传感器技术ppt课件
合集下载
《传感器介绍》课件
压力传感器
用于测量液体或气体的压力, 广泛应用于汽车、工业和医疗 设备。
光线传感器
测量光的强度和光谱,用于照 明、自动化和电子设备。
位置传感器
检测物体的位置和运动,用于 机器人、船舶和航空航天领域。
传感器如何工作?
1
传感器的基本原理
传感器利用物理、化学或其他原理感知并测量外部量,如电阻、电流或频率。
什么是传感器?
传感器是一种能够感知并测量外部物理量、化学量或其他特定信息的器件。 它们可靠地将这些信息转换为与之相关的电信号或数字信号,用于监测、控 制和应用。
传感器的应用
温度传感器
用于监测和控制温度,广泛应 用于工业、医疗和家居领域。
湿度传感器
测量空气中的湿度,用于气象、 农业和建筑领域的监测和控制。
1 传感器的作用
2 传感器的应用
传感器起着感知和测量外部信息的关键作用, 为现实世界与数字世界的交互提供基础。
传感器应用广泛,涵盖温度、湿度、压力、 光线等多个领域,为各行各业提供关键数据。
3 传感器的原理
传感器基于不同的物理或化学原理工作,将 外部信息转换为电信号或数字信号。
4 传感器的未来
传感器的发展将继续创新和突破,促进科技 和社会的进步与发展。
传感器的未来发展
传感器的发展趋势
新型传感器技术的出现,如纳 米传感器和柔性传感器,将拓 展传感器应用的边界。
传感器的应用前景
智能城市、医疗健康、工业自 动化等领域将成为传感器应用 的重点开发方向。
传感器的未来发展方向
传感器将更加小型化、智能化, 并融合其他技术,实现更广泛 的应用和更高的性能。
总结
Байду номын сангаас
2024版《智能传感器》PPT课件
数据融合与校准策略
多传感器数据融合
将来自多个传感器的数据进行融 合处理,以提高测量精度和可靠 性。常用的数据融合方法包括加
权平均、卡尔曼滤波等。
传感器校准
对传感器的输出进行校准,以消除 传感器本身的误差。常用的校准方 法包括零点校准、量程校准等。
环境因素补偿
考虑环境因素对传感器输出的影响, 如温度、湿度等,对传感器输出进 行补偿,以提高测量精度。
政策法规环境分析
政策支持
各国政府纷纷出台相关政策,支持智能传感器产业的发展,包括 财政补贴、税收优惠、研发支持等。
法规标准
为了保障智能传感器的质量和安全,各国纷纷制定相关法规和标准, 规范市场秩序,推动产业健康发展。
国际贸易环境
随着全球经济一体化的深入发展,智能传感器产业面临更加开放的 国际贸易环境,同时也面临着更加激烈的国际竞争。
网络通信实现方法
嵌入式系统网络通信实现
通过嵌入式系统中的网络接口模块 和相应的网络通信协议栈实现智能
传感器之间的网络通信。
自定义网络通信实现
借助物联网平台提供的网络通信功 能,实现智能传感器与物联网平台
之间的数据交互和远程控制。
物联网平台网络通信实现
通过云平台提供的API接口和网络 通信服务,实现智能传感器与云平 台之间的数据交互和协同处理。
《智能传感器》PPT课件
contents
目录
• 智能传感器概述 • 智能传感器工作原理与分类 • 智能传感器信号处理技术 • 智能传感器接口电路设计与实践 • 智能传感器网络通信协议及实现 • 智能传感器性能指标评估方法 • 智能传感器应用案例分析 • 智能传感器未来发展趋势预测
01
智能传感器概述
传感器技术 PPT课件
•传感器节点被用于各种不同的应用中,因此节点硬件和软件的设计必须
具有灵活性和扩展性
•节点的硬件设计需满足一定的标准接口,例如节点和传感板的接口统 一有利于给节点安装上不同功能的传感器
•软件的设计必须是可剪裁的,能够根据不同应用的需求,安装不同功能
的软件模块
大规模长时间部署传感器的设计需求
鲁棒性
•鲁棒性是实现传感器网络长时间部署的重要保障
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
号和通过数字信号,选择是否需要外部模数转 换器和额外的校准技术。
常用传感器及其关键特性
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
3.5 硬件平台
微处理器
微处理器是无线传感节点中负责计算的核心 ,目前 的微处理器芯片同时也集成了内存、闪存、模数转
低功耗
•在硬件设计上采用低功耗芯片
例如TelosB节点使用的微处理器,在正常工作状态下功率为3mW,而一
般的计算机的功率为200到300W
•软件节能策略来实现节能
软件节能策略的核心就是尽量使节点在不需要工作的时候进入低
功耗模式,仅在需要工作的时候进入正常状态
大规模长时间部署传感器的设计需求
灵活性与扩展性
•通信芯片的传输距离是选择传感节点的重要指标。
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
发射功率越大,接受灵敏度越高,信号传输距离越远。
•常用通信芯片: •CC1000:可工作在433MHz,868MHz和915MHz;
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
具有灵活性和扩展性
•节点的硬件设计需满足一定的标准接口,例如节点和传感板的接口统 一有利于给节点安装上不同功能的传感器
•软件的设计必须是可剪裁的,能够根据不同应用的需求,安装不同功能
的软件模块
大规模长时间部署传感器的设计需求
鲁棒性
•鲁棒性是实现传感器网络长时间部署的重要保障
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
号和通过数字信号,选择是否需要外部模数转 换器和额外的校准技术。
常用传感器及其关键特性
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
3.5 硬件平台
微处理器
微处理器是无线传感节点中负责计算的核心 ,目前 的微处理器芯片同时也集成了内存、闪存、模数转
低功耗
•在硬件设计上采用低功耗芯片
例如TelosB节点使用的微处理器,在正常工作状态下功率为3mW,而一
般的计算机的功率为200到300W
•软件节能策略来实现节能
软件节能策略的核心就是尽量使节点在不需要工作的时候进入低
功耗模式,仅在需要工作的时候进入正常状态
大规模长时间部署传感器的设计需求
灵活性与扩展性
•通信芯片的传输距离是选择传感节点的重要指标。
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
发射功率越大,接受灵敏度越高,信号传输距离越远。
•常用通信芯片: •CC1000:可工作在433MHz,868MHz和915MHz;
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
《认识常见的传感器》课件
传感器在物联网中的应用
物联网传感器
物联网的发展离不开传感器技术的支持,传感器在智能家居、智能交通、智能农业等领 域的应用越来越广泛,为人们的生活和工作带来了便利。
物联网传感器发展趋势
随着物联网技术的不断进步,传感器将朝着更低功耗、更小体积、更高可靠性和更低成 本的方向发展。
传感器与其他技术的融合发展
详细描述
传感器可以监测人体的血压、血糖、 血氧饱和度等生理参数,以及检测癌 症标志物、病毒等,为医生提供快速 准确的诊断结果。
智能家居
总结词
在智能家居领域,传感器用于实现智能化控制和提升居住体验。
详细描述
传感器可以检测室内温度、湿度、光照、空气质量等环境参数,以及家庭成员的行动和习惯,实现智能化的家居 环境调节和节能控制。
《认识常见的传感器 》ppt课件
目录
