运筹学-动态规划

合集下载

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。

2. 掌握动态规划的基本原理和方法,能够解决实际问题。

3. 学会使用动态规划解决最优化问题,提高解决问题的效率。

二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。

2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。

3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。

四、教学准备1. 教材:《运筹学导论》或相关教材。

2. 课件:动态规划的基本概念、原理、方法及应用案例。

3. 编程环境:为学生提供编程实践的平台,如Python、C++等。

五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。

2. 讲解:讲解动态规划的基本原理和方法。

3. 案例分析:分析实际问题,展示动态规划的应用。

4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。

5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。

2. 案例分析:评估学生运用动态规划解决实际问题的能力。

3. 编程实践:评估学生动手实现动态规划算法的能力。

4. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。

2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。

3. 了解动态规划在、数据挖掘等领域的应用。

八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。

2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。

3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。

1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。

二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。

2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。

三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。

3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。

3.3 确定边界条件边界条件是指初始状态和最终状态的取值。

3.4 求解最优解根据状态转移方程和边界条件,求解最优解。

四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。

4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。

4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。

5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。

教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。

六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。

运筹学教材课件(第四章动态规划)

运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看

运筹学第六章 动态规划

运筹学第六章 动态规划

f
3
(C
2
)
min
((CC22,,DD21
) )
f f
4 4
( (
D1 D2
) )
6 5
11
min
5
2
min
7
7
最优决策C2 D2
15
f3(C1)=8
2
A5
1
B1 12 14
10
6
B2 10
4 13
B3
12 11
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f4(D1)=5
D1
5 f5(E)=0
B1 12 14
2 f2(B2)=110 4
6
5
B2 10
4
1
13
B3
12 11
f2(B3)=19
f3(C1)=8
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f3(C3)=12
f4(D1)=5
D1
5 f5(E)=0
E
D2 2
f4(D2)=2
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B2) B2 (B2,C1) C1
22
f1(A)=19
A
f2(B1)=21
B1 12 14
2 f2(B2)=110 4
6
5
B2 10
4
1
13
B3
12 11
f2(B3)=19
f3(C1)=8
C1
3
9

第五章 物流运筹学——动态规划

第五章 物流运筹学——动态规划
即由第 阶段的状态 利用这个原理,可以把多阶段决策问题求解过程表示成一个连续的递推过程,由后向前逐步计算。
的单件重量和装载收费如表5-1所示,又规 由于它表示了由 段到 段的状态转移
因此,在物流管理中,如何进行决策,制定一个最优的设备维护更新策略,是非常重要的。
第三节 动态规划模型的建立与求解
定货物2和货物3都至多装两件。问如何装 但假设初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最正确的终点状
3
• 【例5-1】〔生产与存储问题〕工厂在3个季度中
• 安排某种产品的生产方案。假设该季度生产此
种产x
x2
• 品 〔吨〕,那么本钱为 元。假设当季
生产的
• 每吨产品未销售a k 掉,那么进库,季末需付存储费,
• 产品每季的存储费为1元。现估计3个季度对该 产
• 品的需求量 分别为100吨,110吨和120吨,
3
j 仪器
1
2
3
10
9
14
9
12
10
6
5
8
7
• 【例5-4】〔机器负荷问题〕设某机器可以在高、
• 低两种不同的负荷下进行生产。假设年初x 有 台
• 机器在高负荷下进行生产,那么产品年a产 8x


0.3
y
• 机器的年折损率

0.1
;假设年b 初5有y 台机器在
• 负荷下进行生产,那么产品年产量
,机器

• 年折损率
。假设初始时有性能正常的机器
1000
• 台,要求制定机器负荷的四年分配方案,确定每

8
A

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。

运筹学动态规划

运筹学动态规划
许多问题用动态规划的方法去处理,常比 线性规划或非线性规划方法更有效。特别对于 离散性的问题。
特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。

运筹学动态规划

运筹学动态规划

运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。

动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

下面将详细介绍运筹学中的动态规划方法。

动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。

为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。

动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。

动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。

例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。

动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。

此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。

然而,动态规划方法也存在一些局限性。

首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。

其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。

综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划教案章节一:引言1.1 课程目标:让学生了解动态规划的基本概念和应用领域。

