直线与平面垂直,平面与平面垂直的性质
直线与平面垂直平面与平面垂直的性质
a
a l
面面垂直线面垂直
小结:空间中的垂直关系的转化
线线 垂直
线面 垂直
面面 垂直
例4. ,a ,a ,判 断 a 与 位 置 关 系
解:设 l
在α内作直线b ⊥l
α
β
b l
A
a
b b
l
l
b
又a
a//b
b
a
a //
▪ 面面相交
画图
面面垂直 α
A1
a
D
C
b
A
B
b //α或b在α内
2.面面垂直的性质
D1
F
α
D
C1
B1 A1
D
E
C
β
A
B
如果α⊥β
(1) α里的直线都和β垂直吗?
(2)什么情况下α里的直线和β垂直?
面面垂直的性质
▪ 面面垂直性质定理:两个平面垂直,则一 个平面内垂直于交线的直线与另一个平面 垂直。
ห้องสมุดไป่ตู้
β
a l
A α
a
l
a
一个平面和两个平行平面相交
l β
三个平面两两垂直
α
a
β
b
l
γ
当堂练习
教材:
面面垂直性质 P73 A5
解:设 n m
在α内作直线a ⊥n 在β内作直线b⊥m
la
b
α
a a
n
n
a
同理b
β n
b//a
a
b
b //
b
l
γm
b // l
b
b
2.3.3-2.3.4直线与平面垂直的性质
2 a,E 为 PA 的中点.
求证:平面 EDB⊥平面 ABCD.
名师导引:证明平面 EDB⊥平面 ABCD 的思路是 什么?(在平面 EDB 内寻找一条直线与平面 ABCD 垂直) 证明:设 AC EO∥PC. BD=O,连接 EO,E 为 PA 的中点,则
∵PC=CD=a,PD=
2 2 2
2 a,
跟踪训练 1 1:如图所示,在正方体 ABCD A1B1C1D1 中, M 是 AB 上一点,N 是 A1C 的中点,MN⊥平面 A1DC.
求证:(1)MN∥AD1; (2)M 是 AB 的中点.
证明:(1)∵四边形 ADD1A1 为正方形, ∴AD1⊥A1D. 又 CD⊥平面 ADD1A1, ∴CD⊥AD1. ∵A1D CD=D, ∴AD1⊥平面 A1DC. 又 MN⊥平面 A1DC, ∴MN∥AD1. (2)连接 ON,在△A1DC 中, A1O=OD,A1N=NC,
l⊥β)
1:地面上有两根相距 a 米的与地面 垂直的立柱,它们的高分别是 b 米和 c 米(b>c), 则它们上端的距离为 米.
解析:如图所示,根据题意可 知 AD=b,BC=c,AB=a,由线面垂 直的性质可得这两根立柱平 行,过点 C 向 AD 作垂线,设垂 足为 E,则可得 CD= 答案:
2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质
课前预习
栏 目 导 航
课堂探究
【课标要求】
1.通过直观感知、操作确认,归纳出直线与 平面、平面与平面垂直的性质定理. 2.掌握直线与平面垂直,平面与平面垂直 的性质,并能运用性质定理解决一些简单 问题. 3.掌握平行与垂直之间的转化.
【实例】 在日常生活中常见到一排排和地面垂 直的电线杆.一排电线杆中的每根杆都与地面 垂直,那平面垂直的性质定理
高中 直线、平面垂直的判定与性质 知识点+例题+练习
教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。
直线与平面垂直、平面与平面垂直的性质
D、a 或a //
应用举例
例1:在正方体ABCD A1B1C1D1中,M是AB上
一点,N是A1C上的一点,MN 平面A1DC
求证:MN // AD1
分证析明::要证A1 AMDND//1是AD正1 , 方 只需形证明
ADA1D1 平面A1AD1DC.只需证 明CADD1垂直平于面平A1面ADA1DD1C内 的两AD条1 相C交D直线即可。
简记: 线面垂直
线线平行
作用:证明空间直线的平行。
课堂练习(一):
判断下列命题是否正确: (1)垂直于同一条直线的两个平面互相平行。( )
(2)垂直于同一个平面的两条直线互相平行。( )
(3)平行于同一个平面的两条直线互相平行。( )
课堂练习(二):
(D )
A、a //
B、a
已则C知a、与直a线的a位,b置和关平系面是,且a b,b ,
线线垂直判定 定定 义理线面垂直性性 质质 判定定理 定理线线平行.
新知探究二:平面与平面垂直的性质
如图,在长方体ABCD—A1B1C1D1中,
平面AC 平面D1C
平面AC 平面D1C DC D1
C1
D1D 平面D1C
A1
B1
D1D CD D1D 平面AC
D A
C B
平面与平面垂直的性质定理
直则于平A面BE,是须二证面 明直角
E
线 相 件垂 交 已- C直 直 有D于 线 一平 , 条面而,的内题故平两中可面条条过角
D
B
A
该直AB线作B辅E助线.
C
AB CD
CD , BE , BE CD B
AB
线线垂直、线面垂直、面面垂直的判定和性质
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
直线与平面垂直的性质、平面与平面垂直的性质 课件
【训练2】 设平面α⊥平面β,点P在平面α内,过点P作平面β 的垂线a,试判断直线a与平面α的位置关系.
解 如图,设α∩β=c,过点P在平面α内作直线b⊥c.
根据平面与平面垂直的性质定理有b⊥β. 因为过一点有且只有一条直线与平面β垂直, 所以直线a与直线b重合,因此a⊂α.
类型三 线线、线面、面面垂直的综合应用(互动探究) 【例3】 如图所示,在四棱锥P-ABCD中,底面
线与另一个平面_垂__直___
α⊥β _αa_⊂_∩_α_β=l⇒a⊥β
_a_⊥__l_
图形语言
作用
①面面垂直⇒___线___面____垂直 ②作面的垂线
1.判断题 (1)两条平行直线中的一条垂直于一个平面,另一条也垂直于这 个平面.(√ ) (2)垂直于同一平面的两个平面平行.(× ) (3)如果两个平面垂直,那么经过第一个平面内一点且垂直于第 二 个 平 面 的 直 线 在 第 一 个 平 面 内 . 即 α⊥β , A ∈ α , A ∈ b , b⊥β⇒b⊂α.( √ ) (4)如果平面α⊥平面β,那么平面α内的所有直线都垂直于平面
在直角梯形ABCD中,易证△ABO ≌△BCD, ∠BAO=∠CBD,∠CBD+∠ABD=90°, ∴∠BAO+∠ABD=90°,∴AO⊥BD, 又PO∩AO=O,∴BD⊥平面PAO,∴BD⊥PA, 即PA与BD相互垂直.
[课堂小结] 1.线面垂直的性质定理揭示了空间中“平行”与“垂直”关
系的内在联系,提供了“垂直”与“平行”关系相互转化 的依据. 2.面面垂直的性质定理揭示了“面面垂直、线面垂直及线线 垂直”间的内在联系,体现了数学中的转化与化归思想, 其转化关系如下:
法二 如图,α∩γ=a,
β∩γ=b,在α内作m⊥a, 在β内作n⊥b. ∵α⊥γ,β⊥γ,∴m⊥γ,n⊥γ,∴m∥n. 又∵n⊂β,m⊄β,∴m∥β, 又α∩β=l,m⊂α,∴m∥l,∴l⊥γ.