• 传感器概述 • 常见传感器介绍 • 传感器的工作原理与特性 • 传感器的应用领域 • 未来传感器技术展望
01 传感器概述
传感器的定义与分类
定义
传感器是一种检测装置,能感受到被测量的信息,并能将感 受到的信息,按一定规律变换成为电信号或其他所需形式的 信息输出,以满足信息的传输、处理、存储、显示、记录和 控制等要求。
03 传感器的工作原理与特性
传感器的转换原理
电阻式传感器
利用电阻随环境变化而 变化的特性,将非电量 转换为电信号。
电容式传感器
利用电容器极板间电容 随环境变化而变化的特 性,将非电量转换为电 信号。
电感式传感器
利用线圈的电感随环境 变化而变化的特性,将 非电量转换为电信号。
磁电式传感器
利用磁电感应原理,将 非电量转换为电信号。
总结词
传感器原理及应用PPT教程课件专用
湿度传感器
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
传感器技术全套课件
A
T
hf
I G
B T0 热电偶
mV
光电池 R R U0
f
Q
+ –
+ –
+ –
+ –
+ –
RT
R0
压电传感器
Ui 热敏电阻传感器
1.3 传感器的分类与要求分类
一.分类 1.按输入量分类 常用的有机、光、电和化学等传感器。 例如:位移、速度、加速度、力、温度和流量传感 器等 2. 按输出量分类 参数式:电阻、电感、电容、频率和离子传感器 发电式:压电式、霍尔式、光电和热电式传感器 3. 按输出信号的性质分类 模拟式传感器和数字式传感器。
人与机器的机能对应关系图
外 界 对 象
感官
人脑
肢体
传感器
微机
执行器
例2 粮仓温度、湿度检测
无论是金属粮仓还是土仓,为防止霉变,粮 食都是分层存放,仓内温度和湿度不能过高,为 此,需在各层安放温湿度传感器进行检测。装有 温湿度探头的粮仓示意图如下。
将各层探头输出接至温湿度巡检仪上,通过 巡检仪监视器监视各点温湿度情况。通过通风口 保持温湿度在要求范围内。
二. 一般要求
1、稳定性、可靠性 一般用平均无故障时间来衡量稳定性、可靠性。 在计量、工业生产等领域中稳定性、可靠性至关重 要。 2、静态精度 测静态量,传感器精度应满足系统的精度要求。 3、动态性能 测动态量,如响应速度、工作频率、稳定时间等。 4、量程 测量被测量的范围。一般量程越大,精度越低。
用辐射温度计测量热轧带钢表面温度的方法巳被广泛 采用。从加热炉出来的钢坯最后到卷取机之前的整个 轧制线上,如加热炉出口、粗轧机的入口和出口、精 轧机的入口和出口以及在卷取机之前都设有辐射温度 计,用以测量各阶段带钢的表面温度。并用此温度信 号来控制轧制速度、轧辊压下力和冷却水流量等。
(2024年)智能传感器PPT课件
2024/3/26
8
信号调理电路
信号调理电路定义
指将敏感元件输出的微弱信号进 行放大、滤波、转换等处理,以 便于后续电路或系统处理的电路
。
2024/3/26
信号调理电路功能
包括放大、滤波、隔离、转换等, 以提高信号的信噪比和抗干扰能力 ,保证信号的稳定性和可靠性。
信号调理电路类型
根据具体需求,可采用运算放大器 、仪表放大器、隔离放大器、滤波 器、模数转换器等不同类型的电路 。
接口技术标准
常见的接口标准包括I2C、SPI、UART等,这些标 准定义了数据传输的格式、速率、时序等参数, 以确保数据的可靠传输和设备的互操作性。
10
03
典型智能传感器介绍
2024/3/26
11
温度智能传感器
01
02
03
工作原理
利用物质随温度变化而变 化的特性,将温度转换为 可测量的电信号。
2024/3/26
远程医疗
通过智能传感器采集患者的生理数据并远程传输给医生,实现远程 诊断和治疗,提高医疗服务的便捷性和效率。
19
环境保护领域应用
2024/3/26
空气质量监测
智能传感器可以实时监测空气中的PM2.5、甲醛等有害物质的含 量,为环境保护和治理提供依据。
水质监测
利用智能传感器监测水体中的PH值、溶解氧、重金属等参数, 保障水资源的安全和可持续利用。
对采集到的数据进行预处理和分析
智能传感器应用实验
2024/3/26
30
实验内容和步骤
设计并实现一个基于 智能传感器的应用系 统
分析实验结果并撰写 实验报告
2024/3/26
对系统进行测试和调 试
传感器PPT课件
中的性能。
阶跃响应
传感器对阶跃输入信号的响应 特性,反映传感器的动态跟踪
能力。
阻尼比
描述传感器动态系统阻尼特性 的参数,影响传感器的动态稳
定性。
固有频率
传感器动态系统的固有振动频 率,反映传感器对动态信号的
响应速度。
环境适应性指标评价
温度稳定性
传感器在不同温度下的输出稳 定性,反映传感器对温度变化
降低传感器制造成本,提高可靠性和 寿命是当前面临的挑战。
未来发展感器研究
探索新型传感材料,提高传感器的灵敏度 和响应速度。
借鉴生物感知机制,研发仿生传感器,拓 展应用领域。
多传感器融合技术
智能化传感器网络
利用多传感器融合技术,提高测量精度和 可靠性。
构建智能化传感器网络,实现传感器之间 的协同工作和自组织能力。
、电阻等。
测量电路对转换元件输出的电信 号进行放大、滤波、转换等处理 ,以便于后续的数据采集、传输
和处理。
信号转换与处理
信号转换
将传感器输出的模拟信号转换为数字信号,以便于计算机等数字设备进行处理。常见的信 号转换方式有A/D转换和V/F转换等。
信号处理
对传感器输出的信号进行放大、滤波、线性化等处理,以提高信号的信噪比和抗干扰能力 。常见的信号处理方式有放大电路、滤波电路和线性化电路等。
分类
根据输入物理量可分为温度传感器、压力传感器、位移传感器、速度传感器、 加速度传感器、光线传感器等。
发展历程及现状
发展历程
传感器的历史可以追溯到20世纪初,当时主要应用于军事领域。随着科技的不断进步,传感器逐渐应 用于民用领域,如工业自动化、环境监测、医疗设备等。近年来,随着物联网、人工智能等技术的快 速发展,传感器技术也取得了巨大的进步。
阶跃响应
传感器对阶跃输入信号的响应 特性,反映传感器的动态跟踪
能力。
阻尼比
描述传感器动态系统阻尼特性 的参数,影响传感器的动态稳
定性。
固有频率
传感器动态系统的固有振动频 率,反映传感器对动态信号的
响应速度。
环境适应性指标评价
温度稳定性
传感器在不同温度下的输出稳 定性,反映传感器对温度变化
降低传感器制造成本,提高可靠性和 寿命是当前面临的挑战。
未来发展感器研究
探索新型传感材料,提高传感器的灵敏度 和响应速度。
借鉴生物感知机制,研发仿生传感器,拓 展应用领域。
多传感器融合技术
智能化传感器网络
利用多传感器融合技术,提高测量精度和 可靠性。
构建智能化传感器网络,实现传感器之间 的协同工作和自组织能力。
、电阻等。
测量电路对转换元件输出的电信 号进行放大、滤波、转换等处理 ,以便于后续的数据采集、传输
和处理。
信号转换与处理
信号转换
将传感器输出的模拟信号转换为数字信号,以便于计算机等数字设备进行处理。常见的信 号转换方式有A/D转换和V/F转换等。
信号处理
对传感器输出的信号进行放大、滤波、线性化等处理,以提高信号的信噪比和抗干扰能力 。常见的信号处理方式有放大电路、滤波电路和线性化电路等。
分类
根据输入物理量可分为温度传感器、压力传感器、位移传感器、速度传感器、 加速度传感器、光线传感器等。
发展历程及现状
发展历程
传感器的历史可以追溯到20世纪初,当时主要应用于军事领域。随着科技的不断进步,传感器逐渐应 用于民用领域,如工业自动化、环境监测、医疗设备等。近年来,随着物联网、人工智能等技术的快 速发展,传感器技术也取得了巨大的进步。
认识传感器ppt课件