让学生掌握动态规划的基本思想和解决问题的步骤。

1.2 教学内容:动态规划的定义和特点动态规划的应用领域动态规划的基本思想和步骤1.3 教学方法:讲授法:介绍动态规划的基本概念和特点。

案例分析法:分析动态规划在实际问题中的应用。

教案章节二:动态规划的基本思想2.1 课程目标:让学生理解动态规划的基本思想。

让学生学会将问题转化为动态规划问题。

2.2 教学内容:动态规划的基本思想状态和决策的概念状态转移方程和边界条件2.3 教学方法:讲授法:介绍动态规划的基本思想。

练习法:通过练习题让学生学会将问题转化为动态规划问题。

教案章节三:动态规划的求解方法3.1 课程目标:让学生掌握动态规划的求解方法。

让学生学会使用动态规划算法解决问题。

3.2 教学内容:动态规划的求解方法:自顶向下和自底向上的方法动态规划算法的实现:表格化和递归化的方法3.3 教学方法:讲授法:介绍动态规划的求解方法。

练习法:通过练习题让学生学会使用动态规划算法解决问题。

教案章节四:动态规划的应用实例4.1 课程目标:让学生了解动态规划在实际问题中的应用。

让学生学会使用动态规划解决实际问题。

4.2 教学内容:动态规划在优化问题中的应用:如最短路径问题、背包问题等动态规划在控制问题中的应用:如控制库存、制定计划等4.3 教学方法:讲授法:介绍动态规划在实际问题中的应用。

案例分析法:分析实际问题,让学生学会使用动态规划解决实际问题。

教案章节五:总结与展望5.1 课程目标:让学生总结动态规划的基本概念、思想和应用。

让学生展望动态规划在未来的发展。

5.2 教学内容:动态规划的基本概念、思想和应用的总结。

动态规划在未来的发展趋势和挑战。

5.3 教学方法:讲授法:总结动态规划的基本概念、思想和应用。

讨论法:让学生讨论动态规划在未来的发展趋势和挑战。

教案章节六:动态规划的优化6.1 课程目标:让学生了解动态规划的优化方法。

运筹学课程动态规划课件

运筹学课程动态规划课件

5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2

运筹学第五章动态规划

运筹学第五章动态规划

和 dk 2 (sk ));
(4) 允许决策集: D k ( s k ) ( x k , y k ) 0 ≤ y k ≤ s k ; 0 ≤ x k ≤ 1 0 0 0 ( s k y k )
状态转移方程: s k 1 s k x k y k ,s 1 5 0 0k4,3,2,1
其中s 5 表示第四阶段末的状态; (5) 阶段指标: v k ( s k ,x k ,y k ) q k y k p k x k ,k4,3,2,1;
5.1 动态规划的基本概念和模型
5.1.1 动态规划的基本概念
下面结合实例来介绍动态规划的基本概念:
【例5.1】 如图5.1所示,在处有一水库,现需从点铺设一条 管道到点,弧上的数字表示与其相连的两个地点之间所需修建 的渠道长度,请找出一条由到的修建线路,使得所需修建的渠 道长度最短。
2
A4
3
B
7
(1) 按月份分段: k4,3,2,1;
(2) 状态变量: s k 表示第 k 个月月初的库存量;
(3) 决策变量: dk1(sk表) 示第 k 个月已有库存 s的k 情况下,要定
购的商品量, dk2表(sk示) 第 个月k 已有库存 的商品量(为方便,后面将分别依次用 ,
的 来x sk 情 代k y况 替k 下,要d销k1(售sk )
(6) 动态规划基本方程:
fk(s k) (x k,y m k) a D x k(s k)v k(s k,x k,y k) fk 1 (s k 1 )
f5 (s 5 ) 0 k 4 ,3 ,2 ,1
求解(要求板书) 辅图1
辅图2
辅图3
5.2.3 动态规划的顺序解法
【 例 5.3】 图 5.3 所 示 为 一 水 利 网 络 , A 为 水 库 , 分B 1 ,别B 2 为,B 3 不;C 同1 ,C 的2 ,供C 3 水;D 目1 ,D 的2地,试找出给各供水目的地供水的 最短路线。