直线与平面、平面与平面垂直的性质
A D
垂足为B.
B C
E
则∠ABE就是二面角 -CD- 的平面角 ∵
, ∴AB⊥BE(平面与平面垂直的定义)
又由题意知AB⊥CD,且BE CD=B
∴AB⊥ (直线与平面垂直的判定定理)
结论1:过一点有且只有一个平 面和已知直线垂直。
结论2:如果两条平行直线中的 一条垂直于一个平面,那么另 一条直线也垂直于这个平面。
求证:AB ⊥ β 。 证明:在平面 内作 BE C D
α A
D
垂足为 B,则ABE就是二面角 C D 的平面角。
β
E
B C
由 ,可知 AB BE 又AB C D BE与C D是 内两条相交直,
AB
性质定理2:如果两个平面互相 思考1:若α ⊥β ,过平面α 内一点P 作平面β 的垂线,垂足为B,那么直 垂直,那么经过一个平面内一 线AB与平面α有什么位置?说明你的 点且垂直于另一个平面的直线, 理由. 必在这个平面内.
证明:设是m 内 的任意一条直线。
a a m m b m b // b a m
小试牛刀
1、判断下列命题的正误。 (1)平行于同一直线的两条直线互相平行(
√
)
(2)垂直于同一直线的两条直线互相平行(×) (3)平行于同一平面的两条直线互相平行(×) (4)垂直于同一平面的两条直线互相平行(
√)
2、已知直线 a , b和平面 , 且a b, a ,
b __________ // , 或b 则b与的位置关系
a
b
探究新知
教室的黑板所在平面与地 面是什么关系?你能在黑板上 画一条直线与地面垂直吗?
直线、平面垂直与平面,平面垂直地判定及其性质
直线、平面垂直与平面,平面垂直的判定及其性质类型1线面垂直的判定[要点点击]对直线与平面垂直的几点说明(1) 直线与平面垂直是直线与平面相交的一种特殊形式.(2) 由直线与平面垂直的定义,得如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线.这是判断两条直线垂直的一种重要方法.[典例1]如图,在四棱锥P— ABC西,底面ABC的菱形,P任PG P申PD ACT BD=0求证:(1) PCX平面ABCD(2) ACX平面PBD[巧归纳]证明线面垂直的步骤(1) 在这个平面内找两条直线,使它和这条直线垂直;(2) 确定这个平面内的两条直线是相交的直线;(3) 根据判定定理得出结论.[练习1]如图所示,空间四边形ABCD勺边BO AC AA BD作BA CD垂足为E, 作A电BE垂足为H求证:A电平面BCD类型2直线与平面所成的角[要点点击]对斜线和平面所成的角的定义的理解斜线和平面所成的角的定义表明斜线和平面所成的角是通过斜线在平面内的射影而转化为两条相交直线所成的角.[典例2]如图,三棱锥A— SBC中,Z BS& 90° , Z ASE^ Z ASO60° , S任SB=SC求直线AS与平面SBC听成的角.[巧归纳]求直线和平面所成角的步骤(1) 寻找过斜线上一点与平面垂直的直线;(2) 连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3) 把该角归结在某个三角形中,通过解三角形,求出该角.[练习2]如图所示,已知正四面体(各棱长都相等的三棱锥)A— BCD勺棱长为a, E为AD的中点,连接CE(1) 求证:顶点A在底面BCDtt的射影是△ BCD勺外心;(2) 求AD与底面BC所成的角的余弦值;(3) 求CE与底面BC所成的角的正弦值.类型3线面垂直的综合应用[典例3]如图所示,四棱锥P— ABC[^,底面ABC驹矩形,PDL底面ABCD AS PD E, F分别为CD PB的中点.(1) 求证:EFL平面PAB(2) 设AA寸2BG求AC与平面AEF所成角的正弦值.[思路点拨](1)要证线面垂直,需证平面内有两条相交直线与已知直线垂直,而根据条件易得EFL PB, Ed AF,所以本题得证.(2)要求线面角,得先找出或作出这个角,根据条件易得 只需过AC 与BE 的交点G 作BF 的平行线 GH 贝U GK 平面EFA / GA 咽所求角.[巧归纳]利用直线与平面垂直的判定定理判定直线与平面垂直的技巧证明线面垂直时要注意分析几何图形, 寻找隐含的和题目中推导出的线线垂直关系, 进 而证明线面垂直.三角形全等、等腰三角形、梯形底边的中线、高、菱形、正方形的对角线、 三角形中的勾股定理等都是找线线垂直的方法.[练习3] 如图,在四棱锥 P-ABCW ,底面为直角梯形,AD/ BC ZBAt> 90° , PA上底面 ABCD 且P 任AA A 申2BG M N 分别为PC PB 的中点. 类型4面面垂直的判定[要点点击]平面与平面垂直的关键点(1) 两个平面垂直是两个平面相交的特殊情况.例如正方体中任意相邻两个面都是互相 垂直的.(2) 两个平面垂直和两条直线互相垂直的共同点:都是通过所成的角是直角来定义的.[典例4] 如图所示,在梯形 ABC 畔,AB// CD E, F 是线段AB 上的两点,且 Dd AB, Cd AB A 申 12, A [> 5, BO 4^2, DB 4.现将△ ADE △ CF 盼别沿 DE CF 折起,使 A, B 两点重合于点G,得到多面体CDEFG(1)求证:平面 DEQ 平面 CFG⑵求多面体CDEFGJ 体积.[思路点拨](1)由^ EGF^的数量关系证得 E(^FG 再由C 巨平面EGF ? E(^CF 从 而E 饥平面CFG 进而得证.(2)作出四棱锥的高,由体积公式易得.又Cm GA F, . . E 国平面CFGBPL 平面EF4故在△ BEF 中, A B又EG 平面DEG 平面DEQ平面CFG[巧归纳]常用的两个平面互相垂直的判定方法(1) 定义法,即说明这两个平面所成的二面角是直二面角;(2) 判定定理,即一个平面经过另一个平面内的一条垂线,则这两个平面互相垂直;(3) 两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.对于判定定理,可简述为"线面垂直,则面面垂直”.[练习4]如图,在长方体ABCD-ABCD中,AAAA 1, AA = 2, M是棱CC的中点.求证:平面ABI^平面ABM类型5二面角及其平面角的求法[要点点击]确定二面角的平面角的方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.[典例5]在四棱锥P— ABC呻,底面是边长为a的正方形,P[U面ABCD PA a.⑴求证:Ad面PBD(2) 求二面角P— BO D的平面角;(3) 求二面角P- AO D的平面角的正切值.[巧归纳]求二面角大小的步骤(1) 找出这个平面角.(2) 证明这个角是二面角的平面角.(3)作出这个角所在的三角形,解这个三角形,求出角的大小.[练习5]如图,四边形ABC说正方形,P/U平面ABCD且P任AB求二面角B—PC 一D的平面角的大小.类型6垂直关系的综合应用[要点点击]有助于判断面面垂直的结论(1) m// n,讪a , n? 3 ? a X 3 >(2) 讪a , n± 3 , m^n? a ± 3 ;⑶ a // 3 , y X a ? 7X3 .[典例6]如图,在四棱锥P- ABC西,底面是边长为a的正方形,侧棱PA a, PA=Pd .2a,求证:(1) PCX平面ABCD(2) 平面PA(X平面PBD(3) 二面角P- BO D是45°的二面角.