西南大学《数理统计》作业及答案()

合集下载

西南大学2018年秋[1152]《概率论与数理统计》作业答案

西南大学2018年秋[1152]《概率论与数理统计》作业答案

1、设各零件的重量是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是()1.0.08932. 0.05933. 0.06934.0.07932、设X1,X2,…,Xn是来自总体X的样本,则样本方差是()1.统计量2.样本矩3.二阶中心矩4.二阶原点矩3、设某种动物有出生起活20岁以上的概率为80%,活25岁以上的概率为40%.如果现在有一个20岁的这种动物,问它能活25岁以上的概率?()1. C. 0.62. 0.753. 0.54. 0.254、七人轮流抓阄,抓一张参观票,问第二人抓到的概率?()1. 02. 6/73. 1/74. 1/65、设有一仓库有一批产品,已知其中50%、30%、20%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为1/10,1/15,1/20,现从这批产品中任取一件,求取得正品的概率()1. 0.822.0.623. 0.924. 0.726、在1~9的整数中可重复的随机取6个数组成6位数,求6个数完全不同的概率为()1. 0.062. 0.083. 0.114. 0.127、设X~N(1,4),其概率密度为,则E(X)为()。

1. 22. 33. 04. 18、.设电阻值R是一个随机变量,均匀分布在900欧至1100欧. 求R的概率密度及R落在950欧至1050欧的概率. ()1. 0.252. 0.653. 0.74. 0.59、设连续随机变量X的密度函数是,求E(X)=()1. 11/32. 26/33. 9/44. 13/310、两个随机变量X ,Y 的方差分别为4和2,则2X-3Y 的方差( )1.32 2. 343. 214.3611、X ~N (5,32),那么P (2<X<11)=( )1.0.81852. 0.84523. 0.86254.0.952512、设连续型随机变量X 的分布函数是F (x ),密度函数是f (x ),则P (X=x )=( )1. f (x )2. F (X )3. 以上都不对4.13、求数据38,42,36,45,39的均值,方差分别为( )1. 15、302. 40、103. 10、104.20、1014、某设备由甲、乙两个部件组成,当超载负荷时,各自出故障的概率分别为0.90和0.85,同时出故障的概率是0.80,求超载负荷时至少有一个部件出故障的概率为( )1. 0.852.0.154.0.9515、一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。

西南大学0348数理统计

西南大学0348数理统计
2、设总体X的概率密度为 ,其中 为未知参数,样本 来自总体X,求未知参数 的矩法估计与极大似然估计。(20分)
3、设连续型总体X的概率密度为 , 来自总体X的一个样本,求未知参数 的极大似然估计量 ,并讨论 的无偏性。(15分)
4、(1)构造未知参数置信区间的枢轴量Fra bibliotek的具体步骤是什么?
(2)某车间生产的螺钉,其直径X~ ,由过去的经验知道 =0.06,今随机抽取6枚,测得其长度(单位mm)如下:
6、某上市公司的人事部门希望了解公司职工的病假是否均匀分布在周一到周五,以便合理安排工作。如今抽取了100名病假职工,其病假日分别如下:
工作日
周一周二周三周四周五
频数
18 19 20 21 22
试问该公司职工病假是否均匀分布在一周五个工作日中?(α=0.05, )(15分)
答题纸※※※※※※※※※※※※※※※※※※※※
从而解方程
得 的矩法估计为 .
似然函数为 ,
令 (0<x<1;1<i<n),
解得 的极大似然估计为 。
3、求未知参数 的极大似然估计量 ,并讨论 的无偏性。
解:似然函数为

令 ,得 .
由于 ,
因此 的极大似然估计量 是 的无偏估计量。
4、(1)构造未知参数置信区间的枢轴量法的具体步骤是什么?
构造未知参数θ的置信区间的最常用的方法是枢轴量法,其步骤可以概括为三个步骤:
西南大学网络与继续教育学院课程考试试题卷
类别:网教专业:数学与应用数学2017年6月
课程名称【编号】:数理统计【0348】A卷
大作业满分:100分
1、设总体X服从指数分布,其密度函数为 , 未知, 是来自总体的简单随机样本。

