二次指数平滑法Microsoft Word 文档
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次指数平滑法
二次指数平滑法(Second exponential smoothing method)
[编辑]
什么是二次指数平滑法
二次指数平滑法是对一次指数平滑值作再一次指数平滑的方法。它不能单独地进行预测,必须与一次指数平滑法配合,建立预测的数学模型,然后运用数学模型确定预测值。一次移动平均法的两个限制因素在线性二次移动平均法中也才存在,线性二次指数,平滑法只利用三个数据和一个α值就可进行计算;在大多数情况下,一般更喜欢用线性二次指数平滑法作为预测方法。
[编辑]
二次指数平滑法的优点[1]
二次指数平滑法实质上是将历史数据进行加权平均作为未来时刻的预测结果。
它具有计算简单、样本要求量较少、适应性较强、结果较稳定。
[编辑]
二次指数平滑法的计算
线性二次指数平滑法的公式为:
(1)
式中:分别为t期和t–1期的二次指数平滑值;a为平滑系数。在和已知的条件下,二次指数平滑法的预测模型为:
(2)
(3)
T为预测超前期数
例5:某地1983年至1993年财政入的资料如下,试用指数平滑法求解趋势直线方程并预测1996年的财政收入。计算过程及结果如下:
由上表可知:;;;,a=0.9 则
所求模型为:
[编辑]
二次指数平滑法实例分析[2]
表中第③栏是我国1978-2002年全社会客运量的资料,据期绘制散点图,见下图,可以看出,各年的客运量资料基本呈线性趋势,但在几个不同的时期直线有不同的斜率,因此考虑用变参数线性趋势模型进行预测。具体步骤如下:
表 我国1978-2002年全社会客运量及预测值 单位:万人
年份 时
间t 全社会客运量y 各期的一次指数平滑值 各期的二次指数平滑值
a t
b t
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 253993.0 253993.0 1978 1 253993 253993.0 253993.0 253993.0 0.0 1979 2 289665 275396.2 266834.9 283957.5 12841.9 253993.0 1980 3 341785 315229.5 295871.7 334587.3 29036.7 296799.4 1981 4 384763 356949.6 332518.4 381380.8 36646.8 363624.0 1982 5 428964 400158.2 373102.3 427214.2 40583.9 418027.5 1983 6 470614 442431.7 414699.9 470163.4 41597.6 467798.1 1984 7 530217 495102.9 462941.7 527264.1 48241.8 511761.1 1985 8 620206 570164.8 527275.5 613054.0 64333.8 575505.8
1986 9 688212 640993.1 595506.1 686480.1 68230.5 677387.8 1987 10 746422 704250.4 660752.7 747748.2 65246.6 754710.7 1988 11 809592 767455.4 724774.3 810136.4 64021.6 812994.8 1989 12 791376 781807.8 758994.4 804621.1 34220.1 874158.1 1990 13 772682 776332.3 769397.1 783267.5 10402.8 838841.2 1991 14 806048 794161.7 784255.9 804067.6 14858.8 793670.2 1992 15 860855 834177.7 814209.0 854146.4 29953.1 818926.3 1993 16 99663 931651.5 884674.5 978628.5 70465.5 884099.5 1994 17 1092883 1028390.4 970904.0 1085876.8 86229.6 1049094.0 1995 18 1172596 1114913.8 1057309.9 1172517.6 86405.8 1172106.3 1996 19 1245356 1193179.1 1138831.4 1247526.8 81521.5 1258923.5 1997 20 1326094 1272928.0 1219289.4 1326566.7 80458.0 1329048.3 1998 21 1378717 1336401.4 1289556.6 1383246.2 70267.2 1407024.7 1999 22 1394413 1371208.4 1338547.7 1403869.1 48991.1 1453513.4 2000 23 1478573 1435627.1 1396795.4 1474458.9 58247.7 1452860.1
第一步,计算一次指数平滑值。取,根据
一次指数平滑公式,可计算各期的一次指数平滑预测值:1978年:
1979年:
同理可得各年的一次指数平滑预测值,见表1中第④栏。
第二步,根据(1)式和第一步计算的,计算各期的二次指数平滑值,见表1中第⑤栏。如:
其余各期以此类推。
第三步,计算各期参数变量值α、b。根据(3)式,可计算各期的α、b,分别见表第⑥、第⑦栏。如
第四步,根据(4)式和(2)式分别求各期的趋势预测值,见表中最后一栏。如:
2000年预测值
;
进行外推预测,则
2003年预测值
;
2004年预测值
。
把各年的预测值绘成曲线与原时间序列的散点图比较(见上图),可以看出,二次指数平滑法由于考虑了时间序列在不同时期直线参数的变化,其预测值与原时间序列的拟合程度非常好。上图中也给出了用最小二乘法拟合的趋势直线,相比之下,用二次指数平滑法拟合的趋势线更好地体现了原时间序列在不同时间段的变化趋势。