[巧归纳]证明两个平面垂直,通常是通过证明线线垂直线面垂直r面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每[练习6]如图,四棱锥P— ABCD勺底面是边长为a的正方形,PBL平面ABCD(1)求证:平面PA[X平面PAB⑵若平面PD牌平面ABCIM 60°的二面角,求该四棱锥的体积.类型7线面垂直性质定理的应用[要点点击]直线与平面垂直性质定理的理解(1) 该定理考查的是在直线与平面垂直的条件下,可得出什么结论.(2) 定理给出了判定两条直线平行的另一种方法(只要判定这两条直线都与同一个平面垂直即可).(3) 定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行” 关系相互转化的依据.(4) 定理的推证过程采用了反证法.[典例7]如图所示,在正方体A i B i CD — ABC[^, EF与异面直线AC AD都垂直相交,求证:EF// BD.[巧归纳]线面垂直的性质定理的应用线面垂直的性质是证明线线平行的方法之一,还可应用线面垂直的其他性质进而证明线面平行、面面平行,实现线面垂直关系与线线平行关系的相互转化.[练习7]如图,PAL正方形ABCN在平面,经过点A且垂直于PC的平面分别交PB,PC PD于点E, F, G 求证:AH PB类型8面面垂直性质定理的应用[要点点击]从平面与平面垂直的性质定理可以看出,由平面与平面垂直可以得到直线与平面垂直,而由平面与平面垂直的判定定理可以看出,由直线与平面垂直可以得到平面与平面垂直,其转化关系可表示为面面垂直的判定定理线面垂直I面面垂直的件质宋理I面面垂直这种相互转化的关系是解决空间图形问题的重要思想方法.[典例8]如图,在三棱锥V— ABg,平面VA乩平面ABC △ VAB为等边三角形,AC±BC且A。
§2.3.3 直线与平面垂直的性质§2.3.4 平面与平面垂直的性质
§2.3.3 直线与平面垂直的性质§2.3.4 平面与平面垂直的性质一、课前准备复习1:①什么是二面角?什么是二面角的平面角?②当两个平面所成的二面角____________时,这两个平面互相垂直.复习2:两个平面垂直的判定(1)方法一:方法二:________________.复习3:①垂直于同一直线的两条直线的位置关系是____________;②垂直于同一平面的两个平面的位置关系是___________.二、新课导学探究一:直线与平面垂直的性质定理问题1:已知直线a⊥平面α,直线b⊥平面α,求证:a∥b.新知1:直线与平面垂直的性质定理垂直于同一个平面的两条直线平行.反思:这个定理揭示了什么?探究二:平面与平面垂直的性质问题2:黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?新知2:平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.反思:这个定理实现了什么关系的转化?例1 判断下列命题是否正确,并说明理由.⑴两条平行线中的一条垂直于某条直线,则另一条也垂直于这条直线;⑵两条平行线中的一条垂直于某个平面,则另一条也垂直于这个平面;⑶两个平行平面中的一个垂直于某个平面,则另一个也垂直与这个平面;⑷垂直于同一条直线的两条直线互相平行;⑸垂直于同一条直线的两个平面互相平行;⑹垂直于同一个平面的两个平面互相平行.例2. 如图,在三棱锥中,PA PB⊥,若M是PC的中点,=,AB BC试确定AB上点N的位置,使得MN AB⊥.例3. 如图,平面α⊥平面γ,βγ⊥平面平面,l αβ=,求证:l γ⊥.例4. 如图,四棱锥P ABCD -的底面是个矩形,2,AB BC ==PAB 是等边三角形,且侧面PAB 垂直于底面ABCD . ⑴证明:侧面PAB ⊥侧面PBC ;⑵求侧棱PC 与底面ABCD 所成的角.线线垂直面面垂直 面面平行。
高中数学-直线与平面垂直、平面与平面垂直的性质
的一条垂线,那么这两个平面互相垂直.
返回
②利用面面垂直的判定定理证明面面垂直时的一般 方法是:先从现有的直线中寻找平面的垂线,若这样的 直线图中存在,则可通过线面垂直来证明面面垂直;若 这样的直线图中不存在,则可通过辅助线来解决,而作 辅助线则应有理论根据并有利于证明,不能随意添加. ③证明两个平面垂直,通常是通过证明线线垂直→线 面垂直→面面垂直来实现的.因此,在关于垂直问题的 论证中要注意线线垂直、线面垂直、面面垂直的相 互转化.每一垂直的判定就是从某一垂直开始转向另 一垂直,最终达到目的,其转化关系如图所示:
返回
④用面面垂直的性质定理.如果两个平面垂直,那么在一个
平面内垂直于它们交线的直线必垂直于另一个平面.
⑤作定理用的正确命题.如果一条直线垂直于两个平行平面
中的一个平面,它也垂直于另一个平面.
⑥分析线面关系问题的证明思路应养成“看到结论想判定,
看到条件想性质”的习惯,并结合对图形、模型(自己动
手构造)的深入观察,寻求证题思路.
证明:作AE⊥SB于E, ∵平面SAB⊥平面SBC, ∴AE⊥平面SBC,AE⊥BC, ∵SA⊥平面ABC,∴SA⊥BC, ∴BC⊥平面SAB,∴AB⊥BC.
返回
本学案证明题的主要方法有哪些?
(1)线面垂直的判定方法
①利用定义.要证明一条直线a⊥平面α,转化为证明直线
a垂直于平面α内的任何一条直线c.
返回
返回
返回
返回
返回
返回
返回
返回
返回
学点二 面面垂直的性质定理应用 如果两个相交平面都垂直于第三个平面,那么它 们的交线垂直于第三个平面.
【分析】欲证线面垂直,可用线线垂直或用
m∥l m⊥γ
直线、平面垂直的判定与性质
题组三 易错排查 4.若 l,m 为两条不同的直线,α 为平面,且 l⊥α,则“m∥α”是“m⊥l”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:由 l⊥α 且 m∥α 能推出 m⊥l,充分性成立; 若 l⊥α 且 m⊥l,则 m∥α 或者 m⊂α,必要性不成立, 因此“m∥α”是“m⊥l”的充分不必要条件,故选 A.
解析:(1)如图 1,连接 OA,OB,OC,OP, 在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PC=PB, 所以 OA=OB=OC,即 O 为△ABC 的外心.
(2)如图 2,延长 AO,BO,CO 分别交 BC,AC,AB 于点 H,D,G. ∵PC⊥PA,PB⊥PC,PA∩PB=P,PA,PB⊂平面 PAB, ∴PC⊥平面 PAB,又 AB⊂平面 PAB,∴PC⊥AB, ∵AB⊥PO,PO∩PC=P,PO,PC⊂平面 PGC, ∴AB⊥平面 PGC,又 CG⊂平面 PGC, ∴AB⊥CG,即 CG 为△ABC 边 AB 上的高. 同理可证 BD,AH 分别为△ABC 边 AC,BC 上的高, 即 O 为△ABC 的垂心. 答案:(1)外 (2)垂
题组二 教材改编 2.下列命题中错误的是( ) A.如果平面 α⊥平面 β,那么平面 α 内一定存在直线平行于平面 β B.如果平面 α 不垂直于平面 β,那么平面 α 内一定不存在直线垂直于平面 β C.如果平面 α⊥平面 γ,平面 β⊥平面 γ,α∩β=l,那么 l⊥平面 γ D.如果平面 α⊥平面 β,那么平面 α 内所有直线都垂直于平面 β
跟踪训练 1 (2020·贵阳模拟)如图,在三棱锥 ABCD 中,AB⊥AD,BC⊥BD,平 面 ABD⊥平面 BCD,点 E,F(E 与 A,D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.