西南大学2020年春季数理统计【0348】大作业课程考试参考答案

西南大学2020年春季数理统计【0348】大作业课程考试参考答案
西南大学培训与继续教育学院课程考试试题卷
学期: 2020年春季
课程名称【编号】:数理统计【0348】A卷
考试类别:大作业 满分:100 分
一、叙述判断题(任选一题)
1、设总体X服从正态分布 ,其中
(1)写出样本 的联合密度函数;
(2)指出 之中哪些是统计量,哪些不是统计量,并说明理由。
, ,
(1)指出T1,T2,T3哪几个是θ的无偏估计量;
(2)在上述θ的无偏估计中指出哪一个较为有效。(20分)
解:(1)由于Xi服从均值为θ的指数分布,所以
E(Xi)=θ,D(Xi)=θ2,i=1,2,3,4
由数学期望的性质2°,3°有
即T1,T2是θ的无偏估计量
(2)由方差的性质2°,3°并注意到X1,X2,X3,X4独立,知
解:(1) ,置信度0.9,即α=0.1,查正态分布数值表,知 ,即 ,从而 , ,所以总体均值 的0.9的置信区间为.
(2)σ未知
,置信度0.9,即α=0.1,自由度n-1=15,查t-分布的临界值表
所以置信度为0。9的μ的置信区间是
4、根据某地环境保护法规定,倾入河流的废水中某种有毒化学物质含量不得超过3ppm。该地区环保组织对沿河各厂进行检查,测定每日倾入河流的废水中该物质的含量。某厂连日的记录为
3.1 3.2 3.3 2.9 3.5 3.4 2.5 4.3 2.9 3.6 3.2 3.0 2.7 3.5 2.9
试在显著性水平α=0.05上判断该厂是否符合环保规定(假定废水中有毒物质含量X服从正态分布 )。( )(15分)
解(1)H0:H1:
(2)H0的拒绝域为:
(3)计算,,=1.77667.
因为σ是未知参数。
2、设总体X服从二项分布B(n,p),其中p是未知参数, 是来自总体的简单随机样本。(15分)

[西南大学2016年6月网教0348]《数理统计》大作业A答案

[西南大学2016年6月网教0348]《数理统计》大作业A答案
6、解:首先建立假设:
在n=8,m=7, α=0.05时,
故拒绝域为 ,现由样本求得 =0.2164, =0.2729,从而F=0.793,未落入拒绝域,因而在α=0.05水平上可认为两台机床加工精度一致。
\
2、(1)答:设 是总体 的一个样本,则不含未知参数的样本的连续函数 称为统计量。
(2)解: 都是统计量, 不是统计量,因p是知参数。
3、解:(1)写出似然函数 ;
(2)写出对数似然函数

(3) 分别对 求偏导,并令它们都为0,得似然方程为:
(4)解似然方程得 ;
(5)经验证 使 达到极大。
(6)上述叙述也对一切样本观察值成立,故用样本代替观察值,便得 的极大似然估计分别为:

如果由100个样本观察值求得 (单位:mm), ,则可求得 的极大然估计值:
4、解:首先由于EXi= = T(2)= ,故E ,即样本均值 是θ的无偏估计。EXi2= dx= T(3)=2 ,所以D =2 - = ,故D = ,而E( )2=E( )2= = = 故C-R下界为 = = ,因此样本均值 是θ的有效估计。 另外由车贝晓夫不等式P(| |≥ )≤ = n->∞0,所以样本均值 还是θ的相合估计。
西南大学网络与继续教育学院课程考试答题卷
学号:层次:专升本
类别:网教专业:数学与应用数学(数学教育)2016年6月
课程名称【编号】:数理统计【0348】A卷
题号





总分
评卷人
得分
(横线以下为答题区)
1解:
(1)因为 所以 的概率分布为
(2)因为 ,所以
(3)
将样本观察值依照从小到大的顺序排列即得顺序统计量 的观察值如下:(1,2,3,3,4,4,4,5,6,8)。

2020年秋季学期西南大学[1246]《概率论与数理统计作业答案

2020年秋季学期西南大学[1246]《概率论与数理统计作业答案

单项选择题1、设某种型号的电子管的寿命(以小时计)近似地服从N(160,400)分布。

则寿命超过180小时的概率为( )..0.5949.0.1587.0.8413.0.29742、.(2).(1).(4).(3)3、甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,则该球是白球的概率是()。

.13/25.3/25.7/25.1/54、设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,则常数a=()..(N+1)/2.2.1.N/25、已知P(A)=P(B)=P(C)=1/3, A与B互不相容,P(AC)=P(BC)=1/4, 则事件A、B、C全不发生的概率为()..1/4.7/12.1/2.1/36、18个人用摸彩的方式决定谁得一张电影票,他们依次摸彩,则已知前7个人都没摸到,第8个人摸到的概率为()..1/11.1/8.1/7.1/127、从6双不同的皮鞋中任取4只,其中恰有一双配对的概率是()。

