构和工作原理.(1)行星齿轮变速系统的结构:a)结构b)换挡执行元件的布置l一输入轴2一倒挡及高挡离合器毂3一前进离合器毂和倒挡及高档离合器毂4一前进离合器毂和前齿圈5一前行星架6一前后太阳轮组件7一后行星架和低挡及倒挡制动器毂8一输出轴C1一倒挡及高挡离合器c2一前进离合器B1—2挡制动器B2一低挡及倒挡制动器Fl一低挡单向超越离合器图1行星齿轮变速系统结构及元件布置图如图1(a图为结构图,b图为元件布置图)所示,行星齿轮机构中设置了5个换挡执行元件(2个离合器,2个制动器和1个单向超越离合器),使该系统成为一个具有3个前进挡和1个倒挡的行星齿轮变速系统.离合器C1用于连接输入轴和前后太阳轮组件, 离合器C2用于连接输入轴和前齿圈,制动器B1用于固定前后太阳轮组件, 制动器B2和单向超越离合器F1都是用于固定后行星架.5个换挡执行元件在各挡位的工作情况如表1所示.由表1中可知,当行星齿轮变速系统处于停车挡和空挡之外的任何一个挡位时,5个换挡执行元件中都有2个处于表1辛普森3挡行星齿轮变速系统换挡执行元件工作情况操纵手挡位换执仃兀件柄位置ClC2BlB2F1 1挡0 D2挡0O3挡OOR倒挡0OS.L或1档OO2,12挡0O注:0一接合,制动或锁止. 工作状态(接合,制动或锁止),其余 3个不工作(分离,释放或自由状态).处于工作状态的2个换挡执行元件中至少有一个是离合器Cl或 C2,以便使输入轴与行星排连接.当变速器处于任一前进挡时,离合器 C2都处于接合状态,此时输入轴与行星齿轮机构的前齿圈接合,使前齿圈成为主动件,因此离合器C2也称为前进离合器.倒挡时,离合器C1接合,C2分离,此时输入轴与行星齿轮机构的前后太阳轮组件接合,使前后太阳轮组件成为主动件;另外,离合器C1在3挡(直接挡)时也接合,因此,离合器C1也称为倒挡及高挡离合器.制动器B1仅在2挡才工作,称为2挡制动器.制动器B2在1挡和倒挡时都工作,因此称为低挡及倒挡制动器.由此可知,换挡执行元件的不同工作组合决定了行星齿轮变速系统的传动方向和传动比,从而决定了行星齿轮变速系统所处的挡位. (2)行星齿轮变速系统各挡的传动路线: ?1挡:如图2所示,此时前进离合器C2接合,使输入轴和前齿圈连接:同时单向超越离合器F1处于自锁状态,后行星架被固定.来自液力变矩器的发动机动力经输入轴,前汽车维修2011.6???1一输入轴2一前进离合器c23一倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈 6,前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架ll一后行星轮 l2一低挡及倒挡制动器B213一低挡单向超越离合器F1l4一后齿圈图21挡路线-倒挡及 1一输入轴2一前进离合器C23高挡离合器C14—2档制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件lO一后行星架 ll一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图43挡路线???a)前行星排b)后行星排l一输入轴2一前进离合器C23-倒挡及高挡离合器Cl4—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件1O一后行星架11一后行星轮 12一低挡及倒挡制动器B2l3一低挡单向超越离合器F114一后齿圈图32挡路线进离合器C2传给前齿圈,使前齿圈朝顺时针方向旋转.在前行星排中,前行星齿轮在前齿圈的驱动下一方面朝顺时针方向公转,带动前行星架朝顺时针方向转动,另一方面作顺时针方向的自转,并带动前后太阳轮组件朝逆时针方向转动;在后行星排中,后行星轮在后太阳轮的驱动下朝顺时针方向作自转时,对后行星架产生一个逆时针方向的力矩,而低挡单向超越离合器FI对后行星架在逆时针方向具 46汽车维修2011.6a)前行星排b)后行星排1一输入轴2一前进离合器C23-倒挡及高挡离合器C14—2挡制动器B15一前齿圈6一前行星轮7一前行星架8一输出轴9一前后太阳轮组件10一后行星架11一后行星轮12一低挡及倒挡制动器B2 13一低挡单向超越离合器F114一后齿圈图5倒挡路线有锁止作用,因此后行星架固定不动, 使后齿圈在后行星轮的驱动下朝顺时针方向转动.因此,在前进1挡时,由输入轴传给行星齿轮机构的动力是经过前后行星排同时传给前行星架和后齿圈组件,再传给与之相连接的输出轴,从而完成动力输出的.?2挡:如图3所示,前进离合器C2和2挡制动器B1同时工作. 此时输入轴仍经前进离合器C2和前齿圈连接,同时前后太阳轮组件被2 挡制动器B1固定.发动机动力经液力变矩器和行星齿轮变速系统的输入轴传给前齿圈,使其朝顺时针方向转动.由于前太阳轮转速为0,因此前行星轮在前齿圈的驱动下一方面朝顺时针方向作自转,另,方面朝顺时针方向作公转,同时带动前行星架及输出轴朝顺时针方向转动.此时后行星排处于自由状态,后行星轮在后齿圈的驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.由此可知,2挡时发动机的动力全部经前行星排传到输出轴. ?3挡:如图4所示,前进离合器C2和倒挡及高挡离合器C1同时接合,把输入轴与前齿圈及前后太阳轮组件连接成一体.