直线与平面垂直的性质、平面与平面垂直的性质 课件
知识点一 直线与平面垂直的性质定理
思考 在日常生活中常见到一排排和地面垂直的电线杆.一排电线杆中的 每根电线杆都与地面垂直,这些电线杆之间的位置关系是什么? 答案 平行.
梳理 文字语言 符号语言
图形语言
垂直于同一个平面的两条直线_平__行__ a⊥α ⇒a∥b b⊥α
知识点二 平面与平面垂直的性质定理
思考 黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线 与地面垂直? 答案 容易发现墙壁与墙壁所在平面的交线与地面垂直,因此只要在黑 板上画出一条与这条交线平行的直线,则所画直线必与地面垂直.
梳理
两个平面垂直,则 一个平面内 垂直于 交线 的直线与另一 文字语言
反思与感悟 立体几何中的探索性问题 (1)探索条件,即探索能使结论成立的条件是什么.解答此类问题,先观察 与尝试给出条件再给出证明. (2)探索结论,即在给定的条件下命题的结论是什么.解答此类问题,常从 条件出发,探索出要求的结论是什么.对于探索的结论是否存在问题.求解 时,常假设结论存在,再寻找与条件相容还是矛盾的结论.
类型三 垂直关系的综合应用 例3 如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD, ∠ADB=60°,E,F分别是AC,AD上的动点,且 AACE=AADF=λ(0<λ<1).
(1)求证:无论λ为何值,总有平面BEF⊥平面ABC;
(2)是否存在实数λ,使得平面BEF⊥平面ACD.
(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证: MN∥A1C.
反思与感悟 证明线线平行的常用方法 (1)利用线线平行定义:证共面且无公共点. (2)利用三线平行公理:证两线同时平行于第三条直线. (3)利用线面平行的性质定理:把证线线平行转化为证线面平行. (4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直. (5)利用面面平行的性质定理:把证线线平行转化为证面面平行.Biblioteka 类型二 面面垂直性质定理的应用
第讲直线平面垂直的判定与性质
(2)解:三棱锥 C-SBM 与三棱锥S-CBM 的体积相等, 由( 1 ) 知 SM⊥平面 ABCD, 得VV1=13SM13S×M12×A12BB+MC×DC×MAD. 设 AB=a,由 CD=3AB,AM=AB,DM=DC, 得 CD=3a,BM= 2a,CM=3 2a,AD=4a. 从而VV1= a2+a×3a3×42aa=38.
探索性问题是一种具有开放性和发散性的问题, 此类题目的条件或结论不完备.要求解答者自己去探索,结合已 有条件,进行观察、分析、比较和概括.它对学生的数学思想、 数学意识及综合运用数学方法的能力提出了较高的要求.它有利 于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力, 使学生经历一个发现问题、研究问题、解决问题的全过程.
图 13-5-3
解析:①②③正确,又 AF⊥平面 PBC,④错误.
考点2 平面与平面垂直的判定与性质 例 2:(2011 年江苏)如图 13-5-4,在四棱锥 P-ABCD 中, 平面 PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP, AD 的中点. 求证:(1)直线 EF∥平面 PCD; (2)平面 BEF⊥平面 PAD
4.如图 13-5-1,在正方体 ABCD-A1B1C1D1中,下列结论
中正确的个数是(D )
①BD1⊥AC;②BD1⊥A1C1;
③BD1⊥B1C.
A.0 个
B.1 个
C.2 个
D.3 个
图 13-5-1
5.给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,那么这两
个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互
【互动探究】
1.如图 13-5-3,PA ⊥⊙O 所在的平面,AB 是⊙O 的直径, C 是⊙O 上的一点,E,F 分别是 A 在 PB,PC 上的射影,给出下
高中数学直线与平面垂直的性质、平面与平面垂直的性质精选题目(附答案)
高中数学直线与平面垂直的性质、平面与平面垂直的性质精选题目(附答案)1.直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行.(2)图形语言:(3)符号语言:⎭⎬⎫a ⊥αb ⊥α⇒a ∥b . (4)作用:①线面垂直⇒线线平行;②作平行线.2.平面与平面垂直的性质定理(1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(2)图形语言:(3)符号语言:⎭⎬⎫α⊥βα∩β=l a ⊂αa ⊥l ⇒a ⊥β.(4)作用:①面面垂直⇒线面垂直;②作面的垂线.一、线面垂直性质定理的应用1.如图,已知正方体A 1C .(1)求证:A 1C ⊥B 1D 1.(2)M ,N 分别为B 1D 1与C 1D 上的点,且MN ⊥B 1D 1,MN ⊥C 1D ,求证:MN ∥A 1C .[证明] (1)如图,连接A 1C 1.∵CC 1⊥平面A 1B 1C 1D 1,B 1D 1⊂平面A 1B 1C 1D 1,∴CC 1⊥B 1D 1.∵四边形A 1B 1C 1D 1是正方形,∴A 1C 1⊥B 1D 1.又∵CC 1∩A 1C 1=C 1,∴B1D1⊥平面A1C1C.又∵A1C⊂平面A1C1C,∴B1D1⊥A1C.(2)如图,连接B1A,AD1.∵B1C∥AD,∴四边形ADC1B1为平行四边形,∴C1D∥AB1.∵MN⊥C1D,∴MN⊥AB1.又∵MN⊥B1D1,AB1∩B1D1=B1,∴MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又∵AB1∩B1D1=B1,∴A1C⊥平面AB1D1.∴A1C∥MN.注:(1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.(2)直线与平面垂直的其他性质:①如果一条直线和一个平面垂直,则这条直线和这个平面内任一条直线垂直.②若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.③若l⊥α于A,AP⊥l,则AP⊂α.④垂直于同一条直线的两个平面平行.⑤如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.2.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M 是AB 的中点.证明:(1)∵四边形ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC .又∵MN ⊥平面A 1DC ,∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC ,∴ON=12CD=12AB .∴ON ∥AM .又∵MN ∥OA ,∴四边形AMNO 为平行四边形.∴ON =AM .∵ON =12AB ,∴AM =12AB .∴M 是AB 的中点.二、面面垂直性质定理的应用3.已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .[证明] 如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC ,∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC ,∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC ,又AC ⊂平面P AC ,∴BC ⊥AC .注: 若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直、线线垂直.应用面面垂直的性质定理,注意三点:①两个平面垂直是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.4.