.8/33.2/33.4/33.16/338、甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,飞机被击落的概率为( )..0.634.0.135.0.458.0.7829、第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。

先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,则取到红球的概率为( )..58/99.46/99.53/99.41/9910、把长为1的棒任意折成三段,则它们不能构成三角形的概率为( )..1/4.5/6.3/4.1/211、.(2).(3).(4).(1)12、在某工厂里有甲、乙、丙三台机器生产螺丝钉,它们的产量各占25%,35%,40%,并在各自的产品里,不合格品各占有5%,4%,2%。

西南大学数理统计作业答案

西南大学数理统计作业答案

.由累积资料知道甲、乙两煤矿的含灰率分别服从。

现从两矿各抽n个试件,分析其含灰率为甲矿24.320.823.721.317.4%乙矿18.216.920.216.7%问甲、乙两矿所采煤的含灰率的数学期望有无显著差异(显著水平α=0.05)?答: 1 分别以甲乙两矿所采煤的含灰率作为总体和总体,问题归结为根据所给的样本观察值对方差已知的两个正态总体检验,可采用 U- 检验法。

原假设,由所给样本观察值算得,于是对于α =0.10,查标准正态分布表得,因为,所以拒绝,即可以认为有显著差异。

2 某种羊毛在处理前后,各抽取样本测得含脂率如下(%):处理前1918213066428123027处理后1513724194820羊毛含脂率按正态分布,问处理后含脂率有无显著差异(α=0.05 )?答:2已知n=10,m=8,α =0.05,假设,自由度为n+m-2=16 ,查表选取统计量.因为,所以否定,即可以认为处理后含脂率有显著变化。

3 使用 A 与 B 两种方法来研究冰的潜热,样本都是的冰。

下列数据是每克冰从变为的水的过程中的热量变化(Cal/g):方法79.9880.0480.0280.0480.0380.0380.0479.9780.0580.0380.02一80.00 80.02方法80.0279.9779.9879.9779.9480.0379.9579.97二假定用每种方法测得的数据都具有正态分布,并且它们的方差相等,试在α=0.05 下可否认为两种方法测得的结果一致?答: 3 两个总体,且,用t检验法:检验假设计算统计量的值α=0.05 ,自由度为n+m-2=19 ,方差未知,查表得,因,故否定,即在检验水平α=0.05 下可以认为两种方法测得值(均值)不等。

.1 为了检验某药物是否会改变人的血压,挑选10名试验者,测量他们服药前后的血压,如下表所列:编号12345678910服药前血压134122132130128140118127125142服药后血压140130135126134138124126132144假设服药前后血压差值服从正态分布,取检验水平为0.05,从这些资料中是否能得出该药物会改变血压的结论?答:1 以记服药前后血压的差值,则服从,其中均未知,这些资料中可以得出的一个样本观察值: 683-46-2 6 -17 2待检验的假设为这是一个方差未知时,对正态总体的均值作检验的问题,因此用t 检验法当时,接受原假设,反之,拒绝原假设。

西南大学数理统计作业答案

西南大学数理统计作业答案

由累积资料知道甲、乙两煤矿的含灰率分别服从。

现从两矿各抽n个试件,分析其含灰率为甲矿%乙矿%问甲、乙两矿所采煤的含灰率的数学期望有无显著差异(显著水平α=)答:1分别以甲乙两矿所采煤的含灰率作为总体和总体,问题归结为根据所给的样本观察值对方差已知的两个正态总体检验,可采用U-检验法。

原假设,由所给样本观察值算得,于是对于α=,查标准正态分布表得,因为,所以拒绝,即可以认为有显著差异。

2 某种羊毛在处理前后,各抽取样本测得含脂率如下(%):处理前1918213066428123027处理后1513724194820羊毛含脂率按正态分布,问处理后含脂率有无显著差异(α=)答: 2 已知n=10,m=8,α=,假设,自由度为n+m-2=16,查表选取统计量因为,所以否定,即可以认为处理后含脂率有显著变化。

3 使用A与B两种方法来研究冰的潜热,样本都是的冰。

下列数据是每克冰从变为的水的过程中的热量变化(Cal/g):方法一方法二假定用每种方法测得的数据都具有正态分布,并且它们的方差相等,试在α=下可否认为两种方法测得的结果一致答:3两个总体,且,用t检验法:检验假设计算统计量的值α=,自由度为n+m-2=19,方差未知,查表得,因,故否定,即在检验水平α=下可以认为两种方法测得值(均值)不等。