分辨力越小,表明传感器检测非电量的能力越 强,分辨力的高低从某个侧面反映了传感器的 精度。
(4)迟滞 迟滞反映传感器正向特性与反向特性不一致的
程度。产生这种现象的原因是由于传感器的机 械部分不可避免地存在间隙、摩擦及松动。
图1-12 迟滞特性
(5)重复性
重复性是指传感器输入量按同一方向作全量程连续 多次测量时所得输出-输入特性曲线不重合的程度。 它是反映传感器精密度的一个指标,产生的原因与迟 滞性基本相同,重复性越好,误差越小。
(a) 雷达波探测器 外热成像生命探测仪
(b) 视频探测器 (c) 音频探测器 (d) 红 图1-6 生命探测设备
4.农业生产中使用的传感器
图1-7 塑料大棚
5.汽车中使用的传感器
图1-8 汽车中使用的部分传感器
二、传感器的概念与定义
1.传感器的概念 传感器是一种能把特定被测量的信息按
一定规律转换成某种可用信号并输出的器件或 装置,以满足信息的传输、处理、记录、显示 和控制等要求。
2.传感器的动态特性
传感器要检测的输入信号是随时间而变化的。 传感器应能跟踪输入信号的变化,这样才能获 得正确的输出信号;如果输入信号变化太快, 传感器就可能跟踪不上,这种跟踪输入信号的 特性就是传感器的响应特性,即为动态特性。 表征传感器动态特性的主要参数有响应速度、 频率响应。
(1)响应速度
是将感受的被测的量转换成电信号的部分。
将电信号转换为便于显示、记录、处理和控制
的有用电信号。有用电信号有很多形式,如电
压、电流、频率等。随着科学技术的发展,输
出信号将来也可能是光信号或其他的信号。
传感器的特性有
和
之分。
主要有线性度、灵敏度、分辨力和迟滞、重复
(4)迟滞 迟滞反映传感器正向特性与反向特性不一致的
程度。产生这种现象的原因是由于传感器的机 械部分不可避免地存在间隙、摩擦及松动。
图1-12 迟滞特性
(5)重复性
重复性是指传感器输入量按同一方向作全量程连续 多次测量时所得输出-输入特性曲线不重合的程度。 它是反映传感器精密度的一个指标,产生的原因与迟 滞性基本相同,重复性越好,误差越小。
(a) 雷达波探测器 外热成像生命探测仪
(b) 视频探测器 (c) 音频探测器 (d) 红 图1-6 生命探测设备
4.农业生产中使用的传感器
图1-7 塑料大棚
5.汽车中使用的传感器
图1-8 汽车中使用的部分传感器
二、传感器的概念与定义
1.传感器的概念 传感器是一种能把特定被测量的信息按
一定规律转换成某种可用信号并输出的器件或 装置,以满足信息的传输、处理、记录、显示 和控制等要求。
2.传感器的动态特性
传感器要检测的输入信号是随时间而变化的。 传感器应能跟踪输入信号的变化,这样才能获 得正确的输出信号;如果输入信号变化太快, 传感器就可能跟踪不上,这种跟踪输入信号的 特性就是传感器的响应特性,即为动态特性。 表征传感器动态特性的主要参数有响应速度、 频率响应。
(1)响应速度
是将感受的被测的量转换成电信号的部分。
将电信号转换为便于显示、记录、处理和控制
的有用电信号。有用电信号有很多形式,如电
压、电流、频率等。随着科学技术的发展,输
出信号将来也可能是光信号或其他的信号。
传感器的特性有
和
之分。
主要有线性度、灵敏度、分辨力和迟滞、重复
传感器与检测技术ppt课件第一章
2024/2/29
16
1.2检测技术理论基础
1.2.2 测量方法
1) 直接测量、间接测量和组合测量 (又称联立 测量)。经过求解联立方程组,才能得到被测物理量的最后
结果,则称这样的测量为组合测量。
2) 偏差式测量、零位式测量与微差式测量
3) 等精度测量与非等精度测量
4) 静态测量与动态测量
2024/2/29
2024/2/29
23
2024/2/29
3
1.1.3 传感器基本特性
当传感器的输入信号是常量,不随时间变化时,其 输入输出关系特性称为静态特性。
传感器的基本特性是指系统的输入与输出关系特性 ,即传感器系统的输出信号y(t)和输入信号(被测 量)x(t)之间的关系,传感器系统示意图如下图所 示。
2024/2/29
4
1.1.3 传感器基本特性
2.传感器的分类
(1)按照其工作原理,传感器可分为电参数式(如电阻式、 电感式和电容式)传感器、压电式传感器、光电式传感器及 热电式传感器等。
(2)按照其被测量对象,传感器可分为力、位移、速度、 加速度传感器等。常见的被测物理量有机械量、声、磁、温 度和光等。
(3)按照其结构,传感器可分为结构型、物性型和复合型 传感器。物性型传感器是依靠敏感元件材料本身物理性质的 变化来实现信号变换,如:水银温度计。结构型传感器是依 靠传感器结构参数的变化实现信号变换,如:电容式传感器。
敏感元件输出的物理量转换成适于传输或测量电信号 的元件。
测量电路(measuring circuit): 将转换
元件输出的电信号进行进一步转换和处理的部分,如 放大、滤波、线性化、补偿等,以获得更好的品质特 性,便于后续电路实现显示、记录、处理及控制等功 能。
传感器技术ppt课件
• 电压衰减---是接近开关接通负载后(负载电流为Ie时)开关两端的电压值; • 空载电流---是指在没有负载时,测量所得的传感器自身所消耗的电流; • 剩余电流(漏电流)---是接近开关断开时,流过负载的电流;
8
第一章 感应式接近开关
输出电路:(直流三线型)
NPN型
棕色(BN)
PNP型
棕色(BN)
21
目录
第三章 光电开关
第一节、简 介 第二节、漫反射型光电开关 第三节、反光板型光电开关 第四节、对射型光电开关
22
第三章 光电开关
第一节 简介 光电开关利用光强度的变化转换成电信号的变化来实现控制的
目的。
23
第三章 光电开关
基本工作原理
目标物
发射器
控制电路
1 0
1
0
接收器
信号处理电路 输出电路
第三节 热电阻 热电阻常用于低温测量(测温范围:-200-500℃)。
工作原理: 热电阻是由一种对温度非常敏感的金属材料构成。自身电阻随温度 变化而变化(电阻增加或减少),输出信号:电阻。
电气符号
39
第四章 温度传感器
第三节 热电阻 分类:
热电阻分正温度系数和负温度系数。 正温度系数:热电阻 阻值随着温度的升高而增大; 负温度系数:热电阻 阻值随着温度的升高而减小;
近开关的工作电压及输出电流需 通过计算确定串联开关的数量。
总压降 U总降= U降 * n; 额定电流Ie串= Ie - Io * n
U降----单个接近开关的电压衰减值; Ie----单个接近开关的额定电流;
n----串联接近开关数量;
13
第一章 感应式接近开关
多开关并联接线图:
8
第一章 感应式接近开关
输出电路:(直流三线型)
NPN型
棕色(BN)
PNP型
棕色(BN)
21
目录
第三章 光电开关
第一节、简 介 第二节、漫反射型光电开关 第三节、反光板型光电开关 第四节、对射型光电开关
22
第三章 光电开关
第一节 简介 光电开关利用光强度的变化转换成电信号的变化来实现控制的
目的。
23
第三章 光电开关
基本工作原理
目标物
发射器
控制电路
1 0
1
0
接收器
信号处理电路 输出电路
第三节 热电阻 热电阻常用于低温测量(测温范围:-200-500℃)。
工作原理: 热电阻是由一种对温度非常敏感的金属材料构成。自身电阻随温度 变化而变化(电阻增加或减少),输出信号:电阻。
电气符号
39
第四章 温度传感器
第三节 热电阻 分类:
热电阻分正温度系数和负温度系数。 正温度系数:热电阻 阻值随着温度的升高而增大; 负温度系数:热电阻 阻值随着温度的升高而减小;
近开关的工作电压及输出电流需 通过计算确定串联开关的数量。
总压降 U总降= U降 * n; 额定电流Ie串= Ie - Io * n