由于这时前行星排中有2个基本元件互相连接,从而使前行星排连成一体旋转,输入轴的动力通过前行星排直传给输出轴,即直接挡.此时后行星排处于自由状态,后行星轮在后齿圈驱动下朝顺时针方向一边自转一边公转,带动后行星架朝顺时针方向空转.?倒挡:如图5所示,倒挡及直接挡离合器C1接合,使输入轴与前后太阳轮组件连接,同时低挡及倒挡制动器B2产生制动,将后行星架固定. 此时发动机动力经输入轴传给前后太阳轮组件,使前后太阳轮朝顺时针方向转动.由于后行星架固定不动,后行星轮在后太阳轮的驱动下朝逆时针方向转动,并带动后齿圈朝逆时针方向转动,与前行星架和后齿圈组件连接的输出轴也随之朝逆时针方向转动, 从而改变了传动方向.此时,前行星排中由于前齿圈可以自由转动,前行星排处于自由状态,前齿圈在前行星轮的带动下朝逆时针方向自由转动.有些车型自动变速器的行星齿轮机构的前后行星排的排列顺序相反,即输入轴通过前进离合器C2和后齿圈连接,输出轴与前齿圈和后行星架组件连接,但工作原理都一样.2.3行星排4挡行星齿轮变速系统的结构与工作原理超越膏台嚣图64挡行星齿轮变速器元件位置图丰田CROWN(皇冠)3.0轿车所器B1之间串联了一个单向超越离合用的A340E电子控制自动变速器就器F2,称为2挡单向超越离合器.单采用了这种行星齿轮变速系统.向超越离合器的内环和前后太阳轮组 ?结构:这种4挡行星齿轮变速件连接,外环和2挡制动器B1连接, 器是在不改变原辛普森式3挡行星齿在逆时针方向对前后太阳轮组件具有轮变速系统的主要结构和大部分零部锁止作用.当行星齿轮变速系统处于件的情况下,另外再增加一个单排行2挡时,前进离合器C1和2挡制动器星齿轮机构和相应的换挡执行元件来Bl仍同时工作.汽车加速时,前后太产生超速挡而实现的.这个单排行星阳轮组件的受力方向为逆时针方向, 齿轮机构称为超速行星排,他安装在由于2挡单向超越离合器F2的外环行星齿轮变速系统的前端,其行星架被2挡制动器B1固定,因此前后太是主动件,与变速器输入轴连接;齿圈阳轮朝~_B,-j-针方向的旋转趋势被2挡为被动件,与后面的双排行星齿轮机制动器Bl及2挡单向超越离合器锁构连接.超速行星排的工作由直接离止,使2挡得以实现.当行星齿轮变速,直器由2挡换至3挡时,即使倒挡及直合器CO和超速制动器BO来控制接离合器CO用于将超速行星排的太接挡离合器C1在2挡制动器B1释阳轮和行星架连接,超速制动器BO放之前就已接合,但由于倒挡及直接用于固定超速行星排的太阳轮.如图挡离合C1接合之后,前后太阳轮组 6所示.件的受力方向改变为顺时针方向,而为了改善2,3挡的换挡平顺性在顺时针方向上2挡单向超越离合器和使变速器在前进低挡位置发动机有F2对前后太阳轮组件没有锁止作用, 制动作用,在原3挡行星齿轮变速系前后太阳轮组件仍可以朝顺时针方向统的基础上进行了改进.旋转,使换挡能顺利进行.a)在前后太阳轮组件和2挡制动b)在前后太阳轮组件和变速器壳表23行星排辛普森式4挡行星齿轮变速系统换挡执行元件的工作情况操纵手柄换挡执行元件位置挡位ClC2BlB2B3F1F2COB0F0 1挡oooo2挡ooOooD3挡00?oo超速挡0o?00R倒挡o0oo1挡0oooS,L或2,12挡o?oo3挡oOoo注:0一接合,制动或锁止;?一作用但不影响该挡位体之间另外设置了一个制动器B3,即2挡强带带动器.带0动器B3是否工作是由操纵手柄的位置决定的,当操纵手柄位于前进挡位置(D)时,制动器B3不工作:当操纵手柄位于前进挡位置(2,1或S,L)而行星齿轮变速器处于2挡时,制动器B3 工作.这样不论汽车加速或减速,前后太阳轮组件都被该制动器固定,此时的2挡在汽车放松加速踏板减速时能产生发动机制动作用.目前大多数轿车自动变速器都采用这种结构. ?工作原理:根据行星齿轮变速系统的变速原理,当超速制动器BO 放松,直接离合器CO接合时,超速行星排处于直接传动状态,其传动比为 1:当超速制动器BO制动,直接离合器CO放松时,超速行星排处于增速传动状态,传动IrL/J~于1.当行星齿轮变速系统处于1挡,2 挡,3挡或倒挡时,超速行星排中的超速制动器B0放松,直接离合器CO结合,使超速行星排处于传动比为1的直接传动状态,而后半部分的双排行星齿轮机构各换挡执行元件的工作和原辛普森式3挡行星齿轮变速器在1 挡,2挡,3挡及倒挡时的工作完全相同,如表2所示.来自变矩器的发动机动力经超速行星排直接传给后半部分的双排行星齿轮机构,此时行星齿轮变速系统的传动比完全由后半部分的双排行星齿轮机构及相应的换挡执行元件来控制.当行星齿轮变速系统处于超速挡时,后半部分的双排行星齿轮机构保持在3挡位置,而在超速行星排中,由于超速制动器BO,产生制动,直接离合器CO放松,使超速行星排处于增速传动状态,其传动比小于l. 直接离合器CO在自动变速器处于超速挡以外的任何一个挡位时都处于接合状态,因此当发动机刚刚起动而油泵尚未建立正常的油压时,直接离合器CO已处于半结合状态,这样易使其摩擦片因打滑而加剧磨损.为防止出现这种情况,在直接离合器CO 处并列布置了一个直接单向超越离合器FO,使超速行星排在逆时针对太阳轮产生锁止作用,防止直接离合器CO 的摩擦片在半接合状态下打滑. (作者单位:大连职业技术学院) 汽车维修2011.67。