1 为了检验某药物是否会改变人的血压,挑选10名试验者,测量他们服药前后的血压,如下表所列:编号12345678910服药前血压134122132130128140118127125142服药后血压140130135126134138124126132144假设服药前后血压差值服从正态分布,取检验水平为,从这些资料中是否能得出该药物会改变血压的结论答:1 以记服药前后血压的差值,则服从,其中均未知,这些资料中可以得出的一个样本观察值:6 8 3 -4 6 -2 6 -1 7 2待检验的假设为这是一个方差未知时,对正态总体的均值作检验的问题,因此用t检验法当时,接受原假设,反之,拒绝原假设。

西南大学201下6年春《数理统计》作业及答案(已整理)(共5次)(1)

西南大学201下6年春《数理统计》作业及答案(已整理)(共5次)(1)

西南大学2016年春《数理统计》作业及答案(已整理)第一次作业1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( )。

(A )∑=-ni iXn122)(μσ是统计量 (B )∑=ni i X n122σ是统计量 (C )∑=--ni iXn 122)(1μσ是统计量 (D )∑=ni iX n12μ是统计量2、设两独立随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( )。

3、设两独立随机变量)1,0(~N X ,2~(16)Y χ服从( )。

4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ).5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则下列正确的是( ).7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( )( A ) . 12X X +( B ){}max ,15i X i ≤≤( C ) 52X p +( D )()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

则2σ的最大似然估计量为( )。

(A )∑=-n i i X n 12)(1μ (B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11μ(D )()∑=--n i iX X n 1211 答案:1、(D );2、 )(C ;3、)(C ;4、)(A ;5、(B );6、() ;C 7、( C ) ;8、(B )。

西南大学2018年6月网络与继续教育学院大作业答案-0348《数理统计》

西南大学2018年6月网络与继续教育学院大作业答案-0348《数理统计》
( )(15分)
解:统计假设: : , :
检验统计量为:
拒绝域为:X0=
故两台机床加工的零件长度的方差无显著差异。
7、设 , 相互独立,且服从 .写出矩阵X并求 的最小二乘估计。(15分)
分析:设X是抽查一个产品时的不合格品的个数,则X服从参数为p的两点分布。抽查n个产品,则得样本X1,X2,…Xn,其观察值为x1,x2…xn,假如样本有T个不合格,即表示x1,x2…xn中有T个取值为1,有n-T个取值为0。基于此求参数p的极大似然估计值。
(1) 写出似然函数
(2) 对似然函数取对数,得到对数似然函数:
试在显著性水平α=0.05上判断该厂是否符合环保规定(假定废水中有毒物质含量X服从正态分布 )。( )(15ቤተ መጻሕፍቲ ባይዱ)
解:检验统计量T的观测值
满足1.7705≥t0.05(14)=2.7760;拒绝H0;
不符合。
6、两台机床加工同一种零件,分别取6个和9个零件测量其长度,计算得 ,假设零件长度服从正态分布,问:是否认为两台机床加工的零件长度的方差无显著差异( )?
西南大学网络与继续教育学院课程考试试题卷
类别:网教专业:数学与应用数学(数学教育)2018年6月
课程名称【编号】:数理统计【0348】A卷
大作业满分:100分
1、设总体X服从正态分布 , 是取自总体X的简单随机样本, 为样本均值, 分别是样本方差和样本修正方差,试求下列随机变量 的分布。(20分)
2、设某工序生产的产品的不合格品率为p,抽n个产品作检验,发现有T个不合格,试求p的极大似然估计。此估计是否是无偏估计?(15分)
解:n=m=10,1-α=0.95,α=0.05,
,
从而
故方差比 的0.95的置信区间为[0.222,3.601]。

西南大学《数理统计》作业及答案

西南大学《数理统计》作业及答案

F 列正确的是( )(A) X ~ N(4®2) (B) ∏X ~ N(* )(C)W(X i 」)2 〜2(n)(D)竺 )〜t(n)σ2GS7、设总体X 服从两点分布B (i, P),其中P 是未知参数,X i ,…,X 5是来自总体的简单随 机样本,则下列随机变量不是统计量为()(A ) . X i X 2( B ) maχfχi ,仁i 岂51数理统计第一次1设总体X 服从正态分布N(J,;「2),其中J已知,;「2未知, X 1,X 2,…,X n 为其样本, n _ 2,则下列说法中正确的是( )。