如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是边长为a的菱形,且∠DAB=60°.侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面P AD;(2)求证:AD⊥PB.证明:(1)如图,在菱形ABCD中,连接BD,由已知∠DAB=60°,∴△ABD为正三角形,∵G是AD的中点,∴BG⊥AD.∵平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,∴BG⊥平面P AD.(2)如图,连接PG.∵△P AD是正三角形,G是AD的中点,∴PG⊥AD,由(1)知BG⊥AD.又∵PG∩BG=G.∴AD⊥平面PBG.而PB⊂平面PBG,∴AD⊥PB.三、垂直关系的综合应用4.如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且AEAC=AFAD=λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF⊥平面ABC.(2)当λ为何值时,平面BEF⊥平面ACD?[解](1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.∵CD⊥BC,AB∩BC=B,∴CD⊥平面ABC.又∵AEAC=AFAD=λ(0<λ<1),∴无论λ为何值,恒有EF∥CD,∴EF⊥平面ABC.又∵EF⊂平面BEF,∴无论λ为何值,总有平面BEF⊥平面ABC.(2)由(1)知BE⊥EF,∵平面BEF⊥平面ACD,平面BEF∩平面ACD=EF,∴BE⊥平面ACD.又∵AC⊂平面ACD,∴BE⊥AC.∵BC=CD=1,∠BCD=∠ABD=90°,∠ADB=60°,∴BD=2,∴AB=2tan 60°=6,∴AC=AB2+BC2=7.由Rt△AEB∽Rt△ABC,得AB2=AE·AC,∴AE=67,∴λ=AEAC=67.故当λ=67时,平面BEF⊥平面ACD.注:(1)空间中的垂直关系有线线垂直、线面垂直、面面垂直,这三种关系不是孤立的,而是相互关联的.它们之间的转化关系如下:线线垂直判定定理线面垂直定义线面垂直判定定理性质定理面面垂直(2)空间问题化成平面问题是解决立体几何问题的一个基本原则,解题时,要抓住几何图形自身的特点,如等腰(边)三角形的三线合一、中位线定理、菱形的对角线互相垂直等.还可以通过解三角形,产生一些题目所需要的条件,对于一些较复杂的问题,注意应用转化思想解决问题.5.如图(1),在直角梯形ABCD中,AD∥BC,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图(2)中△A1BE 的位置,得到四棱锥A1-BCDE.(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为362,求a的值.解:(1)证明:在图(1)中,因为AB=BC=12AD=a,E是AD的中点,∠BAD=π2,所以BE⊥AC.即在图(2)中,BE⊥A1O,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE. 即A1O是四棱锥A1-BCDE的高.由图(1)知,A1O=22AB=22a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1-BCDE的体积为V=13S·A1O=13×a2×22a=26a3.由26a3=362,得a=6.巩固练习:1.设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β2.已知平面α,β和直线m,l,则下列命题中正确的是()A.若α⊥β,α∩β=m,l⊥m,则l⊥βB.若α∩β=m,l⊂α,l⊥m,则l⊥βC.若α⊥β,l⊂α,则l⊥βD.若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β3.在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1()A.平行B.共面C.垂直D.不垂直4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是()A.EF⊥平面αB.EF⊥平面βC.PQ⊥GED.PQ⊥FH5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α∥β;③若α⊥β,m⊥β,m⊄α,则m∥α;④若α⊥β,m∥α,则m⊥β.其中正确命题的个数为()A.1 B.2C.3 D.41.解析:选B对于选项A,两平面可能平行也可能相交;对于选项C,直线l可能在β内也可能平行于β;对于选项D,直线l可能在β内或平行于β或与β相交.2.解析:选D选项A缺少了条件:l⊂α;选项B缺少了条件:α⊥β;选项C缺少了条件:α∩β=m,l⊥m;选项D具备了面面垂直的性质定理的全条件.3.解析:选C如图所示,在四边形ABCD中,∵AB=BC,AD=CD.∴BD⊥AC.∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,∴BD⊥平面AA1C1C.又CC1⊂平面AA1C1C,∴BD⊥CC1,故选C.4.解析:选B因为EG⊥平面α,PQ⊂平面α,所以EG⊥PQ.若EF⊥平面β,则由PQ⊂平面β,得EF⊥PQ.又EG与EF为相交直线,所以PQ⊥平面EFHG,所以PQ⊥GH,故选B.5.解析:选B根据平面与平面垂直的性质知①正确;②中,α,β可能平行,也可能相交,不正确;③中,α⊥β,m⊥β,m⊄α时,只可能有m∥α,正确;④中,m与β的位置关系可能是m∥β或m⊂β或m与β相交,不正确.综上,可知正确命题的个数为2,故选B.6.如图,平面ABC⊥平面ABD,∠ACB=90°,CA=CB,△ABD是正三角形,O为AB中点,则图中直角三角形的个数为________.解析:∵CA=CB,O为AB的中点,∴CO⊥AB.又平面ABC⊥平面ABD,交线为AB,∴CO⊥平面ABD.∵OD⊂平面ABD,∴CO⊥OD,∴△COD为直角三角形.所以图中的直角三角形有△AOC,△COB,△ABC,△AOD,△BOD,△COD 共6个.答案:67.如图,直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD的长为________.解析:如图,连接BC,∵二角面α-l-β为直二面角,AC⊂α,且AC⊥l,∴AC⊥β.又BC⊂β,∴AC⊥BC,∴BC2=AB2-AC2=3,又BD⊥CD,∴CD=BC2-BD2= 2.答案: 28.已知m,n是直线,α,β,γ是平面,给出下列说法①若α⊥β,α∩β=m,n⊥m,则n⊥α或n⊥β;②若α∥β,α∩γ=m,β∩γ=n,则m∥n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α∩β=m,n∥m且n⊄α,n⊄β,则n∥α且n∥β.其中正确的说法序号是________(注:把你认为正确的说法的序号都填上).解析:①错,垂直于交线,不一定垂直平面;②对;③错,凡是平面内垂直于m的射影的直线,m都与它们垂直;④对.答案:②④9.如图:三棱锥P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△P AC是直角三角形,∠P AC=90°,∠ACP=30°,平面P AC⊥平面ABC.求证:平面P AB⊥平面PBC.证明:∵平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,P A⊥AC,∴P A ⊥平面ABC.又BC⊂平面ABC,∴P A⊥BC.又∵AB⊥BC,AB∩P A=A,AB⊂平面P AB,P A⊂平面P AB,∴BC⊥平面P AB.又BC⊂平面PBC,∴平面P AB⊥平面PBC.10.如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线EC与平面ABE所成角正弦值.解:(1)证明:∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,∴BC⊥平面ACDE.