自动化专业外文翻译--运算放大器

合集下载

自动化专业英语期末复习课文与翻译

自动化专业英语期末复习课文与翻译

An electrical circuit or network is composed of elements such as resistors , inductors ,and capacitors connected together in some manner .If the network contains no energy sources , such as batteries or electrical generators,it is known as a passive network.On the other hand, if one or more energy sources are present ,the resultant combination is an active network。

In studying the behavior of an electrical network,we are interested in determining the voltages and currents that exist within the circuit. Since a network is composed of passive circuit elements,we must first define the electrical characteristics of these elements.电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成.如果网络不包含能源,如电池或发电机,那么就被称作无源网络。

换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。

在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。

因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。

In the case of a resistor, the voltage-current relationship is given by Ohm’s law,which ststes that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance. Mathematically, this is expressed as u=iR where u=voltage , V; i=current,A; R=resistance Ω。

外文翻译--运算放大器的原理和应用

外文翻译--运算放大器的原理和应用

Operational amplifier theory and applications1 the principle of op-ampOp amp is the most widely used of a device, although the different structure of different operational amplifier, but the external circuit, its characteristics are the same. Op amp is usually 4 parts, bias circuits, input stage, intermediate-level, output level, which is generally used input stage differential amplifier circuit (inhibitory power), the middle class in general the use of active load circuit loads the total radio (increase the magnification), the complementary output stage generally symmetrical output stage circuit (drive circuit to increase the capacity of the load), here is a brief introduction about the realization of the specific complex.Industries, an operational amplifier used to measure the performance of many of the indicators, the actual operational amplifier is generally believed that the closer the ideal op amp, the better, the classroom involved, we are only asking the equivalent input resistance of infinity, infinite open-loop gain, In fact, there are many other indicators, I will, are you a brief introduction, the performance of operational amplifiers including the five indicators, open-loop differential-mode voltage amplification factor, the maximum output voltage, differential-mode input resistance, output resistance, common mode rejection ratio CMRR. (Open-loop differential-mode is the magnification on the integrated delivery without additional feedback loop in case of differential-mode voltage amplification. Maximum output voltage is saying that it refers to a certain voltage, the integrated operational amplifier is not the largest output voltage distortion peak - peak. differential-mode input resistance reflects the size of integrated operational amplifier input differential-mode input signal to obtain the current size of the source. requiring the greater the better. reflect the size of the output resistance of an integrated transport on the small-signal output load capacity. CMRR shown on the integrated operational amplifier common-mode rejection of input signals, which is defined with the differential amplifier circuit. CMRR the better.)Figure 1 op-amp characteristic curveFigure 2 op-amp input and output terminal mapFigure 1 is the characteristic curve of amplifier is generally used only the linear part of curve. As shown in Figure 2. U-corresponding to the terminal "-", when the importation of Canadian U-separate from the terminal, the output voltage and input voltage U-RP, the RP-call input. U + corresponding to the terminal "+", when the input U + separate from the client to join, the output voltage and U + with the phase, so called in-phase input.Output: U0 = A (U +-U-); A known as the op amp's open loop gain (open-loop voltage amplification factor)In the practical application of often idealized op amp, this is because generally speaking, the input resistance OPAMP great open-loop gain, output resistance is very small, can be regarded as ideal, it can be : Ri ≈ ∞, Ro ≈ 0, A ≈ ∞. By A ≈ ∞, be U + ≈ U-, a result similar to the two inputs can be seen as a short-circuit (referred to as the "virtual short"), if the input termination in the same direction, the reverse input and almost the same potential (referred to as "virtual land"). By Ri ≈ ∞, we can see thatsimilar to the input circuit is equal to 0, it can be seen as the input circuit (known as the "virtual shutdown").2 Application of Operational AmplifiersHere only the application of the ideal operational amplifier, the actual op amp can be seen as similar to an ideal operational amplifier. Application of operational amplifiers is very broad, here we only talk about the op-amp with some focus on other components of the computing circuit. Application of circuit operation in terms of comparison with other more extensive, and easy to understand some of them. Computing the ratio of the circuit including the circuit, and differential circuit, integro-differential circuit, and the index of the number of computing circuit.1. The proportion of the circuit:The proportion of the so-called circuit is proportional to the input signal amplification circuit, the ratio of the reverse circuit is divided into the proportion of the circuit, the circuit with the phase ratio, the ratio of differential circuit.(1) reverse the ratio of the circuit:Reverse the ratio of the circuit shown in Figure 3, the input signal input by adding RP, there areFigure 3 the ratio of the reverse circuit schematicsFigure 4 with the ratio of circuit schematicsU P =U N =0 I P =I N =0Know from Kirchhoff's law:I R =I F (U I -U N )/R =(U N -U O )/R fU O =I F U RR - Thus know that the output voltage U0 and the ratio of input voltage Ui said therelationship between the opposite direction, changing the ratio of coefficients, namely, two resistors of resistance to change can change the value of output voltage. Reverse the ratio of operational amplifier circuits for the performance of a certain performance requirements, such as the input signal to a certain load capacity requirements..