运筹学第八章_动态规划

运筹学第八章_动态规划
15
□状态集合:状态变量 xk 的取值集合称为状态集合,状态集合 实际上是关于状态的约束条件。 □通常用Sk表示状态集合,xkSk。
□第1阶段 S1={A};
x1
x2
□第2阶段具有3个状
态B1、B2和B3,故
S2={B1, B2, B3}。 □……
x3
x4
x5
16
(3)决策(decision)
x2
B1
C1
C2
C3
□决策集合:第k阶段当状态处于xk时决策变量uk( xk )的取值范 称为决策集合,常用Dk( xk ) 表示。
□例1中,从第2阶段的 状态B1出发,可以选择 下一阶段的C1、C2、 C3。 □即 D2( B1 ) = { C1、 C2、C3 };
B1
C1
C2
C3
□决策集合实际上是决策的约束条件,uk( xk ) ∈ Dk( xk ) 。
6
□这是一个多阶段决策过程。 □该过程可以分为相互联系的若干阶段,每一阶段都需作出决
策,从而形成全过程的决策。
x1=1000
u1 第1年
x2=0.7u1+ 0.9(x1-u1)
u2 第2年
x3=0.7u2+ 0.9(x2-u2)
u3 第3年
x4=0.7u3+ 0.9(x3-u3)
u4 第4年
x5=0.7u4+ 0.9(x4-u4)
3
提纲
1 动态规划实例 2 动态规划的基本概念 3 动态规划的基本思想与基本原理 4 逆序解法与顺序解法
4
1 动态规划实例
学习目标:
1 明确什么是多阶段的决策问题,特别要注意没有明显 的时段背景的问题如何化归为多阶段的决策问题。