又AM⊂平面ACDE,∴BC⊥AM.∵四边形ACDE是正方形,∴AM⊥CE.又BC∩CE=C,∴AM⊥平面EBC.(2)取AB的中点F,连接CF,EF.∵EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,∴EA⊥平面ABC,∴EA⊥CF.又AC=BC,∴CF⊥AB.∵EA∩AB=A,∴CF⊥平面AEB,∴∠CEF即为直线EC与平面ABE所成的角.在Rt△CFE中,CF=2,FE=6,tan∠CEF=26=33.11.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是() A.相交B.平行C.异面D.相交或平行12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...,则在α内不存在...与β平行的直线D.若m,n不平行...,则m与n不可能...垂直于同一平面13.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β14.在三棱锥P-ABC中,平面P AC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为() A.2 3 B.27C.4 3 D.47参考答案:11.解析:选B∵圆柱的母线垂直于圆柱的底面,所作的垂线也垂直于底面,由线面垂直的性质定理可知,二者平行.12.解析:选D A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.13.解析:选D A中m,n可能为平行、垂直、异面直线;B中m,n可能为异面直线;C中m应与β中两条相交直线垂直时结论才成立.14.解析:选B连接CM,则由题意PC⊥平面ABC,可得PC⊥CM,所以PM=PC2+CM2,要求PM的最小值只需求出CM的最小值即可,在△ABC中,当CM⊥AB时CM有最小值,此时有CM=4×32=23,所以PM的最小值为27.15.如图,若边长为4和3与边长为4和2的两个矩形所在的平面互相垂直,则cos α∶cos β=________.解析:由题意,两个矩形的对角线长分别为5,25,所以cos α=525+4=529,cos β=2529,所以cos α∶cos β=5∶2.答案:5∶216.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.解析:设面外的点为A,面内的点为B,过点A作面α的垂线l,若点B恰为垂足,则所有过AB的平面均与α垂直,此时有无数个平面与α垂直;若点B不是垂足,则l与点B确定唯一平面β满足α⊥β.答案:1或无数17.如图,四棱锥P-ABCD的底面是边长为a的菱形,∠BCD=120°,平面PCD⊥平面ABCD,PC=a,PD=2a,E为P A的中点.求证:平面EDB⊥平面ABCD.证明:设AC∩BD=O,连接EO,则EO∥PC.∵PC=CD=a,PD=2a,∴PC2+CD2=PD2,∴PC⊥CD.∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,∴PC⊥平面ABCD,∴EO⊥平面ABCD.又EO⊂平面EDB,故有平面EDB⊥平面ABCD.18.如图所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,D是BC的中点,侧面BB1C1C⊥底面ABC.(1)求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于点M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)若截面MBC1⊥平面BB1C1C,则AM=MA1吗?请叙述你的判断理由.解:(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC.∵底面ABC⊥平面BB1C1C,底面ABC∩平面BB1C1C=BC,∴AD⊥平面BB1C1C.又CC1⊂平面BB1C1C,∴AD⊥CC1.(2)证明:延长B1A1与BM交于点N,连接C1N.∵AM=MA1,∴NA1=A1B1.∵A1C1=A1N=A1B1,∴C1N⊥B1C1,∴C1N⊥侧面BB1C1C.∴截面MBC1⊥侧面BB1C1C;(3)结论正确.证明如下:过M作ME⊥BC1于点E,连接DE. ∵截面MBC1⊥侧面BB1C1C,∴ME⊥侧面BB1C1C.又AD⊥侧面BB1C1C,∴ME∥AD,∴M,E,D,A四点共面.∵MA∥侧面BB1C1C,∴AM∥DE.∴四边形AMED是平方四边形,又AM∥CC1,∴DE∥CC1.∵BD=CD,∴DE=12CC1,∴AM=12CC1=12AA1.∴AM=MA1.。
直线与平面垂直、平面与平面垂直的性质课件(优质课)
在工程设计中的应用
机械设计
在机械设计中,直线与平面垂直、平面与平面垂直的性质对于确保机械部件的稳定性和精 确性至关重要。例如,在制造精密仪器或高精度机械设备时,需要严格控制各个部件之间 的垂直关系。
电子设备
在设计和制造电子设备如电视、电脑和手机时,需要利用直线与平面垂直、平面与平面垂 直的性质来确保设备的稳定性和可靠性。
C. 平行于同一条直线的两条直线一定 平行
基础习题
4、题目:下列说法正确的是( )
A.垂直于同一平面的两直线平行 B.平行于同一平面的两直线平行
C.若直线$a$不垂直于平面$beta$内的无数条直线,则$a$也不垂直于平 面$beta$ D.若直线$a$不垂直于平面$beta$,则直线$a$与平面$beta$ 有斜交
解析:根据空间线面位置关系的定义及判定定理得D正确.在A中,过 $a$上任一点 $P$作直线 $c/backslash/$ $a$,则 $c,b$相交或为异面直线,故A错误;在B中, 可取 $a/backslash/b$判断B错误;在C中,可取 $a,b$都垂直于第三个平面判断C 错误.故选D.
THANKS
直线与平面垂直的性质定理
性质定理一
如果一条直线与平面垂直, 那么这条直线与平面内的任 意一条直线都垂直。
性质定理二
如果一条直线与平面垂直, 那么这条直线上任意一点到 平面的距离都相等。
性质定理三
如果两条直线分别与同一 个平面垂直,那么这两条 直线平行。
Part
02
平面与平面垂直的性质
平面与平面垂直的定义
A. 若直线与平面有两个公共点,则该直线在平面内
进阶习题
B. 若直线 l 上有无数个点不在 平面 α 内,则 l ∥ α
直线与平面垂直的性质平面与平面垂直的性质
如图,在△ABC 中,∠ABC=90° ,D 是 AC 的中点,S 是 △ABC 所在平面外一点,且 SA=SB=SC.
(1)求证:SD⊥平面 ABC; (2)若 AB=BC,求证:BD⊥平面 SAC.
• [解析] (1)因为SA=SC,D是AC的中点,
• • • • • • • 所以SD⊥AC.在Rt△ABC中,AD=BD, 由已知SA=SB,所以△ADS≌△BDS, 所以SD⊥BD,又AC∩BD=D, 所以SD⊥平面ABC. (2)因为AB=BC,D为AC的中点, 所以BD⊥AC,由(1)知SD⊥BD, 又因为SD∩AC=D,所以BD⊥平面SAC.
4.正三棱锥的底面边长为 2,侧面均为直角三角形,则此 三棱锥的体积是________.
[ 答案]
2 3
[ 解析]
如图,由已知得 PA⊥PB,PA⊥PC,PB∩PC=P,
∴PA⊥平面 PBC. 又 PB⊥PC, PB=PC, BC=2, ∴PB=PC= 2. 1 ∴ VP - ABC = VA - PBC = 3 PA· S △ PBC 1 1 2 =3× 2×2× 2× 2= 3 .
• (3)判定定理
文字 语言 图形 语言 符号 语言 作用
垂线 ,则这两 一个平面过另一个平面的________
个平面垂直
l⊂β l⊥α,_______ ⇒α⊥β 垂直 判断两平面________
1.直线 l⊥平面 α,直线 m⊂α,则 l 与 m 不可能 ( A.平行 C.异面 B.相交 D.垂直
)
• [答案] A • [解析] ∵直线l⊥平面α,∴l与α相交,
• 又∵m⊂α,∴l与m相交或异面,由直线与平 面垂直的定义,可知l⊥m.故l与m不可能平 行.