辛普森四档行星齿轮机构

辛普森四档行星齿轮机构

○○
○○

OD
○○○

2
22
○○

○○

L
L1
○○


早期的自动变速器大多采用三档 的变速器,其最高档3档的传动 比为1的直接档。80年以后,随 着对燃油经济性的要求的提高, 越来越多的轿车采用四档行星齿 轮变速器,增加了四档(超速档, I小于1)。优点:降低油耗;发 动机较低转速运转,延长发动机 使用寿命。
二、档位分析
下面以三行星排的自动变速器为 例进行分析: 1、特点:1)、在原三档的基础上 增加一个超速行星排。 2)、增加三个执行元件(C0、B0、 F0)控制该行星排。 3)、输入轴与行星架相连,齿圈 与后双行星排连接。
2、档位分析:
1)当变速器处于4档时,B0制 动,C0放松,超速行星排处于 增速传动状态(I小于1)。后双 行星排处于3档(直接档)传动。
2)当变速器处于1、2、3或倒档 时:B0放松,C0接合,超速行 星排处于直接传动。后双行星排 分别处于原1、2、3或倒档传动
3、F0的作用 1)保护C0,防止C0在半接合状 态下打滑。 2)改善由3档升至4档的换档平顺 性。
辛普森四档行星齿轮 机构
类型 三行星排结构的档位分析
一、类型
一种是在辛普森三档变速器原有的双 排行星齿轮机构的基础上再增加一个 单排行星齿轮机构,组成四个前进档 的行星齿轮变速器。
另一种是对原双排行星齿轮机构进行 改进,通过改变前后行星排各基本元 件的组合方式和增加换档执行元件, 使之成为带有超速档的四档行星齿轮 变速器。
4、B2和F1的作用 1)改善2—3档的换档平顺性 2)保证2档存在两种状态: 汽车滑行和发动机制动。

5-辛普森3挡和四档齿轮机构309

5-辛普森3挡和四档齿轮机构309
23
F0:行星架 顺锁太阳轮
F0两种状态: 内圈转速慢于外圈,自由/超越状态,如B0工作时;(
太阳轮不转,自由) 内圈转速快于外圈,锁止状态,如B0不工作时。(太阳
轮顺转,被锁)
辛普森式四档行星齿轮变速机构
3、超越离合器F0的作用?
思考: ➢CO已释放,BO尚未 完全接合时 如何防止打滑? ➢BO接合后(自由/ 超越) 太阳轮与行星架如何 迅速脱开啮合?
到壳体上。 接C太0 超阳速轮离和合行器星:架联接C输1入前轴进和离前合齿器圈:轮联
F0 超速单向离合 器:行星架顺锁 太阳轮
C2 高倒档离合器(直接 档离合器):联接输入轴 和太阳轮
F1 单向离合器:逆 锁太阳轮
B1 2档滑行制动器: 直接制动太阳轮
29
1、A341E结构
辛普森行星齿轮机构换档执行元件工作表
欢迎
文末有福利
齿轮系统
一、辛普森式变自速动机变构速器
辛普森式三档行星齿轮变速机构 辛普森式四档行星齿轮变速机构 运用实例—丰田A341E
二、串联式变速机构--辛普森2型齿系 三、拉维娜式行星齿轮机构 四、定轴常啮合式齿轮机构
(一)辛普森三档行星齿轮机构的结构
1-齿轮机构
3
(一前行)星辛排行普星森架 三档行星齿轮机构的结构
二、串联式变速机构--辛普森2型齿系 三、拉维娜式行星齿轮机构 四、定轴常啮合式齿轮机构
运用实例—丰田A341E
A1、34结1构E结构
视频:各组件的分解、检查与装合
28
B0 超速排制动器:超
B3 低倒档制动B器2 :2F档2 单制向动离器合:器通:
速排制动器,制动太阳轮
制动后行星架过F逆1间锁接行制星动架太阳