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案

运筹学中的动态规划原理-教案一、引言1.1动态规划的基本概念1.1.1动态规划的定义:动态规划是一种数学方法,用于求解多阶段决策过程的最优化问题。

1.1.2动态规划的特点:将复杂问题分解为简单的子问题,通过求解子问题来得到原问题的最优解。

1.1.3动态规划的应用:广泛应用于资源分配、生产计划、库存控制等领域。

1.2动态规划的基本原理1.2.1最优性原理:一个最优策略的子策略也是最优的。

1.2.2无后效性:某阶段的状态一旦确定,就不受这个状态以后决策的影响。

1.2.3子问题的重叠性:动态规划将问题分解为子问题,子问题之间往往存在重叠。

1.3动态规划与静态规划的关系1.3.1静态规划:研究在某一特定时刻的最优决策。

1.3.2动态规划:研究在一系列时刻的最优决策。

1.3.3动态规划与静态规划的区别:动态规划考虑时间因素,将问题分解为多个阶段进行求解。

二、知识点讲解2.1动态规划的基本模型2.1.1阶段:将问题的求解过程划分为若干个相互联系的阶段。

2.1.2状态:描述某个阶段的问题情景。

2.1.3决策:在每个阶段,根据当前状态选择一个行动。

2.1.4状态转移方程:描述一个阶段的状态如何转移到下一个阶段的状态。

2.2动态规划的基本算法2.2.1递归算法:通过递归调用求解子问题。

2.2.2记忆化搜索:在递归算法的基础上,保存已经求解的子问题的结果,避免重复计算。

2.2.3动态规划算法:自底向上求解子问题,将子问题的解存储在表格中。

2.2.4动态规划算法的优化:通过状态压缩、滚动数组等技术,减少动态规划算法的空间复杂度。

2.3动态规划的经典问题2.3.1背包问题:给定一组物品,每种物品都有自己的重量和价值,求解在给定背包容量下,如何选择物品使得背包中物品的总价值最大。

2.3.2最长递增子序列问题:给定一个整数序列,求解序列的最长递增子序列的长度。

2.3.3最短路径问题:给定一个加权有向图,求解从源点到目标点的最短路径。

运筹学动态规划的概念

运筹学动态规划的概念

运筹学动态规划的概念运筹学中的动态规划是一种解决多阶段决策问题的数学方法。

它适用于需要做出一系列决策才能获得最优解的情况。

在这种情况下,每个决策都会对接下来的决策产生影响,因此需要考虑整个过程的影响。

动态规划的实质是将多阶段决策过程拆解成一系列子问题,每个子问题都可以用一个状态来描述。

通过求解每个子问题的最优解,就可以逐步得到整个过程的最优解。

动态规划的基本思想是以最优子结构为基础,避免重复计算已经求解过的子问题的过程。

也就是说,如果我们已经知道了子问题的最优解,那么整个问题的最优解就可以通过这些子问题的最优解推导出来。

通常情况下,动态规划问题需要满足以下几个条件:1.具有最优子结构特征:问题的最优解是由子问题的最优解组合而成的。

2.无后效性:子问题的解一旦确定,就不会被改变。

3.子问题重复性:不同的子问题可能会对应相同的状态。

4.边界性:即为问题的较小的子问题需要单独处理。

通过以上条件,我们就可以将动态规划问题分解为一个个子问题,并求解每个子问题所对应的最优值。

动态规划的基本流程分为三个步骤:1.定义状态:构建状态转移方程需要定义状态,状态通常用一个或多个变量来表示,变量的取值代表状态。

2.写出状态转移方程:根据定义好的状态,写出各个状态之间的转移方程。

3.确定边界条件:对较小的子问题需要单独处理,因此当状态变量为边界值时,需要特殊处理。

动态规划的应用广泛,它可以用于解决大量的问题。

例如,求解最长公共子序列问题、背包问题、最短路问题、字符串编辑距离问题等等。

它在图像处理、自然语言处理、生物信息学等领域中也有广泛的应用,如图像去噪、序列比对、DNA 序列匹配等。

总之,动态规划是运筹学中一种解决多阶段决策问题的重要方法,它通过将问题分解成子问题,并求解每个子问题的最优解,得出整个问题的最优解。

在实际应用中,我们需要根据具体问题特点,定义好状态,写出好的状态转移方程,才能有效地解决问题。

动态规划基本方法

动态规划基本方法
(2)合理正确地选择状态变量sk,并确定初始状态 s1的值;
(3)确定决策变量uk及允许决策集Dk(sk); (4)给出状态转移方程 sk+1=Tk(sk,uk); (5)给出满足要求的过程指标函数Vk,n及相应的最 优值函数;
(6)写出递推方程和边界条件,建立基本方程; (7)按照基本方程递推求解。
0≤x1≤s1
=23.7s1
(x1*=0)
f1(1000)=23.7╳1000=23700
s1=1000 s2=900
s3=810
x1*=0
x2*=0
x3*=810
s1-x1*=1000 s2-x2*=900 s3-x3*=0
s4=567 x4*=567 s4-x4*=0
s5=397 x5*=397 s5-x5*=0
2.2 动态规划的基本方程 动态规划的最优性原理(贝尔曼原理):作为整 个过程的最优策略具有这样的性质,即无论过去的状 态和决策如何,对前面的决策所形成的状态而言,余 下的诸决策必须构成最优策略。简言之,最优策略的 子策略也必是最优的。 根据此原理,要求全过程最优策略,可从子过程 策略的最优化入手。对于过程指标函数是阶段指标函 数和的形式,考虑k-子过程最优值函数fk(sk):
第4节 动态规划和静态规划的关系
静态规划所研究的问题是与时间无关的,而动态
规划所研究的问题是和时间有关的。对于某些静态规 划问题,也可人为地引入时间因素,把它看做一个按 阶段进行的动态规划问题,用动态规划的方法求解。
例 用动态规划法求解
max F=4x12-x22+2x32+12 3x1+2x2+x3≤9 xi≥0 i=1,2,3
0≤x4≤s4
0≤x4≤s4

运筹学课程07-动态规划(胡运权 清华大学)

运筹学课程07-动态规划(胡运权 清华大学)
u k , ,u n
Vk ,n (sk , uk , sk 1 , uk 1 , , sn1 )
可递推
k [ sk , uk , Vk 1, n ( sk 1 , uk 1 , , sn 1 )]
指标函数形式: 和、 积
NEUQ
原过程的一个后部子过程: 对于任意给定的k(1 ≤ k≤n),从第k段到第n段的过 程称为原过程的一个后部子过程
阶段4
本阶段始点 (状态) D1 D2 本阶段各终点(决策) E 10 6 10 6 到E的最短距离 本阶段最优终点 (最优决策) E E
NEUQ
分析得知:从D1 和 D2 到E的最短路径唯一。
NEUQ
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点 和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路 径问题:
NEUQ
动态规划 Dynamic Programming
不要过河拆桥 追求全局最优
本章内容
多阶段决策过程的最优化 动态规划的基本概念和基本原 理 动态规划方法的基本步骤 动态规划方法应用举例
NEUQ
NEUQ
一、多阶段决策过程的最优化
示例1(工厂生产安排):
某种机器可以在高、低两种负荷下生产。高负荷生产
NEUQ
示例3 (连续生产过程的控制问题):
一般化工生产过程中,常包含一系列完成
生产过程的设备,前一工序设备的输出则是后
一工序设备的输入,因此,应该如何根据各工
序的运行工况,控制生产过程中各设备的输入 和输出,以使总产量最大。
示例4、最短路径问题
NEUQ
给定一个交通网络图如下,其中两点之间的数字表示距离 (或花费),试求从A点到G点的最短距离(总费用最小)。