(A ) ∙ (X j -■•二)2 是统计量 n i 1 (B)=J Xj2是统计量 n i =I2、设两独立随机变量 X ~ N(O,i), Y~ 2(9),则 3X服从( JY)0(A) N(0,i) (B)t(3) (C)t(9) (D) F(i,9) 3、设两独立随机变量 X 〜N(O,i),24X Y~ 2(i6),则-服从( )0 (A)N(O,i) (B)t ⑷(C)t(i6)(D) F(i,4)(C)=J (X i 一)2是统计量n —1 y (D ) X i 2是统计量 n i =I4、设X i ,…,X n 是来自总体X 的样本,且EX 二,则下列是」的无偏估计的是()I n-Ii ni n(A) X i (B) 一 X i (C)-^ X in — 1 i =I n —1iτn^(D)-XX in5、设X i ,X 2,X 3,X 4是总体N(0M 2)的样本,2-未知,则下列随机变量是统计量的是( ). (A) X 3/二;(B )4(Di Xi 2 / ~2i T26、设总体X ~ Ne I ^ ) , X i ,L ,X n 为样本,X,S 分别为样本均值和标准差,则1、( D );2、(C) ; 3、(C) ; 4、(A) ;5、( B );6、(C) ; 7、( C );第二次1、设总体X~N(*二2),X 1, ,X n 为样本,X,S 分别为样本均值和标准差)分布•3、在假设检验中,下列说法正确的是(如果原假设是正确的,但作出的决策是接受备择假设,则犯了第一类错误; 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误; 第一类错误和第二类错误同时都要犯;如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误。

西南大学2020年秋季数理统计【0348】大作业参考答案非免费

西南大学2020年秋季数理统计【0348】大作业参考答案非免费

西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季课程名称【编号】:数理统计【0348】 A卷考试类别:大作业满分:100分答案网叫福到(这四个字的拼音)叙述判断题(任选一题,每题15分)1、设总体X服从两点分布B(1,p),其中p是未知参数,口是来自总体的简单随机样本。

(1)写出样本□的联合概率分布;(2)指出口之中哪些是统计量,哪些不是统计量,为什么?2、设总体X服从均匀分布口,其中未知,口是来自总体的简单随机样本(1)写出样本的联合密度函数(2)指出口之中哪些是统计量,哪些不是统计量,并说明理由解答题(1、2任选一题)1、设总体X服从参数为(N,p)的二项分布,其中(N,p)为未知参数,为来自总体X的一个样本,求(N,p)的矩法估计。

(15分)2、设为来自总体X的样本,X的概率密度为,试求未知参数的矩估计和最大似然估计.(15分)3、为比较两个学校同一年级学生数学课程的成绩,随机地抽取学校A的9个学生,得分数的平均值为,方差为口;随机地抽取学校B的1 5个学生,得分数的平均值为口方差为口。

设样本均来自正态总体且方差相等,参数均未知,两样本独立。

求均值差的置信水平为095的置信区间。

(20分)4、甲、乙两台机床分别加工某种轴,轴的直径分别服从正态分布口与口,为比较两台机床的加工精度有无显著差异。

从各自加工的轴中分别抽取若干根轴测其直径,结果如下总体试在α=0.05水平上检验失业人员的性别与文化程度是否有关。

(口)(15分)三、证明题(任选一题)1、设是取自正态总体的一个样本,证明是的无偏估计、相合估计。

(20分)2、设口是取自具有下列指数分布的一个样本,口,证明口是θ的无偏、相合、有效估计。

(20分)。

西南大学《数理统计》作业及答案

西南大学《数理统计》作业及答案

西南大学《数理统计》作业及答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March数理统计第一次1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( )。

(A )∑=-ni i X n122)(μσ是统计量 (B )∑=ni i X n122σ是统计量(C )∑=--ni iX n 122)(1μσ是统计量 (D )∑=ni iX n12μ是统计量2、设两独立随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( )。

)(A )1,0(N )(B )3(t )(C )9(t )(D )9,1(F3、设两独立随机变量)1,0(~N X ,2~(16)Y χ)。

)(A )1,0(N )(B (4)t )(C (16)t )(D (1,4)F4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ).)(A ∑-=-1111n i i X n )(B ∑=-n i i X n 111 )(C ∑=n i i X n 21 )(D ∑-=111n i i X n 5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/i i X σ=∑6、设总体),(~2σμN X ,1,,n X X 为样本,S X ,分别为样本均值和标准差,则下列正确的是( ).2() ~(,)A X N μσ 2() ~(,)B nX N μσ22211()()~()ni i C X n μχσ=-∑(~()D t n 7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( )( A ) . 12X X +( B ) {}max,15i X i ≤≤( C ) 52X p + ( D ) ()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