直线、平面垂直的判定与性质
第五节 直线、平面垂直的判定与性质 一、基础知识1.直线与平面垂直(1)直线和平面垂直的定义:直线l 与平面α内的任意一条直线都垂直, 就说直线l 与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:⎣⎢⎡⎦⎥⎤❶如果一条直线与平面内再多(即无数条)的直线垂直,但这些直线不相交就不能说明这条直线与此平面垂直.2.平面与平面垂直的判定定理与性质定理[要求一平面只需过另一平面的垂线.] 二、常用结论直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.考点一直线与平面垂直的判定与性质[典例]如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂底面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.∵AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.∵PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂底面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,∵PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.[解题技法] 证明线面垂直的4种方法(1)线面垂直的判定定理:l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α.(2)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(3)性质:①a∥b,b⊥α⇒a⊥α,②α∥β,a⊥β⇒a⊥α.(4)α⊥γ,β⊥γ,α∩β=l⇒l⊥γ.(客观题可用)[口诀归纳]线面垂直的关键,定义来证最常见,判定定理也常用,它的意义要记清.平面之内两直线,两线相交于一点,面外还有一直线,垂直两线是条件.[题组训练]1.(2019·安徽知名示范高中联考)如图,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,AB1∩A1B =E,D为AC上的点,B1C∥平面A1BD.(1)求证:BD⊥平面A1ACC1;(2)若AB=1,且AC·AD=1,求三棱锥A-BCB1的体积.解:(1)证明:如图,连接ED,∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,∴B1C ∥ED , ∵E 为AB 1的中点, ∴D 为AC 的中点, ∵AB =BC ,∴BD ⊥AC .∵A 1A ⊥平面ABC ,BD ⊂平面ABC ,∴A 1A ⊥BD . 又∵A 1A ,AC 是平面A 1ACC 1内的两条相交直线, ∴BD ⊥平面A 1ACC 1.(2)由AB =1,得BC =BB 1=1,由(1)知AD =12AC ,又AC ·AD =1,∴AC 2=2,∴AC 2=2=AB 2+BC 2,∴AB ⊥BC , ∴S △ABC =12AB ·BC =12,∴V A -BCB 1=V B 1-ABC =13S △ABC ·BB 1=13×12×1=16. 2.如图,S 是Rt △ABC 所在平面外一点,且SA =SB =SC ,D 为斜边AC 的中点. (1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC .证明:(1)如图所示,取AB 的中点E ,连接SE ,DE , 在Rt △ABC 中,D ,E 分别为AC ,AB 的中点. ∴DE ∥BC ,∴DE ⊥AB , ∵SA =SB ,∴SE ⊥AB .又SE ∩DE =E ,∴AB ⊥平面SDE . 又SD ⊂平面SDE ,∴AB ⊥SD .在△SAC 中,∵SA =SC ,D 为AC 的中点,∴SD ⊥AC . 又AC ∩AB =A ,∴SD ⊥平面ABC . (2)∵AB =BC ,∴BD ⊥AC ,由(1)可知,SD ⊥平面ABC ,又BD ⊂平面ABC , ∴SD ⊥BD ,又SD ∩AC =D ,∴BD ⊥平面SAC .考点二 面面垂直的判定与性质[典例] (2018·江苏高考)在平行六面体ABCD -A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .[证明] (1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C ,所以AB ∥平面A 1B 1C . (2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .[解题技法] 证明面面垂直的2种方法[题组训练]1.(2019·武汉调研)如图,三棱锥P -ABC 中,底面ABC 是边长为2的正三角形,P A ⊥PC ,PB =2.求证:平面P AC ⊥平面ABC .证明:取AC 的中点O ,连接BO ,PO . 因为△ABC 是边长为2的正三角形,所以BO ⊥AC ,BO = 3.因为P A ⊥PC ,所以PO =12AC =1.因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ∩OP =O , 所以BO ⊥平面P AC . 又OB ⊂平面ABC , 所以平面P AC ⊥平面ABC .2.(2018·安徽淮北一中模拟)如图,四棱锥P -ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .证明:(1)取PC 的中点G ,连接FG ,EG ,∵F 为PD 的中点,G 为PC 的中点, ∴FG 为△CDP 的中位线, ∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点, ∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE , ∴四边形AEGF 是平行四边形,∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PEC .(2)∵P A =AD ,F 为PD 中点,∴AF ⊥PD , ∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD ,又∵CD ⊥AD ,AD ∩P A =A , ∴CD ⊥平面P AD , ∵AF ⊂平面P AD , ∴CD ⊥AF . 又PD ∩CD =D , ∴AF ⊥平面PCD . 由(1)知EG ∥AF , ∴EG ⊥平面PCD , 又EG ⊂平面PEC , ∴平面PEC ⊥平面PCD .[课时跟踪检测]A 级1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析:选C对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.2.(2019·湘东五校联考)已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β.其中正确的命题是()A.①④B.③④C.①②D.①③解析:选A对于①,若α∥β,m⊥α,l⊂β,则m⊥l,故①正确,排除B.对于④,若m∥l,m⊥α,则l⊥α,又l⊂β,所以α⊥β.故④正确.故选A.3.已知P A垂直于以AB为直径的圆所在的平面,C为圆上异于A,B两点的任一点,则下列关系不正确的是()A.P A⊥BC B.BC⊥平面P ACC.AC⊥PB D.PC⊥BC解析:选C由P A⊥平面ACB⇒P A⊥BC,故A不符合题意;由BC⊥P A,BC⊥AC,P A∩AC=A,可得BC⊥平面P AC,所以BC⊥PC,故B、D不符合题意;AC⊥PB显然不成立,故C符合题意.4.如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么点D在平面ABC内的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A因为AB⊥AC,BD⊥AC,AB∩BD=B,所以AC⊥平央ABD,又AC⊂平面ABC,所以平面ABC⊥平面ABD,所以点D在平面ABC内的射影H必在直线AB上.5.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析:选D因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,所以BC⊥平面P AE,又DF∥BC,则DF⊥平面P AE,从而平面PDF⊥平面P AE.因此选项B、C均正确.6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△P AC的边所在的直线中,与PC垂直的直线有________个;与AP垂直的直线有________个.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,又∵AP⊂平面P AC,∴AB⊥AP,与AP垂直的直线是AB.答案:3 17.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α∥β;②若α外的一条直线l与α内的一条直线平行,则l∥α;③设α∩β=l,若α内有一条直线垂直于l,则α⊥β;④直线l⊥α的充要条件是l与α内的两条直线垂直.其中所有的真命题的序号是________.解析:①正确;②正确;满足③的α与β不一定垂直,所以③错误;直线l⊥α的充要条件是l与α内的两条相交直线垂直,所以④错误.故所有的真命题的序号是①②.答案:①②8.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.