U降----单个接近开关的电压衰减值; Ie----单个接近开关的额定电流;
n----串联接近开关数量;
13
第一章 感应式接近开关
多开关并联接线图:
《传感器技术及应用》课件——初识传感器
下图为国外各大传感器厂商及产品类型、领域
三 传感器国内外市场
下图为国内各大传感器厂商及产品领域
四 产业上下游
根据中国高端芯片联盟和中国信通院发布关于智能传感器的产业地图,产业链具体包括研 发、设计、制造、封装、测试、软件、芯片及解决方பைடு நூலகம்、系统/应用这八个环节,各环节的技术壁 垒高。
四 产业上下游
三 传感器国内外市场
2019年国内企业产值约为37亿美元,预计 2022年国内产值将达到 95亿美元,复合年均增长率 为37%。根据中国信息通信院预测,2022年中国智能传感器市场规模将达到 137 亿美元,意味 着本土化率将从 2015 年的 13%提升到 2022年的 46%。
三 传感器国内外市场
(2 ) 汽车电子:智能驾驶 ADAS 系统带动摄像头和雷达市场增长。预计 到 2022 年,国内摄像头市场规模将达278 亿元,毫米波雷达市场规模将达 371 亿元,激光雷达市场规模将达 275 亿元。
(3 ) 工业电子:智能机器人传感器全球市场规模增长速度快,2022年将 超 207 亿美元。
(4 ) 医疗 电子:医疗传感器市场空间巨大,2024 年全球市场规模增至 185 亿美元。
全球市场的众多产品中,CMOS图像传感器市占率最高,占据全球近 45%的市场份额,其次 是指纹传感器、压力传感器、射频识别传感器,三者市占率均为 9%。
三 传感器国内外市场
根据 Global Market Insights 最新的数据统计, 2015 年,美洲地区占据了全球市场的最大份 额,亚太地区(中国、日本、韩国、印度、澳大利亚)位居第二,占领了 23%的市场份额。美洲 地区预计在 2022 年前将一直主导智能传感器市场。而亚太地区由于汽车和消费电子领域等下游 产业的带动,则成为市场规模增长最快的地区。
三 传感器国内外市场
下图为国内各大传感器厂商及产品领域
四 产业上下游
根据中国高端芯片联盟和中国信通院发布关于智能传感器的产业地图,产业链具体包括研 发、设计、制造、封装、测试、软件、芯片及解决方பைடு நூலகம்、系统/应用这八个环节,各环节的技术壁 垒高。
四 产业上下游
三 传感器国内外市场
2019年国内企业产值约为37亿美元,预计 2022年国内产值将达到 95亿美元,复合年均增长率 为37%。根据中国信息通信院预测,2022年中国智能传感器市场规模将达到 137 亿美元,意味 着本土化率将从 2015 年的 13%提升到 2022年的 46%。
三 传感器国内外市场
(2 ) 汽车电子:智能驾驶 ADAS 系统带动摄像头和雷达市场增长。预计 到 2022 年,国内摄像头市场规模将达278 亿元,毫米波雷达市场规模将达 371 亿元,激光雷达市场规模将达 275 亿元。
(3 ) 工业电子:智能机器人传感器全球市场规模增长速度快,2022年将 超 207 亿美元。
(4 ) 医疗 电子:医疗传感器市场空间巨大,2024 年全球市场规模增至 185 亿美元。
全球市场的众多产品中,CMOS图像传感器市占率最高,占据全球近 45%的市场份额,其次 是指纹传感器、压力传感器、射频识别传感器,三者市占率均为 9%。
三 传感器国内外市场
根据 Global Market Insights 最新的数据统计, 2015 年,美洲地区占据了全球市场的最大份 额,亚太地区(中国、日本、韩国、印度、澳大利亚)位居第二,占领了 23%的市场份额。美洲 地区预计在 2022 年前将一直主导智能传感器市场。而亚太地区由于汽车和消费电子领域等下游 产业的带动,则成为市场规模增长最快的地区。
传感器ppt课件
广泛应用。 C)检测技术和装置是自动化系统中不可缺少的组
成部分。 D)检测技术的完善和发展推动着现代科学技术的
进步。
ppt精选版
31
二、发展方向
1、不断提高检测系统的测量精度、量程范 围、延长使用寿命,提高可靠性;
2、应用新技术和新的物理效应,扩大检测 领域;
3、发展集成化,功能化的传感器; 4、采用计算机技术,使检测技术智能化; 5、发展网络化传感器及检测系统。
检测系统的工程应用
在工程领域,科学实验、产品开发、生产监 督、质量控制等,都离不开检测系统。检测系统 应用涉及到航天、机械、电力、石化和海洋运输 等每一个工程领域。
ppt精选版
20
1、工业自动化中的应用
a)机械手、机器人中的传感器
转动/移动位置传感器、力传感器、视觉传感器、听 觉传感器、接近距离传感器、触觉传感器、热觉传感器、 嗅觉传感器。
ppt精选版
32
§1.3传感检测系统基本特性的评价指标 一、传感检测系统的基本特性 传感器特性主要是指输出与输入之间的关系。
静态特性:被测量不随时间变化或变化很慢时, 检测系统的输入和输出量都与时间无关。
动态特性:输入量和输出量都随时间变化较快, 是一个含有时间变量的微分方程式。检测系统对 快速变化的被测量的响应特性称为动态特性。
⊿Rmax2
⊿Rmax1
Rmax10% 0
R
YFS
或:
0
X
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
2~310% 0
R
YFS
ppt精选版
43
6、稳定性:
传感器的稳定性一般是指长期稳定性
稳定性是指传感检测系统在长时间工作的状态下, 由于外界各种干扰对系统产生的影响,使得输出量发 生与输入无关的变化,有时称为长时间工作稳定性。
成部分。 D)检测技术的完善和发展推动着现代科学技术的
进步。
ppt精选版
31
二、发展方向
1、不断提高检测系统的测量精度、量程范 围、延长使用寿命,提高可靠性;
2、应用新技术和新的物理效应,扩大检测 领域;
3、发展集成化,功能化的传感器; 4、采用计算机技术,使检测技术智能化; 5、发展网络化传感器及检测系统。
检测系统的工程应用
在工程领域,科学实验、产品开发、生产监 督、质量控制等,都离不开检测系统。检测系统 应用涉及到航天、机械、电力、石化和海洋运输 等每一个工程领域。
ppt精选版
20
1、工业自动化中的应用
a)机械手、机器人中的传感器
转动/移动位置传感器、力传感器、视觉传感器、听 觉传感器、接近距离传感器、触觉传感器、热觉传感器、 嗅觉传感器。
ppt精选版
32
§1.3传感检测系统基本特性的评价指标 一、传感检测系统的基本特性 传感器特性主要是指输出与输入之间的关系。
静态特性:被测量不随时间变化或变化很慢时, 检测系统的输入和输出量都与时间无关。
动态特性:输入量和输出量都随时间变化较快, 是一个含有时间变量的微分方程式。检测系统对 快速变化的被测量的响应特性称为动态特性。
⊿Rmax2
⊿Rmax1
Rmax10% 0
R
YFS
或:
0
X
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
2~310% 0
R
YFS
ppt精选版
43
6、稳定性:
传感器的稳定性一般是指长期稳定性
稳定性是指传感检测系统在长时间工作的状态下, 由于外界各种干扰对系统产生的影响,使得输出量发 生与输入无关的变化,有时称为长时间工作稳定性。
《新型传感器》课件
发展趋势
未来传感器的发展趋势是微型化、智 能化、多功能化和网络化,传感器将 更加小巧、智能、多功能和易于联网 ,能够更好地满足人们生产和生活的 需求。
01
新型传感器的技术 原理
新型传感器的技术原理简介