西南大学网络教育《概率论与数理统计》【1152】期末考试复习题及答案

西南大学网络教育《概率论与数理统计》【1152】期末考试复习题及答案

2分布表: P{ 2 (n) 2}
0.975 0.025
n
8
2.18
17.5
9
2.70
19.0
解: H : 2 2
0
0
H :2 2
1
0
(n 1)S 2 ~ X 2 (n 1)
2
2 0.0052
0
拒绝域为
(n 1)S 2 X 2 (n 1), (n 1)S 2 X 2 (n 1)
-2-
解:(1)有放回 P( A) 6 3
68 7 P(B) 6 3
68 7 P(B) 6 3
68 7 (2)无放回 P( A) 6 3
68 7 P(B) 6 3
68 7 P(B) 6 1 5
6 8 1 13
-3-
f
(x)
2(1 x),0
0, 其它
x
1
求 X 的数学期望和方差.
-1-
三、设二维随机变量(X,Y)的联合分布律为
X
0
1
Y
0
q
0
1
0
p
其中 p+q=1,求相关系数 。
XY
四、设 X , X , X 是取自 N(21,4)的样本,求
12
25
(1)样本均值的数学期望和方差;
(2) P{ X - 21 0.24};
西南大学网络与继续教育学院课程考试试题卷
类别:网教(网教/成教) 专业:机电一体化技术 课程名称【编号】:概率论与数理统计【1152】 大作业
A卷 满分:100 分
本题共六小题选做四题,每小题 25 分,共 100 分
一、某种导线的电阻 X 服从正态分布 N ( ,0.05 2) ,现从新生产的导线中抽取 9 根,测其电阻,得 样本标准差 s 0.008 ,对于 0.05 ,是否可以认为这批导线电阻的方差仍然为 0.05 2?

西南大学2018年秋[1152]《概率论与数理统计》作业答案

西南大学2018年秋[1152]《概率论与数理统计》作业答案

1、设各零件的重量是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是()1.0.08932. 0.05933. 0.06934.0.07932、设X1,X2,…,Xn是来自总体X的样本,则样本方差是()1.统计量2.样本矩3.二阶中心矩4.二阶原点矩3、设某种动物有出生起活20岁以上的概率为80%,活25岁以上的概率为40%.如果现在有一个20岁的这种动物,问它能活25岁以上的概率?()1. C. 0.62. 0.753. 0.54. 0.254、七人轮流抓阄,抓一张参观票,问第二人抓到的概率?()1. 02. 6/73. 1/74. 1/65、设有一仓库有一批产品,已知其中50%、30%、20%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为1/10,1/15,1/20,现从这批产品中任取一件,求取得正品的概率()1. 0.822.0.623. 0.924. 0.726、在1~9的整数中可重复的随机取6个数组成6位数,求6个数完全不同的概率为()1. 0.062. 0.083. 0.114. 0.127、设X~N(1,4),其概率密度为,则E(X)为()。

1. 22. 33. 04. 18、.设电阻值R是一个随机变量,均匀分布在900欧至1100欧. 求R的概率密度及R落在950欧至1050欧的概率. ()1. 0.252. 0.653. 0.74. 0.59、设连续随机变量X的密度函数是,求E(X)=()1. 11/32. 26/33. 9/44. 13/310、两个随机变量X ,Y 的方差分别为4和2,则2X-3Y 的方差( )1.32 2. 343. 214.3611、X ~N (5,32),那么P (2<X<11)=( )1.0.81852. 0.84523. 0.86254.0.952512、设连续型随机变量X 的分布函数是F (x ),密度函数是f (x ),则P (X=x )=( )1. f (x )2. F (X )3. 以上都不对4.13、求数据38,42,36,45,39的均值,方差分别为( )1. 15、302. 40、103. 10、104.20、1014、某设备由甲、乙两个部件组成,当超载负荷时,各自出故障的概率分别为0.90和0.85,同时出故障的概率是0.80,求超载负荷时至少有一个部件出故障的概率为( )1. 0.852.0.154.0.9515、一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计第一次1、设总体X 服从正态分布),(2σμN ,其中μ已知,2σ未知,n X X X ,,,21 为其样本,2≥n ,则下列说法中正确的是( )。