简述辛普森式行星齿轮机构的结构特点

简述辛普森式行星齿轮机构的结构特点

简述辛普森式行星齿轮机构的结构特点引言行星齿轮机构作为一种常见的传动机构,具有结构紧凑、传动平稳等优势,在工业领域被广泛应用。

其中,辛普森式行星齿轮机构作为一种常见的变速机构,具有独特的结构特点,本文将会对其进行简要的描述和分析。

1.辛普森式行星齿轮机构的基本构造辛普森式行星齿轮机构由太阳齿轮、行星齿轮和内圈齿轮组成。

太阳齿轮位于行星齿轮的外部,内圈齿轮则位于行星齿轮的内部。

行星齿轮则既与太阳齿轮相连,又与内圈齿轮相连。

太阳齿轮通过主动轴输入驱动,通过内圈齿轮输出动力。

在这一结构中,太阳齿轮是主动件,内圈齿轮是被动件。

2.辛普森式行星齿轮机构的运动特点辛普森式行星齿轮机构的运动特点主要体现在行星齿轮的运动以及传动比的变化上。

2.1行星齿轮的运动方式辛普森式行星齿轮机构中,行星齿轮既绕太阳齿轮中心旋转,又绕内圈齿轮中心旋转。

这种双重运动使得行星齿轮能够在传动过程中具有较大的旋转比变化范围,实现不同工况下的变速效果。

2.2传动比的变化辛普森式行星齿轮机构的传动比可以通过太阳齿轮和内圈齿轮的齿数比例来确定。

通过控制太阳齿轮和内圈齿轮的相对齿数,可以实现传动比的变化。

这使得辛普森式行星齿轮机构具备了广泛的应用范围,适用于需要变速的不同工况。

3.辛普森式行星齿轮机构的优点与应用辛普森式行星齿轮机构相对于其他传动机构具有以下优点:1.结构紧凑,占用空间小,适用于有空间限制的场景。

2.传动平稳,能够减小振动和噪音,提高传动效率。

3.传动比可变,能够实现多种速度的传动,适应不同工况。

辛普森式行星齿轮机构在工业领域有着广泛的应用,包括但不限于:-纺织机械:辛普森式行星齿轮机构可以用于纺纱机、织布机等传动装置,实现不同工艺要求下的变速。

-汽车工业:辛普森式行星齿轮机构在汽车变速器中得到广泛应用,为汽车提供多档变速的功能。

-机床设备:辛普森式行星齿轮机构能够用于机床设备的主传动装置,实现工件的不同加工要求。

结论辛普森式行星齿轮机构作为一种常见的变速机构,在工业领域具有重要应用。

辛普森3挡和四档齿轮机构

辛普森3挡和四档齿轮机构

04 辛普森3挡与4挡齿轮机构 的比较
结构比较
辛普森3挡齿轮机构
由3个前进挡和一个倒挡组成,采用两组行星轮系和两个制动 器。
辛普森4挡齿轮机构
在3挡基础上增加一个超速挡,采用三组行星轮系和三个制动 器。
使用场合比较
辛普森3挡齿轮机构
适用于对动力和经济性要求较高的场合,如城市和高速公路驾驶。
辛普森4挡齿轮机构
感谢您的观看
当选择一个档位时,相应的齿轮 会与中间轴上的齿轮啮合,传递 动力至输出轴,驱动车辆前进或
后退。
在换挡过程中,需要松开油门踏 板,以减小发动机负荷,避免换
挡冲击。
4档齿轮机构的优缺点
优点
辛普森4档齿轮机构具有较高的传动效率和较好的燃油经济性,能够提供更好 的动力性能和行驶平顺性。
缺点
由于其结构复杂,制造成本较高,且维修保养相对较为繁琐。此外,在高速行 驶时,若未能及时换挡,可能会导致变速器过热或损坏。
它通常用于汽车变速器中,可以 实现3个前进挡和1个倒挡。
辛普森齿轮机构的特点
01
02
03,便于安装和维护。
变速平稳
辛普森齿轮机构采用渐开 线齿形,变速过程平稳, 无冲击和振动。
承载能力强
由于采用多挡设计,辛普 森齿轮机构具有较高的承 载能力和传动效率。
辛普森齿轮机构的应用
辛普森3挡和四档齿轮机构
目录
• 辛普森齿轮机构简介 • 辛普森3挡齿轮机构 • 辛普森4档齿轮机构 • 辛普森3挡与4挡齿轮机构的比较 • 辛普森齿轮机构的未来发展
01 辛普森齿轮机构简介
辛普森齿轮机构的定义
01
辛普森齿轮机构是一种用于变速 的齿轮机构,由两个三挡齿轮和 两个四挡齿轮组成。

辛普森四档自动变速器档位路线图

辛普森四档自动变速器档位路线图

够提供更加平稳、流畅的驾驶体验。
简化操作
03
相比手动变速器,辛普森四档自动变速器简化了驾驶员的操作
步骤,减轻了驾驶疲劳。
缺点
成本较高
相比手动变速器,辛普森四档自动变速器的 制造成本较高,因此车辆搭载该变速器的成 本也相应增加。
维护复杂
由于内部结构较为复杂,辛普森四档自动变速器的 维护和修理相比手动变速器更为复杂和昂贵。
换挡执行元件
离合器和制动器协同作用,实现二 档的换挡。
三档路线图
1 2
输入轴
动力输入,通过离合器传递至变速器。
输出轴
通过变速器齿轮传递至输出轴,驱动车辆前进。
3
换挡执行元件
离合器和制动器协同作用,实现三档的换挡。
四档路线图
01
02
03
输入轴
动力输入,通过离合器传 递至变速器。
输出轴
通过变速器齿轮传递至输 出轴,驱动车辆前进。
4档
当车速达到高速范围时,变速器自动 切换至4档,以保持稳定的车速和燃油 效率。
减速流程
3档
当车辆减速时,变速器自动切换 至3档,以提供更好的发动机制动 效果。
2档
当车速进一步降低时,变速器自 动切换至2档,以提供更大的发动 机制动扭矩。
1档
当车速非常低时,变速器自动切 换至1档,以提供最大的发动机制 动扭矩。
越野驾驶
01
越野驾驶需要应对复杂的路况和较低的车速,因此使用一档 和二档更为适合。
02
一档提供了较大的传动比,使车辆能够克服较大的障碍和爬 坡。
03
二档则提供了相对较小的传动比,使车辆在较低的车速下仍 能保持一定的行驶速度和动力。
பைடு நூலகம்