新型传感器技术原理主要包括物理、化学和生物传感 器等,它们通过将物理、化学或生物量转化为可测量
的电信号,实现对各种参数的测量。
输标02入题
物理传感器主要基于压阻效应、压电效应、热电效应 等物理原理,将物理量(如压力、温度、位移等)转 换为电信号。
01
03
生物传感器则利用生物分子的特异性反应,实现对生 物分子浓度的测量。
04
化学传感器则利用化学反应的原理,将化学量(如气 体、离子、生物分子等)转化为电信号。
新型传感器的应用领域
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
01
新型传感器的实际 应用案例
智能家居领域的实际应用案例
智能家居控制
新型传感器可以用于智能家居控制系 统,实现家庭环境的智能化控制,如 自动调节室内温度、控制灯光亮度等 。
安全监控
智能家电
新型传感器可以用于智能家电产品, 如智能冰箱、智能洗衣机等,提高家 电产品的智能化水平。
新型传感器可以用于家庭安全监控, 如门窗传感器、烟雾报警器等,提高 家庭安全防范能力。
作用
传感器的作用是将被测量的非电学量转换成电信号,以满足 信息的传输、处理、存储、显示、记录和控制等要求。
重要性
传感器在工业自动化、智能家居、医疗、环保等领域中发挥 着重要作用,能够实现各种物理量、化学量、生物量等的测 量和自动化控制,提高了生产效率和生活品质。
未来传感器的发展趋势是微型化、智 能化、多功能化和网络化,传感器将 更加小巧、智能、多功能和易于联网 ,能够更好地满足人们生产和生活的 需求。
01
新型传感器的技术 原理
新型传感器的技术原理简介
新型传感器技术原理主要包括物理、化学和生物传感 器等,它们通过将物理、化学或生物量转化为可测量
的电信号,实现对各种参数的测量。
输标02入题
物理传感器主要基于压阻效应、压电效应、热电效应 等物理原理,将物理量(如压力、温度、位移等)转 换为电信号。
01
03
生物传感器则利用生物分子的特异性反应,实现对生 物分子浓度的测量。
04
化学传感器则利用化学反应的原理,将化学量(如气 体、离子、生物分子等)转化为电信号。
新型传感器的应用领域
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
01
新型传感器的实际 应用案例
智能家居领域的实际应用案例
智能家居控制
新型传感器可以用于智能家居控制系 统,实现家庭环境的智能化控制,如 自动调节室内温度、控制灯光亮度等 。
安全监控
智能家电
新型传感器可以用于智能家电产品, 如智能冰箱、智能洗衣机等,提高家 电产品的智能化水平。
新型传感器可以用于家庭安全监控, 如门窗传感器、烟雾报警器等,提高 家庭安全防范能力。
作用
传感器的作用是将被测量的非电学量转换成电信号,以满足 信息的传输、处理、存储、显示、记录和控制等要求。
重要性
传感器在工业自动化、智能家居、医疗、环保等领域中发挥 着重要作用,能够实现各种物理量、化学量、生物量等的测 量和自动化控制,提高了生产效率和生活品质。
现代智能传感技术及应用ppt课件
工业自动化领域应用
生产过程监控
利用压力、温度、流量等传感器,实 时监测生产过程中的各种参数,确保
产品质量和生产安全。
工业机器人
通过安装多种传感器,如距离传感器 、角度传感器等,实现机器人的自主
导航、避障和精准操作。
工业物联网
借助智能传感器对设备进行远程监控 和数据采集,实现工业设备的互联互
通和智能化管理。
04
加强国际合作与交流,提升我国智能传感 器产业的国际竞争力。
THANKS。
04
现代智能传感技术应用实例分 析
智能家居领域应用
1 2
智能照明
通过光线传感器和人体红外传感器,实现室内光 线的自动调节和人来灯亮、人走灯灭的智能化控 制。
智能安防
利用门窗磁传感器、红外幕帘传感器等,实时监 测家庭安全状况,并通过手机APP远程报警。
3
智能家电
结合温度传感器、湿度传感器等,实现家电设备 的自动调节和远程控制,提高家居舒适度和节能 效果。
市场机遇与挑战并存局面分析
物联网市场蓬勃发展
智能传感器作为物联网感知层的核心元器件,市场需求持续增长, 为智能传感器产业带来巨大机遇。
新能源汽车市场崛起
新能源汽车对智能传感器的需求日益旺盛,为智能传感器产业提供 了新的增长点。
国际竞争压力加剧
国际智能传感器技术竞争日益激烈,国内企业需要加强自主创新,提 高核心竞争力。
警和应急救援提供支持。
05
挑战与未来发展趋势预测
技术挑战及解决方案探讨
传感器小型化与集成化
提高传感器灵敏度、降低功耗、实现 微型化设计,同时解决集成化过程中
的信号干扰、热管理等问题。
传感器智能化
《传感器技术说课》课件
优势:提高医疗效 率,降低医疗成本 ,提高患者生活质 量
基于传感器的环境监测系统
传感器类型: 温度传感器、 湿度传感器、 空气质量传感
器等
应用领域:气 象监测、空气 质量监测、水
质监测等
工作原理:通 过传感器采集 环境数据,传 输至数据处理 中心进行分析
和处理
应用案例:智 能温室、智能 城市、智能交
智能化:能够实现自动采集、处理 和分析数据,提高自动化程度
传感器技术与传统技术的比较
传感器技术:实时监测, 数据准确,智能化程度高
传统技术:人工监测,数 据误差大,智能化程度低
传感器技术:适应性强, 可应用于各种环境
传统技术:适应性差,只 能在特定环境下使用
传感器技术:维护成本低, 使用寿命长
传统技术:维护成本高, 使用寿命短
少污染
安全性:传感 器技术将更加 安全性,能够 提高系统的安 全性和可靠性
传感器技术面临的挑战和问题
技术瓶颈:传感器技术需要突破现有技术瓶颈,提高精度、稳定性和可靠性 成本问题:传感器技术需要降低成本,提高性价比,以适应市场需求 应用领域:传感器技术需要拓展应用领域,如物联网、智能交通、智能家居等 信息安全:传感器技术需要解决信息安全问题,保护用户隐私和数据安全
传感器技术说课
,
汇报人:
目录
01 添 加 目 录 项 标 题
02 传 感 器 技 术 概 述
03 传 感 器 技 术 的 应 用
领域
05 传 感 器 技 术 的 实 际 应用案例
04 传 感 器 技 术 的 特 点 和优势
06 传 感 器 技 术 的 未 来 发展前景和挑战
Part One
单击添加章节标题
新型传感器原理及应用ppt课件
半导瓷材料的表面电阻下降。由此可见,不论是N型还是P型 半导瓷,其电阻率都随湿度的增加而下降。
5.1 气敏、湿敏传感器
2) 正特性湿敏半导瓷的导电原理 正特性材料的结构、电子能量状态与负特性材料有所不 同。当水分子附着在半导瓷的表面使电动势变负时,导 致其表面层电子浓度下降,但这还不足以使表面层的空 穴浓度增加到出现反型程度,此时仍以电子导电为主。 于是,表面电阻将由于电子浓度下降而加大,这类半导 瓷材料的表面电阻将随湿度的增加而加大。
5.1 气敏、湿敏传感器
2. 半导体陶瓷湿敏电阻
通常,用两种以上的金属氧化物半导体材料混合烧结而成为多孔陶瓷,这 些材料有ZnO-LiO2-V2O5系、Si-Na2O-V2O5系、TiO2-MgO-Cr2O3系和Fe3O4等, 前三种材料的电阻率随湿度增加而下降,故称为负特性湿敏半导体陶瓷, 最后一种材料的电阻率随湿度增加而增大,故称为正特性湿敏半导体陶瓷 (以下简称半导瓷)。
1—ZnO-LiO2-V2O5;2—Si-Na2OV2O5;3—TiO2-MgO-Cr2O3
Fe3O4半导瓷正湿敏特性图
5.1 气敏、湿敏传感器
1) 负特性湿敏半导瓷的导电原理