(2) the ratio of the circuit in the same direction (Figure 4):With the reverse ratio of the circuit is essentially similar, apart from a section of ground in the same direction is the reverse input fromU P =U N =U I I R =I F 得:U N /R =(U O -U N )/R fSO: U O =I F U R R )(+1 So as long as the coefficient of change in the proportion of the output voltage can be changed, and U0 and Ui the same direction, of course, with the proportion of the circuit is to have a certain requirements, such as the integrated operational amplifier of the common mode rejection ratio requirements.(3) the ratio of differential circuit (Figure 5):U O =)(121I I F U U R R - Input signal, respectively, added to the RP-phase input and input, the specific steps and not in the first two are derived almostAnd in the end be:From this we can see that it is actually completed: two of the input differential signal operation.2. And the difference circuit:And poor use of the circuit is a relatively wide range of circuits, where the three circuits on the move: Reverse summation circuit to sum the same circuit, and differential circuits.(1) reverse summation circuit and summation circuit in the same direction:Only difference is that the input signal by adding a reversed-phase input with input phase difference, reverse-sum circuit in Figure 6, with the summation circuit in Figure7. By Kirchhoff's current law, reverse summation circuit output voltage and input voltage relationship,U O =)(332211R U R U R U R I I I F ++-Figure 5 the proportion of the circuit differential circuitFigure 6 Reverse summation circuit schematicsFigure 7 with the circuit diagrams and circuitWith the summation circuit output voltage and the relationship between the input voltage as follows:U O =)(321CI B I A I F R U R U R U R ++ Although the comparison between the two similar, but different, the reverse sum of the characteristics of the circuit with the same RP-circuit ratio. It can be veryconvenient for the input resistance of a circuit to change the relationship between the proportion of the circuit without affecting the relationship between the proportion of other routes. And with the application to the summation circuit is not very extensive, mainly because of its better regulation of RP-sum circuit, and its large common-mode input signal.(2) and the difference circuit:Its circuit diagram is shown in Figure 8. The function of this circuit is Ui1, Ui2 carried out by RP-summation of Ui3, Ui4 sum to the same direction, and then superimposed the results obtained and the poor, and his relationship between input and output voltage as follows:U O =)(22114433R U R U R U R U R I I I I F --+Figure 8 and the differential circuit schematicsAs the use of an integrated circuit operational amplifier, and its calculation and the circuit resistance is not easy to adjust, so we used the composition of the secondaryoperational amplifier integrated circuit and poor. Its circuit diagram as shown in Figure 9, it's the relationship between input and output voltage is:U O =)(22114433R U R U R U R U R I I I I F --+Figure 9 composed of two integrated operational amplifier circuit schematics and poorIts former level after the level does not affect (in the ideal of integrated operational amplifier), which is very convenient calculation.3. Integral and differential circuit:The above components used are basically resistive element, if one side of the resistor capacitor replaced, then the results will become integral circuits and differential circuits.(1) integral circuit:The circuit shown in figure 10, it can achieve integration and production of computing, such as triangular waveform. Integral operation is: the output voltage and input voltage relations were integral. It is the use of capacitive charge and discharge operations to achieve integration, and its input and output voltage relationship:U O =dt U RC I ⎰-1 One: that the initial capacitor voltage at both ends. If the circuit input voltage waveform is a square, then have a triangular waveform output.(2) differential circuit:Differential circuits and the difference between circuit points just swap the location of resistors and capacitors. Differential is the integral of the inverse operation, its output voltage and input voltage relations showed differential. Circuit diagram shown in Figure 11: its input and output voltage relationship:U O =I U dt d CR -Circuit schematics Figure 10 pointFigure 11 Differential circuit schematics4. And the index calculation on the number of circuits:Circuit used for a number of diodes, diode characteristics of the most important is one-dimensional conductivity. In the circuit, the current only flows from the diode cathode, anode flow, it is the realization of the characteristics and indicators of the number of circuits.(1) of the number of operation circuits:U O =ri u U s i T ln - Logarithm computing circuit output voltage and input voltage was logarithmicfunction. RP we use the ratio of Rf diode circuit that is formed instead of the number of operations on the circuit. Circuit diagram shown in Figure 12. He relationship between the output of the input voltage isFigure 12 Logarithm computing circuit schematicsFigure 13 Index computation circuit schematicsIn fact, transistor can also be used in place of diodes, the principle is the same, in addition to a multi-line connections.(2) index operation circuits:U O =R e I T iU u SIndex calculation on the number of circuits and circuit computing the difference is only diodes and resistors to each other location, the index is the number of operation circuits computing inverse operation, the index of the diode operation circuits (three tubes) and the resistance R of the exchange can be. Circuit as shown in 13 Its input and output voltage relationshipUse of computing as well as index number and the proportion of poor operation and circuit can be composed of multiplication or division operation circuits and other non-linear operation circuit, will no longer be described here.中文翻译:运算放大器的原理和应用1 运算放大器的原理运算放大器是目前应用最广泛的一种器件,虽然各中不同的运放结构不同,但对于外部电路而言,其特性都是一样的。