动态规划 运筹学 例题

动态规划 运筹学 例题

动态规划运筹学例题动态规划(DynamicProgramming)是运筹学中一种基于分析多阶段决策过程的重要算法。

它主要指用于多步决策的最优化方法,是在一定时期内,为了达到目标,从多种可能的决策中选择最优方案的过程。

它的最大特点就是将一个较大的复杂的问题分解成若干个小的子问题,将解决这些子问题的过程和结果组合起来,从而解决原问题。

下面以最常见的“背包问题”为例,来深入讲解动态规划的基本原理。

假设有一个背包,背包容量为5KG,要放入这个背包中的有:物品A(重量3kg,价值2),物品B(重量2kg,价值3),物品C(重量1kg,价值4)。

问:最多能放入背包中的最大价值是多少?动态规划会将这个问题分解成两个子问题,即:当第一个物品放入背包时,最多能放入背包中的最大价值是多少?当第二个物品放入背包时,最多能放入背包中的最大价值是多少?通过上面划分出来的2个子问题,我们就可以用动态规划来解决这个问题。

首先,定义f(i,w)表示前i个物品放入背包中,总重量不超过w的最大价值,即:f(i,w)=max{f(i-1,w),f(i-1,w-wi)+vi}其中,f(i-1,w)表示前i-1个物品放入背包中,总重量不超过w的最大价值,f(i-1,w-wi)+vi表示前i-1个物品放入背包中,总重量不超过w-wi的最大价值,再加上第i个物品的价值vi。

下面我们来解决上面所说的背包问题:对于第一个物品A,有两种情况,第一种情况:不放入背包,则背包中的最大价值f(1,5)=0;第二种情况:将物品A放入背包,则背包中最大价值f(1,2)=2。

由于5>2,所以f(1,5)=2。

第二个物品B,有两种情况,第一种情况:不放入背包,f(2,5)=2;第二种情况:将物品B放入背包,则背包中最大价值f(2,3)=2+3=5。

由于5>3,所以f(2,5)=5。

同理,有第三个物品C,有两种情况,第一种情况:不放入背包,f(3,5)=5;第二种情况:将物品C放入背包,则背包中最大价值f(3,4)=5+4=9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7.1是一个四阶段决策问题,一般可分为四步:
运筹学-动态规划
●逆序法求解最短路问题
第一步,从K=4开始
状态变量S4可取两种状态D1, D2,它们到E点的距离 分别为4和3,这也就是由D1和D2到终点E 的最短距离, 即
f4(D1)=4, f4(D2)=3.
1 S1
2
3
4
Байду номын сангаас
S2
S3
S4
运筹学-动态规划
1
2
3
4
2)、状态 ( state) 各阶段开始时的出发点称作状态。
描述各阶段状态的变量,称作状态变量,用sk 表示。
在例7.1 中,第一阶段的状态为 A ,第二阶段的状态为城市 B1,B2 和 B3。所以状态变量 S1 的集合 S1={A},S2 的集合是 S2={B1,B2,B3}, 依次有 S3={C1,C2,C3}, S4={D1,D2} 。
C3 ,如果我们选择,从C2走,则此时的决策变量可表示x2(B1)=C2。
1
2
3
4
4)、策略( Policy)
在各阶段决策确定以后,整个问题的决策序列就构成了一个策略,
用P1n(s1)表示。
如对于例7.1总共可有18个策略,但最优策略只有一个。
1
2
3
4
运筹学-动态规划
5)、目标函数
用于衡量所选定策略优劣的数量指标称作目标函数。
第七章 动态规划
7.1 动态规划问题和基本概念 7.2 动态规划的基本原理 7.3 动态规划的应用
引言
动态规划与多阶段决策:
多阶段决策是指这样一类特殊的活动过程, 它们可以按时间顺序分 解成若干相互联系的阶段, 每个阶段都要作出决策, 全部过程的决策是 一个决策序列, 所以多阶段决策问题又称为序贯决策问题。
其中, Tk 表示从状态 sk 出发经过
x 向下一阶段的转移 (Transfer),换 k
言之,即 sk+1 是从状态 sk 出发经过决策 xk 转移的结果。
由于上式表示了由 K 段到第 K+1 段的状态转移规律,所以就称为状态
转移方程。在例 7.1中,状态转移方程即 sk+1 = x k。
为了求出例7.1的最短路线,一个简单的方法是,可以求出 所有从A到E的可能走法的路长并加以比较。不难知道,从A到 E共有18条不同的路线,每条路线有四个阶段,要做3次加法,要 求出最短路线需做54次加法运算和17次比较运算,这叫做穷举 法。
一个n阶段的决策过程,从1到n 叫作问题的原过程。
目标函数的最优值称为最优目标函数,最优目标函
数记为fk(sk),它表示从第K阶段的状态Sk出发采用的最优
策略。
,
当K=1时, f1(s1 )就是从初始状态S1到全过程结束的整体
最优目标函数。
在例7.1中,目标函数就是距离。如在第2阶段,状 态为B2时,f2 (B2)则表示从B2到E的最短距离。本问题 的总目标是求f 1(A), 即从A到E的最短距离。
第二步 ,K=3 状态变量 S3 可取 3 个值即 C1,C2 和 C3。
为方便应用,规定用d(sk,sk+1)表示由状态sk出发,到达下一阶段sk+1时的
两点距离。
f 3 ( C1 )=min
d (C1, D1 ) + f4 (D1 ) d(C1, D2 ) + f4 (D2 )
=min
3+4 5+3
=5
即从 C2 到 E 的最短距离为 5,其路径为 C2 → D2 →E,相应的决策为
x
* 3