由于水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸 附时,就有可能从半导瓷表面俘获电子,使半导瓷表面带负电。 如果该半导瓷是P型半导体,则由于水分子吸附使表面电动势下降, 将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。若 该半导瓷为N型,则由于水分子的附着使表面电动势下降,如果表 面电动势下降较多,不仅使表面层的电子耗尽,同时吸引更多的 空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度, 出现所谓表面反型层,这些空穴称为反型载流子。它们同样可以 在表面迁移而表现出电导特性。因此,由于水分子的吸附,使N型
5.1 气敏、湿敏传感器
2) 正特性湿敏半导瓷的导电原理 正特性材料的结构、电子能量状态与负特性材料有所不 同。当水分子附着在半导瓷的表面使电动势变负时,导 致其表面层电子浓度下降,但这还不足以使表面层的空 穴浓度增加到出现反型程度,此时仍以电子导电为主。 于是,表面电阻将由于电子浓度下降而加大,这类半导 瓷材料的表面电阻将随湿度的增加而加大。
5.1 气敏、湿敏传感器
2. 半导体陶瓷湿敏电阻
通常,用两种以上的金属氧化物半导体材料混合烧结而成为多孔陶瓷,这 些材料有ZnO-LiO2-V2O5系、Si-Na2O-V2O5系、TiO2-MgO-Cr2O3系和Fe3O4等, 前三种材料的电阻率随湿度增加而下降,故称为负特性湿敏半导体陶瓷, 最后一种材料的电阻率随湿度增加而增大,故称为正特性湿敏半导体陶瓷 (以下简称半导瓷)。
1—ZnO-LiO2-V2O5;2—Si-Na2OV2O5;3—TiO2-MgO-Cr2O3
Fe3O4半导瓷正湿敏特性图
5.1 气敏、湿敏传感器
1) 负特性湿敏半导瓷的导电原理
由于水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸 附时,就有可能从半导瓷表面俘获电子,使半导瓷表面带负电。 如果该半导瓷是P型半导体,则由于水分子吸附使表面电动势下降, 将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。若 该半导瓷为N型,则由于水分子的附着使表面电动势下降,如果表 面电动势下降较多,不仅使表面层的电子耗尽,同时吸引更多的 空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度, 出现所谓表面反型层,这些空穴称为反型载流子。它们同样可以 在表面迁移而表现出电导特性。因此,由于水分子的吸附,使N型
《传感器基础培训》课件
测试方法
根据性能指标制定相应的测试方法,包括静态测试和动态测试,以及 长期稳定性和可靠性测试。
结果分析
对测试结果进行分析和比较,找出传感器性能的优缺点,提出改进措 施和建议,为进一步优化提供依据。
05
传感器在物联网中的应 用
物联网中的传感器节点
传感器节点是物联网感知层的重要组成部分,能够感知、采集并处理物体信息。
环境监测
传感器用于监测环境参数,如 温度、湿度、压力、气体等, 为环境保护和治理提供数据支
持。
传感器的发展趋势
微型化
随着微电子技术的发展 ,传感器逐渐向微型化 方向发展,便于集成和
携带。
智能化
传感器与微处理器结合 ,实现智能化检测和数 据处理,提高测量精度
和可靠性。
多功能化
传感器逐渐向多功能化 方向发展,能够同时检 测多种参数,满足复杂
应用需求。
网络化
传感器与物联网技术结 合,实现远程监控和数 据传输,提高信息共享
和协同能力。
02
传感器的原理与技术
传感器的物理原理
传感器的工作原理
传感器是一种能够感知物理、化学或 生物量并将其转换为电信号的装置。 这些电信号可以被进一步处理、记录 或用于控制目的。
传感器的分类
传感器的基本组成
传感器通常由敏感元件和转换元件组 成,敏感元件负责感知被测量,而转 换元件则将感知到的量转换为电信号 。
根据工作原理和应用领域,传感器可 以分为多种类型,如电阻式、电容式 、电感式、磁阻式、光电式等。
传感器的信号处理技术
信号调理
信号调理是传感器信号处理的重 要环节,它包括放大、滤波、隔 离、线性化等操作,以减小噪声 、提高信噪比、增强信号的稳定
根据性能指标制定相应的测试方法,包括静态测试和动态测试,以及 长期稳定性和可靠性测试。
结果分析
对测试结果进行分析和比较,找出传感器性能的优缺点,提出改进措 施和建议,为进一步优化提供依据。
05
传感器在物联网中的应 用
物联网中的传感器节点
传感器节点是物联网感知层的重要组成部分,能够感知、采集并处理物体信息。
环境监测
传感器用于监测环境参数,如 温度、湿度、压力、气体等, 为环境保护和治理提供数据支
持。
传感器的发展趋势
微型化
随着微电子技术的发展 ,传感器逐渐向微型化 方向发展,便于集成和
携带。
智能化
传感器与微处理器结合 ,实现智能化检测和数 据处理,提高测量精度
和可靠性。
多功能化
传感器逐渐向多功能化 方向发展,能够同时检 测多种参数,满足复杂
应用需求。
网络化
传感器与物联网技术结 合,实现远程监控和数 据传输,提高信息共享
和协同能力。
02
传感器的原理与技术
传感器的物理原理
传感器的工作原理
传感器是一种能够感知物理、化学或 生物量并将其转换为电信号的装置。 这些电信号可以被进一步处理、记录 或用于控制目的。
传感器的分类
传感器的基本组成
传感器通常由敏感元件和转换元件组 成,敏感元件负责感知被测量,而转 换元件则将感知到的量转换为电信号 。
根据工作原理和应用领域,传感器可 以分为多种类型,如电阻式、电容式 、电感式、磁阻式、光电式等。
传感器的信号处理技术
信号调理
信号调理是传感器信号处理的重 要环节,它包括放大、滤波、隔 离、线性化等操作,以减小噪声 、提高信噪比、增强信号的稳定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
说明
这种分类便于传感器的 管理
以传感器对信号转换的 原理命名
通过改变传感器元件的 参数实现信号转换。
依靠敏感元件本身物理 性质随被测量变化实现
信号转换。
传感器输出能量由外部 供给,但受被测量控制。
传感器输出量直接由被 测量能量转换而得。
输出量为模拟信号
输出量为数字信号
5 .传感器选用原则 1.灵敏度:传感器的灵敏度越高,可以感知越小的变化量,
bmddmxm t(t)bm1ddm1m tx(1t)..b.1dd(xtt)b0x(t)
在静态测量时,
y b0 x Sx a0
理想定常线性系统呈单调、线性比例的关系,即输入、输出
关系是一条理想的直线,斜率为常数。
.
2、实际测试系统输入输出之间的关系 实际测试系统是非理想定常线形系统,输入输出之间的关系
测试系统不失真测试的条件。
A()
()
A0
0
0
-t0
.
思考题:若系统 A()A0 问此系统是否满足不失真测试条件? ()0
例1:已知系统的幅频特性和相频特性如图,对于输入
x(t)co 1 ts co 2ts,求输出 y(t),判断是否失真。
A()
1
0
()
1 2
0
1t0
2t0
-t0
.
A()
1
H () Y () X ()
(1)若已知 H ( s ) ,则在 sj中,令 s j ,将其代入 H ( s )
即得 H ( )
(2)若已知微分方程,作傅里叶变换,则 H () Y () X ()
(3)用实验方法求得:在初始条件全为零的条件下,同时测得
输入和输出,由其傅里叶变换求得。
.
物理意义:描述了系统的频率特性。
.
激励装置
被测 对象
传 感 器
信号 调理
信号 处理
显示 纪录
观察者
反馈、控制
简单测试系统(红外体温)
复杂测试系统(振动测量)
.