简述辛普森自动变速器的结构特点

简述辛普森自动变速器的结构特点

辛普森自动变速器是一种常见的汽车变速器,它的结构特点是非常清晰明了的。

我们来看看它的基本结构,然后再逐步深入探讨其工作原理和优点。

1. 基本结构辛普森自动变速器由三个主要部分组成:液压控制系统、离合器和齿轮组。

液压控制系统负责控制变速器的工作,离合器用于传递动力,而齿轮组则实现不同档位的变速功能。

2. 工作原理在行驶过程中,液压控制系统通过感应车辆速度、负载和驾驶员的操作,来调节离合器和齿轮组的工作状态。

当车辆需要加速时,液压系统会触发离合器的操作,使其传递动力到对应的齿轮,从而实现增加车速。

反之,当车辆需要减速或停车时,液压系统会释放离合器,并通过调整齿轮组的排列来实现减速或停车。

3. 优点辛普森自动变速器的结构特点决定了它具有以下优点:- 对驾驶员操作要求低,提高了驾驶的便利性;- 变速过程平稳流畅,提高了行驶舒适度;- 可以实现多档位变速,满足了不同行驶条件下的需求。

总结和回顾通过以上的分析,我们可以看出辛普森自动变速器的结构特点对其工作原理和优点具有重要影响。

其清晰的结构使得其工作稳定可靠,为驾驶员提供了良好的行驶体验。

我们也应该关注其在实际使用中可能出现的问题,以便更全面地理解这一主题。

个人观点和理解个人认为,辛普森自动变速器的结构特点决定了它在汽车工程中的重要地位。

它不仅提高了行驶的平稳性和舒适性,还为驾驶员提供了便利的操作体验。

然而,我们也应该关注其需要定期维护保养的问题,以确保其长期稳定的工作状态。

在本文中,我们从简述其结构特点开始,逐步深入探讨其工作原理和优点,最后进行了总结回顾和个人观点的共享。

希望本文对您有所帮助,使您能更深入地理解辛普森自动变速器的结构特点。

辛普森自动变速器在汽车工程领域中扮演着非常重要的角色,其清晰明了的结构特点使其在市场上广受欢迎。

接下来,我们将继续深入探讨其工作原理、优点以及可能出现的问题。

4. 工作原理辛普森自动变速器通过液压控制系统来实现自动化的变速功能。

辛普森行星齿轮变速装置结构与工作原理

辛普森行星齿轮变速装置结构与工作原理
环保与节能要求
随着环保意识的提高和节能需求的增加,辛普森行星齿轮 变速装置在电动汽车和混合动力汽车等领域的应用前景将 更加广阔。
THANKS FOR WATCHING
感谢您的观看
架体通常由高强度材料制成,以确保足够的刚性和耐久性 。
03 行星齿轮变速装置的工作 原理
动力传递路径
太阳轮
发动机动力输入太阳轮,通过行星轮架输出至差 速器。
行星轮
行星轮将动力传递给齿圈,同时通过行星轮架将 部分动力传递给另一个齿圈。
齿圈
动力通过行星轮传递给齿圈,再通过固定轴传递 给车轮。
变速原理
变速过程
通过控制行星齿轮的转动半径,实现动力的 变速。行星齿轮的转动半径越大,输出速度 越快;反之,转动半径越小,输出速度越慢 。
结构组成
行星齿轮组
由多个行星齿轮组成, 用于传递动力。
太阳轮
固定转速的输入轴,与 行星齿轮组配合传递动
力。
内齿圈
固定转速的输出轴,与 行星齿轮组配合传递动
力。
控制机构
用于控制行星齿轮组的 转动半径和方向,实现
太阳轮通常与输入轴连接,将动力传 递给行星齿轮变速装置。
齿圈
齿圈是行星齿轮变速装置中的固定元件之一,通常与输出轴 连接,通过行星轮和太阳轮的旋转实现动力的传递。
齿圈通常由一组固定的行星轮支撑,行星轮可以在其中旋转 。
架体
架体是行星齿轮变速装置中的固定元件之一,用于支撑行 星轮和齿圈,同时承受和传递所有的力和力矩。
动效率和寿命。
智能化控制
03
引入传感器和智能算法,实现变速装置的实时监测和自动调整,
提高其适应性和可靠性。
应用领域拓展
电动汽车

汽车自动变速器原理与维修--辛普森式行星齿轮变速机构

汽车自动变速器原理与维修--辛普森式行星齿轮变速机构

a1——前行星排齿圈齿数与太阳轮齿数之比; a2——后行星排齿圈齿数与太阳轮齿数之比。
辛普森式三档行星齿轮变速机构
当汽车以上述一档行驶时,若驾驶员突然松开节气 门踏板,发动机将立即进入怠速工况,而汽车在惯性作 用下仍以原来的车速行驶。此时,驱动轮将通过自动变 速器输出轴反向带动行星齿轮机构运转,前排行星架在 后排齿圈成为主动件,前齿圈则变为从动件。当前排行 星架向顺时针方向带动行星轮按相同方向作公转时,因 前排齿圈转速较低,前排行星轮是作逆时针自转,从而 驱动前后太阳轮组件以较高速度作顺时针转动,带动后 排行星轮作顺时针转动,使后行星轮在自转的同时对后 排行星架产生顺时针方向的转矩。
(1)三档辛普森式行星齿轮变速器各档的传动路线
由此可知,在1档时,前、后两行星排都参加动力传递, 与发动机输出转速相比,经变速器后转速下降,转矩增加, 汽车能以较大的牵引力克服行驶阻力低速前进。根据行星排 的运动特性方程,可用解析式解联立方程求出1档的传动比为 : 前行星排的运动特性方程 后行星排的运动特性方程 式中 n1 + a1n2-(1+a1)n3 =0 n21+ a2n22-(1+a2)n23=0
R位(倒档)的传动原理
辛普森式三档行星齿轮变速机构
⑦空档(N位)
空档时,离合器、制动器都不工作,液力变矩器的 动力不能传至行星齿轮变速器,变速器为空档 ⑧停车档(P位) 当换档手柄置于P位时,行星齿轮机构内部各执行 元件都不工作,变速器相当于空档。但手柄的联杆机构 推动停车闭锁凸轮3(如图),使停车闭锁爪1上的齿嵌入 输出轴2的外齿中;因停车闭锁爪固定在变速器外壳上 ,所以输出轴也被固定而不能转动,从而锁住了驱动轮 。即变速器为停车档,汽车不能移动。但汽车若还在行 驶,则不能使用停车档,否则会损坏闭锁爪。