解析:如图所示,因为AA1∥平面α,平面α∩平面AA1B1B=EH,所以AA1∥EH.同理AA1∥GF,所以EH∥GF,又ABC-A1B1C1是直三棱柱,易知EH=GF=AA1,所以四边形EFGH是平行四边形,故①正确;若平面α∥平面BB1C1C,由平面α∩平面A1B1C1=GH,平面BCC1B1∩平面A1B1C1=B1C1,知GH∥B1C1,而GH∥B1C1不一定成立,故②错误;由AA1⊥平面BCFE,结合AA1∥EH知EH⊥平面BCFE,又EH⊂平面α,所以平面α⊥平面BCFE,故③正确.答案:①③9.(2019·太原模拟)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD =60°,P A =PD =AD =2,点M 在线段PC 上,且PM =2MC ,N 为AD 的中点.(1)求证:AD ⊥平面PNB ;(2)若平面P AD ⊥平面ABCD ,求三棱锥P -NBM 的体积. 解: (1)证明:连接BD . ∵P A =PD ,N 为AD 的中点, ∴PN ⊥AD .又底面ABCD 是菱形,∠BAD =60°,∴△ABD 为等边三角形, ∴BN ⊥AD ,又PN ∩BN =N ,∴AD ⊥平面PNB . (2)∵P A =PD =AD =2,∴PN =NB = 3.又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PN ⊥AD ,∴PN ⊥平面ABCD , ∴PN ⊥NB ,∴S △PNB =12×3×3=32.∵AD ⊥平面PNB ,AD ∥BC , ∴BC ⊥平面PNB .又PM =2MC ,∴V P -NBM =V M -PNB =23V C -PNB =23×13×32×2=23. 10.如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .证明:(1)在直三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1, 在△ABC 中,因为D ,E 分别为AB ,BC 的中点. 所以DE ∥AC ,于是DE ∥A 1C 1,又因为DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F .(2)在直三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1, 因为A 1C 1⊂平面A 1B 1C 1,所以AA 1⊥A 1C 1,又因为A 1C 1⊥A 1B 1,A 1B 1∩AA 1=A 1,AA 1⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1, 所以A 1C 1⊥平面ABB 1A 1, 因为B 1D ⊂平面ABB 1A 1, 所以A 1C 1⊥B 1D ,又因为B 1D ⊥A 1F ,A 1C 1∩A 1F =A 1,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,所以B 1D ⊥平面A 1C 1F , 因为直线B 1D ⊂平面B 1DE , 所以平面B 1DE ⊥平面A 1C 1F .B 级1.(2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离. 解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB , 因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为AC ∩OB =O ,所以PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H ,又由(1)可得OP ⊥CH , 所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.2.(2019·河南中原名校质量考评)如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F 分别是CD ,PC 的中点.求证:(1)BE ∥平面P AD ; (2)平面BEF ⊥平面PCD .证明:(1)∵AB ∥CD ,CD =2AB ,E 是CD 的中点, ∴AB ∥DE 且AB =DE ,∴四边形ABED为平行四边形,∴AD∥BE,又BE⊄平面P AD,AD⊂平面P AD,∴BE∥平面P AD.(2)∵AB⊥AD,∴四边形ABED为矩形,∴BE⊥CD,AD⊥CD,∵平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,P A⊥AD,∴P A⊥底面ABCD,∴P A⊥CD,又P A∩AD=A,∴CD⊥平面P AD,∴CD⊥PD,∵E,F分别是CD,PC的中点,∴PD∥EF,∴CD⊥EF,又EF∩BE=E,∴CD⊥平面BEF,∵CD⊂平面PCD,∴平面BEF⊥平面PCD.。
①定义法:如果一条直线与一个平面内的任意一条直线都垂直,则称
方法规律总结
1.垂直关系的转化
熟练掌握“线线垂直”、“面面垂直”间的转化 条件是解决这类问题的关键. 在证明两平面垂直时一般先从现有的直线中寻找 平面的垂线;如有平面垂直时,一般要用性质定
理,在一个平面内作交线的垂线,使之转化为线
面垂直,然后进一步转化为线线垂直.
2.证明线面垂直的方法
(1)线面垂直的定义:a与α 内任何直线都垂直a ⊥α ; (2)判定定理1: m、n α ,m∩n=A l⊥m,l⊥n
§9.4
直线与平面垂直、平面与平面垂直
要点梳理
1.直线与平面垂直 (1)判定直线和平面垂直的方法 ①定义法:如果一条直线与一个平面内的任意一 条直线都垂直,则称该直线与该平面垂直. ②利用判定定理:一条直线和一个平面内的两条 相交 直线都垂直,则该直线和此平面垂直.
③推论:如果在两条平行直线中,有一条垂直于 一个平面,那么另一条直线也 垂直这个平面.
基础自测
1.直线a不垂直于平面α ,则α 内与a垂直的直线有 无数条 .
2.给出下列四个命题:
①若直线垂直于平面内的两条直线,则这条直线 与平面垂直;
②若直线与平面内的任意一条直线都垂直,则这
条直线与平面垂直; ③若直线垂直于梯形的两腰所在的直线,则这条
直线垂直于两底边所在的直线;
④若直线垂直于梯形的两底边所在的直线,则这 条直线垂直于两腰所在的直线. 其中正确的命题共有 个.
①② 论中成立的序号是
.
①面PAB⊥面PBC;②面PAB⊥面PAD; ③面PAB⊥面PCD;④面PAB⊥面PAC.
典型例题
深度剖析
【例2】如图,在斜边为AB的Rt△ABC中,过A作PA⊥
平面ABC,AM⊥PB于M,AN⊥PC于N.求证: (1)BC⊥平面PAC; (2)PB⊥平面AMN.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α a
β
ml
课堂练习
•讲学槁练习
例2 如图,四棱锥P-ABCD的底面是矩形,
AB=2, BC ,侧2 面PAB是等边三角形,
且侧面PAB⊥底面ABCD. (1)证明:侧面PAB⊥侧面PBC;
(2)求侧棱PC与底面ABCD所成的角.
P
A
D
E
B
C
α
A
B β
如果两个平面互相垂直,那么经过一 个平面内一点且垂直于另一个平面的直 线,必在这个平面内.
α
A
B β
例3:对于三个平面α、β、γ,如果三
个平面二二垂直,且 l ,求证:
直线l ⊥面γ
β l α
b
aγ
例4 如图,已知α⊥β,l⊥β,
l ,试判断直线l与平面α的位置关
系,并说明理由.2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
α
β
思考3:如图,长方体ABCD—A1B1C1D1中, 平面A1ADD1与平面ABCD垂直,其交线为
AD,直线A1A,D1D都在平面A1ADD1内,且 都与交线AD垂直,这两条直线与平面
ABCD垂直吗? C1
D1
B1
A1
C
D
B
A
2、定理 若两个平面互相垂直,则在 一个平面内垂直交线的直线与另一个 平面垂直.
β ,l , m, l m l .
D
B
A
α
C
知识探究(四)平面与平面垂直的性质探究
思考1:若α⊥β,过平面α内一点A作 平面β的垂线,垂足为B,那么点B在什 么位置?说明你的理由.
l
α
β
例1 如图,已知 l,CA ,
于点A,CB 于点B,a , a AB,
求证:a // l .
C β
B
α
l
A
a
PA
例2 已知 PA 矩形ABCD平面,M、N分 别是AB、PC的中点,求证(1)MN CD;
(2)若 PDA 45o,求证:MN面PCD
P
A M B
E N
D
C
问题提出
21.平面与平面垂直的定义是什么? 如何判定平面与平面垂直?
定义和判定定理
2.平面与平面垂直的判定定理,解 决了两个平面垂直的条件问题;反之, 在平面与平面垂直的条件下,能得到哪 些结论?
知识探究(三)平面与平面垂直的性质定理
思考1:如果平面α与平面β互相垂直, 直线l在平面α内,那么直线l与平面β的 位置关系有哪几种可能?
问题提出
1 1.直线与平面垂直的定义是什么?如 何判定直线与平面垂直?
2.直线与平面垂直的判定定理,解决 了直线与平面垂直的条件问题;反之, 在直线与平面垂直的条件下,能得到哪 些结论?
知识探究(一)直线与平面垂直的性质定理
思考1:如图,长方体ABCD—A1B1C1D1中, 棱AA1,BB1,CC1,DD1所在直线与底面 ABCD的位置关系如何?它们彼此之间具
有什么位置关系? C1
D1
B1
A1
C
D
B
A
思考2:如果直线a,b都垂直于同一条直 线l,那么直线a,b的位置关系如何?
l ab
l ab
b
l
a
思考3:一个平面的垂线有多少条?这些 直线彼此之间具有什么位置关系?
思考2:设l为直线,α,β为平面,若 l⊥α,α//β,则l与β的位置关系如何? 为什么?