3. 传感器的构成
(1)组成:振动膜片、刚 性极板、电源和负载电阻
(2)原理 : 振膜—一次敏感元件 电容器—敏感元件
被测声压
振膜
极距变化
电容变化
输出电压
平板电容
测量电路
没有能量交换,在初始条件为零的情况下,串联后的系统传递函 数为:
H (s ) Y X ( ( s s ) ) X Z ( (s s ) )Y Z ( (s s ) ) H 1 (s )H 2 (s )
.
n
若系统由n个环节串联而成,其传递函数为 H(s) Hi(s) i1
相应地,系统的频率响应为
n
H() Hi()
i1
其幅频特性:
n
A() Ai()
i1
相频特性:
()
n
i()
i1
2.环节的并联
系统总输出为 H (s ) Y X ( ( s s ) ) Y 1 (s X ) + (s Y ) 2 (s ) H 1 (s ) + H 2 (s )
n
若系统由n个环节并联而成,其传递函数为 H(s) Hi(s)
i1
系统的频率响应为
复数域-传递函数 H (s)
拉普拉斯变换对 傅里叶变换对
.
传递函数、频率响应函数、脉冲响应函数的关系: h(t)
s=j
H(s)
H()
.
二、环节的串联和并联 任何高阶系统均可看成若干个一阶系统或二阶系统的串联或并联。
1.环节的串联 两个传递函数分别为 H1(s) 和H2(s) 的环节串联,假设它们之间
Rm1 l1 A 12 0A 03 l3 A 32 0A 0
于是, L N 20 A0 2
1.变气隙式:
灵敏度 SN20A0 常数 22
特点:灵敏度高,线性误差小,适于
测小位移。
.
2.变面积式
灵敏度
S N20 =常数 2
.
求法:对系统的微分方程作拉普拉斯变换求得。
例1:求一阶系统的传递函数,系统微分方程为
dy(t) y(t)x(t)
dt 例2:求振动系统 md2 dy t2 (t)cdy d(tt)ky(t)x(t)
的传递函数。
.
(3)频率响应函数 H ( ) 在初始条件为零的前提下,定义频率响应函数
求法:
香港理工AGV自动送货车模型
.
(4)故障诊断
石化企业输 油管道、储 油罐等压力 容器的破损 和泄露检测。
.
(5)其他应用
航天
农业
交通
医疗
.
第二章 传感器的基本特性 一、静态特性:在静态测量情况下描述实际测试系统与理想定
常线性系统的接近程度 。
1、理想定常线性系统输入输出关系:
anddnyn(tt)an1ddn1nty(1t)... a1ddy(tt)a0y(t)
特性和相频特性及作图。
.
例2:设
x (t) x 0co0 t,sH()
1,
1 j
求系统的稳定输出。
(4)脉冲响应函数
系统的输入为单位脉冲函数,即 x(t)(t)时,系统的输出
即为脉冲响应函数 h (t )。它是对测试系统动态特性的时域描述。
系统的动态
特性描述
频域-频率响应函数 H () 时域-脉冲响应函数 h (t )
6.其它选用原则
.
6. 传感器技术的应用
1、日常生活
在家电产品和办公自动化产品设计中,人们大量的应用 了传感器和测试技术来提高产品性能和质量。
全自动洗衣机中的传感器: 衣物重量传感器,衣质传 感器,水温传感器,水质 传感器,洗净度传感器, 液位传感器,电阻传感器 (衣物烘干检测)。
透光率传感器 指纹传感器
即被测量稍有微小变化时,传感器即有较大的输出。 2.线性范围:线性范围愈宽,则表明传感器的工作量程愈大。
3.响应特性:在所测频率范围内尽量保持不失真。
4.稳定性:经过长期使用以后,其输出特性不发生变化的性能。 影响传感器稳定性的因素是时间与环境。
5.精确度:表示传感器的输出与被测量的对应程度。 传感器精确度愈高,价格越昂贵,因此应从实际出发来选择。
.
4.分类 :
分类法 按被测量
种类 按工作原
理分类
按被测量 转换特征 (构成原
理)
按能量传 递方式
按输出量
型式 位移、温度、压力、流量 应变式、电容式、电感式、压电式、
光电式 结构型,如电容式,电阻应变片;
物性型,如压电式,水银温度计,双 金属片
能量控制型,如RLC式
能量转换型,如热电偶温度计 模拟式 数字式
Rx
U0 xp
x
考虑外接电路影响时:
Uy
U0 x p Rp (1
x)
x R1
xp
.
3.特点: (1)结构简单、使用简便、稳定性好。 (2)分辨力低,受电阻丝直径的限制。适合大位移的测量。 (3)噪声大。
二、电阻应变式传感器
1.结构:丝式、箔式、金属膜片
2.工作原理:基于金属的电阻应变效应。
是通过实验方法测到的,通常是一条曲线——定度曲线。 3、描述静态特性的参数 (1)非线性度:定度曲线与拟合直线的接近程度。 常用百分数表示 非线性度 =B 100% A
.
拟合直线的确定,常用的主要有两种:端基直线和独立直线。 (1)端基直线是指通过测量范围的上下限点的直线。 显然用端基直线来代替实际的输入、输出曲线,其求解过程 比较简单,但是其非线性度较差。 (2)独立直线是指使输入与输出曲线上各点的线性误差
第一章 传感器技术概述 1. 传感器定义
传感器——将被测量按一定规律转换成便于应用的某种物 理量的装置。
被测量
电量
目前,传感器转换后的信号大多为电信号。因而从 狭义上讲,传感器是把外界输入的非电信号转换成电信 号的装置。
.
2.传感器的作用
人体系统与机器系统的对应关系 传感器——类似于人的感觉器官,是人类感官的延伸。 作用:将被测量转换成电信号,传送给测试系统中的后续环节。
若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时
的电阻为R,则:
R l
A
.
如果金属丝沿轴向方向受拉力而变形,
dR dLdAd R LA
d R R(12)d (12)
灵敏度: S0 dR/R(12)
3.特点: 金属应变片的灵敏度较低,但其温度稳定性好,可用于对 精度要求较高的测量。
.
三、压阻式传感器
y
y
y0
0
零点漂移
x
0
x
.
灵敏度漂移
二、传感器的动态特性 传感器的动态特征是指在输入量随时间变化时,测试系统对输
入信号的响应特性。
1、动态特性的描述方法 (1)时域微分方程
andndyn(tt)an1dnd1nyt(1t)...a1ddy(tt)a0y(t) bmdm dxm t(t)bm1dm d1m tx(1t)..b.1ddx(tt)b0x(t)
3.类型:半导体应变式传感器、扩散型压阻式传感器
.
三、应变片的应用 1.直接测定结构的应变或应力。 2.作为传感器的测量参数。
四、转换电路
应变 R 电压或电流的变化
R
.
4.4 电感式传感器 一、可变磁阻式传感器
变气隙式
按结构型式 变面积式 螺管式
.
线圈自感量为
L N2 Rm
当气隙较小,且不考虑磁路的铁损时,总磁阻
0
()
0
4
例2:已知系统的输入 x(t)co 1 ts co 2ts,判断是否失真。
说明
这种分类便于传感器的 管理
以传感器对信号转换的 原理命名
通过改变传感器元件的 参数实现信号转换。
依靠敏感元件本身物理 性质随被测量变化实现
信号转换。
传感器输出能量由外部 供给,但受被测量控制。
传感器输出量直接由被 测量能量转换而得。
输出量为模拟信号
输出量为数字信号
5 .传感器选用原则 1.灵敏度:传感器的灵敏度越高,可以感知越小的变化量,
bmddmxm t(t)bm1ddm1m tx(1t)..b.1dd(xtt)b0x(t)
在静态测量时,
y b0 x Sx a0
理想定常线性系统呈单调、线性比例的关系,即输入、输出
关系是一条理想的直线,斜率为常数。
.
2、实际测试系统输入输出之间的关系 实际测试系统是非理想定常线形系统,输入输出之间的关系
测试系统不失真测试的条件。
A()
()
A0
0
0
-t0
.