《汽车自动变速器拆装与检修》项目三任务一 辛普森式行星齿轮变速器构造及特点

《汽车自动变速器拆装与检修》项目三任务一  辛普森式行星齿轮变速器构造及特点
辛普森式行星齿轮变速器
特点与结构
辛普森式行星齿轮变速器由辛普森 式行星齿轮机构和相应的换挡执行 元件组成。辛普森行星齿轮机构是 一种双排行星齿轮机构,前后行星 排有两种连接方式,一种是前排行 星齿轮机构的齿圈和后排行星齿轮 机构的行星架相连,称为前齿圈和 后行星架组件,输出轴通常与前齿 圈和后行星架组件连接
B3 低、倒挡制动器 F0 超速挡(OD)单向离合器
F1 二挡(一号)单向离合器
F2 低挡(二号)单向离合器
功能 连接超速行星排的太阳轮与超速行星架 连接前排齿圈 连接公共太阳轮 制动超速太阳轮 制动公共太阳轮 制动F1外座圈,当F1也起作用时,可以防止 公共太阳轮逆时针转动 制动后排行星架 单向固定超速太阳轮
项目3 辛普森式行星齿轮变速器拆装与维修
任务一 辛普森式行星齿轮变速器构造及特点
外座圈
内座圈
楔块式单向离合器工作过程
项目3 辛普森式行星齿轮变速器拆装与维修
任务一 辛普森式行星齿轮变速器构造及特点
四挡辛普森行星齿轮变速器的结构简图
项目3 辛普森式行星齿轮变速器拆装与维修
任务一 辛普森式行星齿轮变速器构造及特点
任务一 辛普森式行星齿轮变速器构造及特点
锁止棘爪
回位弹簧 锁止凸轮
输出轴内齿圈
输出轴
驻车锁止机构
项目3 辛普森式行星齿轮变速器拆装与维修
自动变速器拆装与检修
自动变速器拆装与检修
项目3 辛普森式行星齿轮变速器拆装与维修
项目3 辛普森式行星齿轮变速器拆装与维修
目录|Contents
Ⅰ 任务一 辛普森式行星齿轮变速器构造及特点 Ⅱ 任务二 前驱辛普森式行星齿轮变速器的拆装 Ⅲ 任务三 后驱辛普森式行星齿轮变速器的拆装

汽车类教学部件:辛普森行星齿轮机构

汽车类教学部件:辛普森行星齿轮机构
• 当离合器接合时,工作液进入活 塞缸内,会将放松球压紧在泄油 口上,防止工作液从泄油口排出, 使活塞压紧离合器片和离合器盘。
• 当离合器分离时,放松球在离心 力的作用下离开泄油口,使活塞 缸内外缘的工作液从泄油口排出, 使活塞能够迅速复位。
二、离合器的组成
• 有些离合器和制动 器具有两个活塞: 内活塞和外活塞。

扭矩传递的大小,
是与离合器片数的多
少、活塞压力接收区
的大小、工作液压力
的大小成正比。
二、离合器的组成
• 在辛普森行星齿轮机构中:

当超速离合器接合时,将超速齿架和超速太阳轮连成一个
整体。
二、离合器的组成
• 在辛普森行星齿 轮机构中:
• 当前离合器接合 时,动力可传至 齿圈。
二、离合器的组成
• 在辛普森行星齿 轮机构中:
辛普森行星齿轮机构
授课内容: 一、辛普森行星齿轮变速机构的组成。 二、离合器的组成与工作原理。 三、制动器的组成与工作原理。 四、行星齿轮排的组成与工作原理。
一、辛普森行星齿轮机构的组成
• 四前进档辛普森行星齿轮变速机构由:
• 三个离合器(超速离合器、前离合器、后离合器)、四个制动器(超速制动 器、第一、第二、第三制动器)、三个单向器(超速单向器、第一单向器、 第二单向器)和三个行星排(超速行星排、前行星排、后行星排)组成。
• 当工作液施加在内 活塞时,它的压力 接收区较少,只能 传递较少的扭矩。
• 当工作液施加在外 活塞时,它有较大 压力接收区,能够 传递大扭矩。
二、离合器的组成
• 当工作液施加在内活 塞后再施加在外活塞 上,能够使离合器或 制动器以较少的扭矩 接合,然后传递大的 扭矩,减少了离合器 或制动器接合时产生 的冲击。