C2
)=
D2
1 S1
2
3
4
S2
S3
S4
f 3 ( C3 )=min
d (C3 , D1 ) + f4 (D1 ) d (C3 , D2 ) + f4 (D2 )
=min
1+ 4 3+3
=5
即从 C3 到 E 的最短距离为 5,其路径为 C3→D1→E,相应的决策为
例中,路线图(共18条路线,3×3×2×1=18)
枚举法:
例中,路线图(共18条路线,3×3×2×1=18)
运筹学-动态规划
为解决这个最短路径问题,首先给出几个定义。
1)、阶段 (stage) 将所给问题的过程,按时间或空间特征分解成若干相互联系的段落,
以便按次序求解就形成了阶段 ,阶段变量常用字母 K 来表示。如例 7.1 有四个阶段, K 就等于 1,2,3,4 。第一阶段共有 3 条路线即(A,B1), (A,B2) 和(A,B3),第二阶段有 9 条路线,第 3 阶段有 6 条路线,第 4 阶段有 2 条 路线。
当问题的段数很多,各段的状态也很多时,这种方法的计算 量会大大增加,甚至使得寻优成为不可能。
运筹学-动态规划
1
2
3
4
下面应用动态规划方法求解例7.1。运用逆序递 推方法求解,即由最后一段到第一段逐步求出各点到 终点的最短路线,最后求出A点到E点的最短路线。
运用逆序递推方法的好处是可以始终盯住目标,不 致脱离最终目标。
多阶段决策的目标是要达到整个活动过程的总体效果最优, 所以多 阶段决策又叫做过程最优化。
所谓 动态规划,就是解决多阶段决策和过程最优化问题的一
种规划方法。
7.1 动态规划问题和基本概念
例7.1 最短路问题 设A地的某一企业要把一批货物由A地运到E城销售, 其间
要经过八个城市,各城市间的交通路线及距离如下图所示, 问应 选择什么路线才能使总的距离最短?
1
2
3
4
运筹学-动态规划
6)、状态转移方程
在动态规划中,本阶段的状态往往是上阶段决策的结果。所以如果给
定了第 K 阶段的状态 sk 和该阶段的决策 xk ( sk ),则第 K+1 段的状态 sk+1
由于 K 阶段决策的完成也就完全确定了 ,它们之间的关系可用如下公式表示:
sk +1 = Tk ( sk , x k )
1
2
3
4
运筹学-动态规划
3)、 决策(Decision )
当各阶段的状态确定以后,就可以做出不同的决定或选择,从而确 定下一阶段的状态,这种决定就是决策,表示决策的变量称为决策变量。
常用X k ( sk )表示第 K 阶段当状态为 sk 时的决策变量,
在例7.1中第二阶段如决定从B1出发,即S2=B1,可选择走C1或C2,
=7
这说明,由 c1 到 E 的最短距离为 7,其路径为以 C1 → D1 →E,相应的决策
为x
* 3

C1
)=
D1
1
2
3
4
S1
S 运筹学-动态2规划
S3
S4
f 3 ( C2 )=min
d (C2 , D1 ) + f 4 (D1 ) d (C2 , D2 ) + f 4 (D2 )
=min
6+4 2+3
相关文档
最新文档