(A )∑=-ni iXn122)(μσ是统计量 (B )∑=ni iXn122σ是统计量(C )∑=--ni iX n 122)(1μσ是统计量 (D )∑=ni i X n12μ是统计量2、设两独立随机变量)1,0(~N X ,)9(~2χY ,则YX 3服从( )。

3、设两独立随机变量)1,0(~N X ,2~(16)Y χ)。

4、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ). 5、设4321,,,X X X X 是总体2(0,)N σ的样本,2σ未知,则下列随机变量是统计量的是( ).(A )3/X σ; (B )414ii X=∑; (C )σ-1X ; (D )4221/ii Xσ=∑6、设总体),(~2σμN X ,1,,n X X L 为样本,S X ,分别为样本均值和标准差,则下列正确的是( ).7、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X ⋅⋅⋅是来自总体的简单随机样本,则下列随机变量不是统计量为( )( A ) . 12X X +( B ){}max ,15i X i ≤≤( C ) 52X p +( D )()251X X -8、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

则2σ的最大似然估计量为( )。

(A )∑=-n i i X n 12)(1μ (B )()211∑=-n i i X X n (C )∑=--n i i X n 12)(11μ(D )()∑=--n i iX X n 1211 1、(D );2、 )(C ;3、)(C ;4、)(A ;5、(B );6、() ;C 7、( C ) ;8、(B )。

第二次1、设总体),(~2σμN X ,1,,n X X ⋅⋅⋅为样本,S X ,分别为样本均值和标准差,则服从( )分布.2、设1,,n X X ⋅⋅⋅为来自正态总体2(,)N μσ的一个样本,μ,2σ未知。

则2σ的置信度为1α-的区间估计的枢轴量为( )。

(A)()212ni i X μσ=-∑ (B)()2120nii Xμσ=-∑ (C)()∑=-ni iX X1221σ(D)()2120nii XX σ=-∑3、在假设检验中,下列说法正确的是( )。

(A) 如果原假设是正确的,但作出的决策是接受备择假设,则犯了第一类错误; (B) 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误; (C) 第一类错误和第二类错误同时都要犯;(D) 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误。

4、对总体2~(,)X N μσ的均值μ和作区间估计,得到置信度为95%的置信区 间,意义是指这个区间( )。

(A)平均含总体95%的值 (B)平均含样本95%的值(C)有95%的机会含样本的值 (D)有95%的机会的机会含μ的值 5、设ˆθ是未知参数θ的一个估计量,若ˆE θθ≠,则ˆθ是θ的( )。

(A)极大似然估计 (B) 有偏估计 (C)相合估计 (D) 矩法估计 6、设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 7、设总体2~(,)X N μσ,2σ未知,12,,,n X X X 为样本,2S 为修正样本方差,则检验问题:00:H μμ=,10:H μμ≠(0μ已知)的检验统计量为( ). (A))0X Sμ-(B))0X μσ- (C))0X μσ-(D))0X Sμ-.1、() D ;2 (C) ;3、(A);4、 (D);5、 (B) ;6、(A );7、(D ). 第三次1、设总体X 服从参数为λ的泊松分布()P λ,n X X X ,,,21 是来自总体X 的简单随机样本,则=XD .2、设321,,X X X 为来自正态总体),(~2σμN X 的样本,若321cX bX aX ++为μ的一个无偏估计,则=++c b a _____。

3、设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。

4、设总体X 服从正态分布),(2σμN ,μ未知。

n X X X ,,,21 为来自总体的样本,则对假设2020σσ=:H ;2021σσ≠:H 进行假设检验时,通常采用的统计量是____________,它服从____________分布,自由度为____________。

5、设总体)4,1(~N X ,1210, ,, X X X 为来自该总体的样本,101110i i X X ==∑,则()D X =______.6、我们通常所说的样本称为简单随机样本,它具有的特点是 .7、已知0.9(8,20)2F =,则0.1(20,8)F = .8、设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 . 9、检验问题:()()00:H Fx F x =,()()00:H F x F x ≠(()0F x 含有l 个未知参数)的皮尔逊2χ检验拒绝域为 .10、设621,,,X X X 为来自正态总体)1,0(N 的简单随机样本,设 若使随机变量CY 服从2χ分布,则常数=C .11、设由来自总体2(,0.9)N μ的容量为9的简单随机样本其样本均值为5x =,则μ的置信度为0.95的置信区间是(0.975 1.96μ=).12、若线性模型为()20,,n Y X E Cov I βεεεεσ=+⎧⎨==⎩,则最小二乘估计量为 . 1、/n λ,2、1,3、1.71,4、22(1)n S σ-,2χ,1n -,5、2/5,6、独立性,代表性;7、1/2;8、21X -;9、()()2211ˆ1ˆr i i i i n np n l np αχ-=⎧⎫-⎪⎪>--⎨⎬⎪⎪⎩⎭∑;10、1/3;11、(4.412, 5.588);12、()1ˆX X X Y β-''=。