辛普森行星齿轮变速装置结构与工作原理

辛普森行星齿轮变速装置结构与工作原理

n2 1
第1排矢量图
第2排矢量图
第3排矢量图
图3—43 倒档时行星齿轮机构运动矢量图
R3
n3 2
R n2 2 2
R1
n1 2
R3
2)用矢量图法计算R档传动比和传动方向
①R档时第一行星排运动矢量图如图3-43中第1排矢量图所示。1n3=1n2=1n1 ②R档时第二行星排运动矢量图如图3-43中第2排矢量图所示。因离合器C2工作,把共用太阳轮与第一行星排
1 图3-44b D1档行星齿轮变速装置转矩传动结构简图
图3-44c D1档行星齿轮变速装置转矩传动仿真图
1)D1档转矩传动分析
从表3-3可知,D1档时C0、C1、F0、F2工作。其具体传动情况如图3-44所示。当C0 与F0工作后,可把超速行星排内的行星架与太阳轮连成一体,整个行星排成一刚体 (原理如前所述),D1档时,使超速行星排内的齿圈以1∶1的传动比把涡轮的转矩传 递给离合器C1的鼓与毂。
3)R档传动比计算 ①用运动方程计算R档传动比
从图3-43的传动过程可知,在R档时动力是直接由第二排传出,用第二行星排运动方程计算传动比即可。 第二行星排运动方程为 n1+a.n2-(1+a)n3=0 上式中,n1、n2、n3分别为第二排太阳轮、齿圈和行星架转速。
a= Z2齿圈齿数/Z1太阳轮齿数>1。 将n3=0代入上式中,得: n1+a.n2 =0 n1=-a·n2 n1/n2=-a>1 即主动轴转数大于输出轴转速,是减速传动,式中的“-”号表示主被动旋转方向相反。
档位 档位
离合器
制动器
单向离合器
C0
C1
C2
B0
B1
B2
B3
F0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四档辛普森行星齿轮变速器的结构、组成如图4-21、4-22所示为四档辛普森行星齿轮变速器的结构简图和元件位置图。

注意:不同厂家的四档辛普森行星齿轮变速器的元件位置稍有不同。

图4-21 四档辛普森行星齿轮变速器的结构简图1-超速(OD)行星排行星架2-超速(OD)行星排行星轮3-超速(OD)行星排齿圈4-前行星排行星架5-前行星排行星轮6-后行星排行星架7-后行星排行星轮8-输出轴9-后行星排齿圈10-前后行星排太阳轮11-前行星排齿圈12-中间轴13-超速(OD)行星排太阳轮14-输入轴C0-超速档(OD)离合器C1-前进档离合器C2-直接档、倒档离合器B0-超速档(OD)制动器B1-二档滑行制动器B2-二档制动器B3-低、倒档离合器F0-超速档(OD)单向离合器F1-二档(一号)单向离合器F2-低档(二号)单向离合器图4-22 四档辛普森行星齿轮变速器的元件位置图四档辛普森行星齿轮变速器由四档辛普森行星齿轮机构和换档执行元件两大部分组成。

其中四档辛普森行星齿轮机构由三排行星齿轮机构组成,前面一排为超速行星排,中间一排为前行星排,后面一排为后行星排,之所以这样命名是由于四档辛普森行星齿轮机构是在三档辛普森行星齿轮机构的基础上发展起来的,沿用了三档辛普森行星齿轮机构的命名。

输入轴与超速行星排的行星架相连,超速行星排的齿圈与中间轴相连,中间轴通过前进档离合器或直接档、倒档离合器与前、后行星排相连。

前、后行星排的结构特点是,共用一个太阳轮,前行星排的行星架与后行星排的齿圈相连并与输出轴相连。

换档执行元件的功能换档执行元件功能C 0 超速档(OD)离合器连接超速行星排太阳轮与超速行星排行星架C1前进档离合器连接中间轴与前行星排齿圈C2直接档、倒档离合器连接中间轴与前后行星排太阳轮B超速档(OD)制动器制动超速行星排太阳轮B1二档滑行制动器制动前后行星排太阳轮B 2 二档制动器制动F1外座圈,当F1也起作用时,可以防止前后行星排太阳轮逆时针转动B3低、倒档离合器制动后行星排行星架F 0 超速档(OD)单向离合器连接超速行星排太阳轮与超速行星排行星架F 1 二档(一号)单向离合器当B2工作时,防止前后行星排太阳轮逆时针转动F2低档(二号)单向离合器防止后行星排行星架逆时针转动四档辛普森行星齿轮变速器各档传动路线在变速器各档位时,换档执行元件的动作情况见表4-2。

表4-2 各档位时换档执行元件的动作情况选档杆位置档位换档执行元件发动机制动CC1C2BB1B2B3FF1F2P 驻车档○R 倒档○○○○N 空档○D 一档○○○○二档○○○○○三档○○○○○四档(OD档)○○○○2 一档○○○○二档○○○○○○○三档* ○○○○○○L一档○○○○○○二档* ○○○○○○○注:*:只能降档不能升档。

○:换档元件工作或有发动机制动。

各档位动力传动路线1)D1档如图4-23所示,D位一档时,C0、C1、F0、F2工作。

C0和F0工作将超速行星排的太阳轮和行星架相连,此时超速行星排成为一个刚性整体,输入轴的动力顺时针传到中间轴。

C1工作将中间轴与前行星排齿圈相连,前行星排齿圈顺时针转动驱动前行星排行星轮,前行星排行星轮即顺时针自转又顺时针公转,前行星排行星轮顺时针公转则输出轴也顺时针转动,这是一条动力传动路线。

由于前行星排行星轮顺时针自转,则前后行星排太阳轮逆时针转动,再驱动后行星排行星轮顺时针自转,此时后行星排行星轮在前后行星排太阳轮的作用下有逆时针公转的趋势,但由于F2的作用,使得后行星排行星架不动。

这样顺时针转动的后行星排行星轮驱动齿圈顺时针转动,从输出轴也输出动力,这是第二条动力传动路线。

图4-23 D位一档动力传动路线2)D2档如图4-24所示,D位二档时,C0、C1、B2、F0、F1工作。

C0和F0工作如前所述直接将动力传给中间轴。

C1工作,动力顺时针传到前行星排齿圈,驱动前行星排行星轮顺时针转动,并使前后太阳轮有逆时针转动的趋势,由于B2的作用,F1将防止前后太阳轮逆时针转动,即前后太阳轮不动。