思考题:若系统 A()A0 问此系统是否满足不失真测试条件? ()0
例1:已知系统的幅频特性和相频特性如图,对于输入
x(t)co 1 ts co 2ts,求输出 y(t),判断是否失真。
A()
1
0
()
1 2
0
1t0
2t0
-t0
.
A()
1
H () Y () X ()
(1)若已知 H ( s ) ,则在 sj中,令 s j ,将其代入 H ( s )
即得 H ( )
(2)若已知微分方程,作傅里叶变换,则 H () Y () X ()
(3)用实验方法求得:在初始条件全为零的条件下,同时测得
输入和输出,由其傅里叶变换求得。
.
物理意义:描述了系统的频率特性。
.
激励装置
被测 对象
传 感 器
信号 调理
信号 处理
显示 纪录
观察者
反馈、控制
简单测试系统(红外体温)
复杂测试系统(振动测量)
.
3. 传感器的构成
(1)组成:振动膜片、刚 性极板、电源和负载电阻
(2)原理 : 振膜—一次敏感元件 电容器—敏感元件
被测声压
振膜
极距变化
电容变化
输出电压
平板电容
测量电路
没有能量交换,在初始条件为零的情况下,串联后的系统传递函 数为:
H (s ) Y X ( ( s s ) ) X Z ( (s s ) )Y Z ( (s s ) ) H 1 (s )H 2 (s )
.
n
若系统由n个环节串联而成,其传递函数为 H(s) Hi(s) i1
相应地,系统的频率响应为
n
H() Hi()
i1
其幅频特性:
n
A() Ai()
i1
相频特性:
()
n
i()
i1
2.环节的并联
系统总输出为 H (s ) Y X ( ( s s ) ) Y 1 (s X ) + (s Y ) 2 (s ) H 1 (s ) + H 2 (s )
n
若系统由n个环节并联而成,其传递函数为 H(s) Hi(s)
i1
系统的频率响应为
复数域-传递函数 H (s)
拉普拉斯变换对 傅里叶变换对
.
传递函数、频率响应函数、脉冲响应函数的关系: h(t)
s=j
H(s)
H()
.
二、环节的串联和并联 任何高阶系统均可看成若干个一阶系统或二阶系统的串联或并联。
1.环节的串联 两个传递函数分别为 H1(s) 和H2(s) 的环节串联,假设它们之间
Rm1 l1 A 12 0A 03 l3 A 32 0A 0
于是, L N 20 A0 2
1.变气隙式:
灵敏度 SN20A0 常数 22
特点:灵敏度高,线性误差小,适于
测小位移。
.
2.变面积式
灵敏度
S N20 =常数 2
.
求法:对系统的微分方程作拉普拉斯变换求得。
例1:求一阶系统的传递函数,系统微分方程为
dy(t) y(t)x(t)
dt 例2:求振动系统 md2 dy t2 (t)cdy d(tt)ky(t)x(t)
的传递函数。
.
(3)频率响应函数 H ( ) 在初始条件为零的前提下,定义频率响应函数
求法:
香港理工AGV自动送货车模型
.
(4)故障诊断
石化企业输 油管道、储 油罐等压力 容器的破损 和泄露检测。
.
(5)其他应用
航天
农业
交通
医疗
.
第二章 传感器的基本特性 一、静态特性:在静态测量情况下描述实际测试系统与理想定
常线性系统的接近程度 。
1、理想定常线性系统输入输出关系:
anddnyn(tt)an1ddn1nty(1t)... a1ddy(tt)a0y(t)
特性和相频特性及作图。
.
例2:设
x (t) x 0co0 t,sH()
1,
1 j
求系统的稳定输出。
(4)脉冲响应函数
系统的输入为单位脉冲函数,即 x(t)(t)时,系统的输出
即为脉冲响应函数 h (t )。它是对测试系统动态特性的时域描述。
系统的动态
特性描述
频域-频率响应函数 H () 时域-脉冲响应函数 h (t )
6.其它选用原则
.
6. 传感器技术的应用
1、日常生活
在家电产品和办公自动化产品设计中,人们大量的应用 了传感器和测试技术来提高产品性能和质量。
全自动洗衣机中的传感器: 衣物重量传感器,衣质传 感器,水温传感器,水质 传感器,洗净度传感器, 液位传感器,电阻传感器 (衣物烘干检测)。
透光率传感器 指纹传感器
即被测量稍有微小变化时,传感器即有较大的输出。 2.线性范围:线性范围愈宽,则表明传感器的工作量程愈大。
3.响应特性:在所测频率范围内尽量保持不失真。
4.稳定性:经过长期使用以后,其输出特性不发生变化的性能。 影响传感器稳定性的因素是时间与环境。
5.精确度:表示传感器的输出与被测量的对应程度。 传感器精确度愈高,价格越昂贵,因此应从实际出发来选择。
.
4.分类 :
分类法 按被测量
种类 按工作原
理分类
按被测量 转换特征 (构成原
理)
按能量传 递方式
按输出量
型式 位移、温度、压力、流量 应变式、电容式、电感式、压电式、
光电式 结构型,如电容式,电阻应变片;
物性型,如压电式,水银温度计,双 金属片
能量控制型,如RLC式
能量转换型,如热电偶温度计 模拟式 数字式
Rx
U0 xp
x
考虑外接电路影响时:
Uy
U0 x p Rp (1
x)
x R1
xp
.
3.特点: (1)结构简单、使用简便、稳定性好。 (2)分辨力低,受电阻丝直径的限制。适合大位移的测量。 (3)噪声大。
二、电阻应变式传感器
1.结构:丝式、箔式、金属膜片
2.工作原理:基于金属的电阻应变效应。
是通过实验方法测到的,通常是一条曲线——定度曲线。 3、描述静态特性的参数 (1)非线性度:定度曲线与拟合直线的接近程度。 常用百分数表示 非线性度 =B 100% A
.
拟合直线的确定,常用的主要有两种:端基直线和独立直线。 (1)端基直线是指通过测量范围的上下限点的直线。 显然用端基直线来代替实际的输入、输出曲线,其求解过程 比较简单,但是其非线性度较差。 (2)独立直线是指使输入与输出曲线上各点的线性误差
第一章 传感器技术概述 1. 传感器定义
传感器——将被测量按一定规律转换成便于应用的某种物 理量的装置。
被测量
电量
目前,传感器转换后的信号大多为电信号。因而从 狭义上讲,传感器是把外界输入的非电信号转换成电信 号的装置。
.
2.传感器的作用
人体系统与机器系统的对应关系 传感器——类似于人的感觉器官,是人类感官的延伸。 作用:将被测量转换成电信号,传送给测试系统中的后续环节。
若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时
的电阻为R,则:
R l
A
.
如果金属丝沿轴向方向受拉力而变形,
dR dLdAd R LA
d R R(12)d (12)
灵敏度: S0 dR/R(12)
3.特点: 金属应变片的灵敏度较低,但其温度稳定性好,可用于对 精度要求较高的测量。
.
三、压阻式传感器
y
y
y0
0
零点漂移
x
0
x
.
灵敏度漂移
二、传感器的动态特性 传感器的动态特征是指在输入量随时间变化时,测试系统对输
入信号的响应特性。
1、动态特性的描述方法 (1)时域微分方程
andndyn(tt)an1dnd1nyt(1t)...a1ddy(tt)a0y(t) bmdm dxm t(t)bm1dm d1m tx(1t)..b.1ddx(tt)b0x(t)
3.类型:半导体应变式传感器、扩散型压阻式传感器
.
三、应变片的应用 1.直接测定结构的应变或应力。 2.作为传感器的测量参数。
四、转换电路
应变 R 电压或电流的变化
R
.
4.4 电感式传感器 一、可变磁阻式传感器
变气隙式
按结构型式 变面积式 螺管式
.
线圈自感量为
L N2 Rm
当气隙较小,且不考虑磁路的铁损时,总磁阻
0
()
0
4
例2:已知系统的输入 x(t)co 1 ts co 2ts,判断是否失真。