. 第四次1、设总体X 服从两点分布B (1,p ),其中p 是未知参数,15,,X X L 是来自总体的简单随机样本。

指出{}()212551,max ,15,2,i X X X i X p X X +≤≤+-之中哪些是统计量,哪些不是统计量,为什么?2、设总体X 服从参数为(N ,p )的二项分布,其中(N ,p )为未知参数,12,,,n X X X L 为来自总体X 的一个样本,求(N ,p )的矩法估计。

3、设12,,,n X X X L 是取自正态总体()2,N μσ的一个样本,试问()22111nii S X X n ==--∑是2σ的相合估计吗?4、设连续型总体X 的概率密度为()()22,0,00, 0xx e x p x x θθθθ-⎧⎪>=>⎨⎪≤⎩, 12,,,n X X X L 来自总体X 的一个样本,求未知参数θ的极大似然估计量ˆθ,并讨论ˆθ的无偏性。

5、随机地从一批钉子中抽取16枚,测得其长度(以厘米计)为 2.14 2.10 2.13 2.15 2.13 2.12 2.13 2.10 2.15 2.12 2.14 2.10 2.13 2.11 2.14 2.11设钉长服从正态分布。

若已知σ=0.01(厘米),试求总体均值μ的0.9的置信区间。

(0.95 1.65u =) 6、甲、乙两台机床分别加工某种轴,轴的直径分别服从正态分布()211,N μσ与()222,N μσ,为比较两台机床的加工精度有无显着差异。

从各自加工的轴中分别抽取若干根轴测其直径,结果如下:(()()0.9750.9756,7 5.12,7,6 5.70.F F ==)7、为了检验某药物是否会改变人的血压,挑选10名试验者,测量他们服药前后的血压,如下表所列:假设服药后与服药前血压差值服从正态分布,取检验水平为0.05,从这些资料中是否能得出该药物会改变血压的结论?1、 解:{}()21251,max ,15,i X X X i X X +≤≤-都是统计量,52X p +不是统计量,因p是未知参数。

2、 解:因为()()()222,1EXNp EX DX EX Np p Np ==+=-+,只需以211,n i i X X n =∑分别代2,EX EX 解方程组得222ˆˆ,1n n S X N p X S X==--。

3、解:由于()221n S σ- 服从自由度为n-1的2χ-分布,故()()()4422222,2111ES DS n n n σσσ==⨯-=--, 从而根据车贝晓夫不等式有()()2422222001n DS P S n σσεεε→∞≤-≥≤=−−−→-,所以()22111n i i S X X n ==--∑是2σ的相合估计。

4解:似然函数为()()2212112211,ln ln ln ,2ni i i nnx x iinnii i i ni i xxx L eeL n x θθθθθθθθ=--====∑===-+-∏∑∏∏()212ln 2nii xd L n d θθθθ==-+∑,令()ln 0d L d θθ=,得21ˆ2nii Xnθ==∑.由于()22222221220011ˆ222222nx x ii EXx x x E EX x e dx e d nθθθθθθθθθ--∞∞======Γ=∑⎰⎰,因此θ的极大似然估计量ˆθ是θ的无偏估计量。

5、 解:()2210.01, 2.14 2.10 2.11 2.12516x σ==+++=L ,置信度0.9,即α=0.1,查正态分布数值表,知()()1/21.650.95u α-Φ=Φ=, 即()1.6510.90P Uα≤=-=,从而1/20.95 1.65u u α-==1/2 1.650.004α-==,所以总体均值μ的0.9的置信区间为[][] 1/21/2, 2.1250.004,2.1250.004 2.121,2.129x xαα--⎡⎤+=-+=⎢⎥⎣⎦.6、解:首先建立假设:在n=8,m=7, α=0.05时,故拒绝域为{}0.195, 5.70F or F<>, 现由样本求得21s=0.2164,22s=0.2729,从而F=0.793,未落入拒绝域,因而在α=0.05水平上可认为两台机床加工精度一致。

相关文档
最新文档