此时前行星排行星轮将带动行星架也顺时针转动,从输出轴输出动力。

后行星排不参与动力的传动。

图4-24 D位二档动力传动路线3)D3档如图4-25所示,D位三档时,C0、C1、C2、B2、F0工作。

C0和F0工作如前所述直接将动力传给中间轴。

C1、C2工作将中间轴与前行星排的齿圈和太阳轮同时连接起来,前行星排成为刚性整体,动力直接传给前行星排行星架,从输出轴输出动力。

此档为直接档。

图4-25 D位三档动力传动路线想一想:在此档时B2实际上不参与工作,那为什么还要让B2工作呢?提示:这样可以使得D2档升D3档时只需让C2工作即可,同样D3档降为D2档时也只需让C2停止工作即可,这样相邻两档升降参与工作的元件少,换档方便,提高了可靠性和平顺性。

4)D4档如图4-26所示,D位四档时,C1、C2、B0、B2工作。

B0工作,将超速行星排太阳轮固定。

动力由输入轴输入,带动超速行星排行星架顺时针转动,并驱动行星轮及齿圈都顺时针转动,此时的传动比小于1。

C1、C2工作使得前后行星排的工作同D3档,即处于直接档。

所以整个机构以超速档传递动力。

B2的作用同前所述。

图4-26 D位四档动力传动路线21档二位一档的工作与D位一档相同。

6)22档如图4-27所示,二位二档时,C0、C1、B1、B2、F0、F1工作。

动力传动路线与D位二档时相同。

区别只是由于B1的工作,使得二位二档有发动机制动,而D位二档没有。

此档为高速发动机制动档。

图4-27 2位二档动力传动路线发动机制动是指利用发动机怠速时的较低转速以及变速器的较低档位来使较快的车辆减速。

D位二档时,如果驾驶员抬起加速踏板,发动机进入怠速工况,而汽车在原有的惯性作用下仍以较高的车速行驶。

此时,驱动车轮将通过变速器的输出轴反向带动行星齿轮机构运转,各元件都将以相反的方向转动,即前后太阳轮将有顺时针转动的趋势,F1不起作用,使得反传的动力不能到达发动机,无法利用发动机进行制动。

而在二位二档时,B1工作使得前后太阳轮固定,既不能逆时针转动也不能顺时针转动,这样反传的动力就可以传到发动机,所以有发动机制动。

7)23档二位三档的工作与D位三档相同。

8)L1档如图4-28所示,L位一档时,C0、C1、B3、F0、F2工作。

动力传动路线与D 位一档时相同。

区别只是由于B3的工作,使后行星排行星架固定,有发动机制动,原因同前所述。

此档为低速发动机制动档。

图4-28&L2档L位二档的工作与二位二档相同。

10)R位如图4-29所示,倒档时,C0、C2、B3、F0工作。

C0和F0工作如前所述直接将动力传给中间轴。

C2工作将动力传给前后行星排太阳轮。

由于B3工作,将后行星排行星架固定,使得行星轮仅相当于一个惰轮。

前后行星排太阳轮顺时针转动驱动后行星排行星架逆时针转动,进而驱动后行星排齿圈也逆时针转动,从输出轴逆时针输出动力。

图4-29 R位动力传动路线11)P位(驻车档)选档杆置于P位时,一般自动变速器都是通过驻车锁止机构将变速器输出轴锁止实现驻车。

如图4-30所示,驻车锁止机构由输出轴外齿圈、锁止棘爪、锁止凸轮等组成。

锁止棘爪与固定在变速器壳体上的枢轴相连。

当选档杆处于P位时,与选档杆相连的手动阀通过锁止凸轮将锁止棘爪推向输出轴外齿圈,并嵌入齿中,使变速器输出轴与壳体相连而无法转动,如图4-30b)所示。

当选档杆处于其他位置时,锁止凸轮退回,锁止棘爪在回位弹簧的作用离开输出轴外齿圈,锁止撤销,如图4-30a)所示。

图4-30 驻车锁止机构1-输出轴外齿圈2-输出轴3-锁止棘爪4-锁止凸轮.几点说明通过分析各档位换档执行元件的工作情况及各档位的动力传动路线,可以得出以下结论:(1)如果C1故障,则自动变速器没有前进档,即将选档杆置于D位、2位或L位时车辆都无法起步行驶。

但对于倒档没有影响。

(2)如果C2故障,则自动变速器没有三档,倒档也将没有。

(3)如果B2 或F1故障,则自动变速器没有D位二档,但对于二位二档没有影响。

(4)如果B3故障,则自动变速器没有倒档。

(5)如果F0故障,则自动变速器三档升四档时会产生换档冲击。

这是由于三档升四档时,相当于由C0切换到B0,但C0、B0有可能同时不工作。

此时负荷的作用将使超速行星排的齿圈不动,如果没有F0,在行星架的驱动下太阳轮将顺时针超速转动,当B0工作时产生换档冲击。

(6)如果F2故障,则自动变速器没有D位一档和二位一档,但对于L位一档没有影响。

(7)换档时,单向离合器是自动参与工作的,所以只考虑离合器和制动器的工作即可。

D1档升D2档是B2工作,D2升D3档是C2工作,D3和D4互换,相当于C0和B0互换。

(8)如果某档位的动力传动路线上有单向离合器工作,则该档位没有发动机制动。

提示:有些档位虽然标明有单向离合器工作,但有可能被其他元件取代而实际上不工作。

如二位二档的B1工作后,F1实际上已不起作用,C0也可以取代F0,这样此档虽标明有单向离合器的工作,但都不起作用,所以有发动机制动。

相关文档
最新文档