运算放大器的原理及特性

运算放大器的原理及特性

运算放大器的原理及特性
运算放大器(Operational Amplifier,简称Op Amp)是一种电子器件,通常用于放大电压信号或处理模拟电路中的信号。

它具有高增益、高输入阻抗、低输出阻抗、大共模抑制比和无穷大的带宽等特性,被广泛应用于模拟电路中。

运算放大器的基本原理是利用内部的共尺极放大器和外部的反馈电路,将输入信号放大到所需的幅度,并输出给后续电路。

运算放大器一般由差分输入级、差分放大器、输出级和电源供电电路组成。

运算放大器的主要特性如下:
1. 高增益:运算放大器具有非常高的电压增益,一般在几千到几百万之间。

这样可以放大微弱的信号到可用的幅度。

2. 高输入阻抗:运算放大器的输入端具有非常高的阻抗,使得输入信号源不会受到损耗。

3. 低输出阻抗:运算放大器的输出端具有非常低的输出阻抗,可以给后续电路提供较大的输出电流。

4. 大共模抑制比:共模抑制比是指运算放大器对共模信号的抑制能力。

运算放大器具有较高的共模抑制比,可以有效抑制共模信号的干扰。

5. 无穷大的带宽:运算放大器的带宽足够大,可以处理宽频带的信号。

6. 可调节增益:通过调整反馈电阻,可以调节运算放大器的增益。

运算放大器常常用于放大电压信号、求和运算、积分运算、微分运算等,广泛应用于滤波器、放大器、比较器、多路选择器等电路中。

自动化专业英语第四版课文翻译

自动化专业英语第四版课文翻译

自动化专业英语第四版课文翻译Unit 1现在工业电子系统使用的是被称为晶体管的装置。

每一类型的晶体管有区别于其他晶体管的不同特点和操作条件。

在讨论的第一部分,我们来关注双极性晶体管。

从结构上看,这个晶体管被描述为双极性的,是因为它有两个不同的电流载体极性。

空穴是阳极电流载体,而电子是阴极电流载体。

这两个不同性质的半导体晶体通过一个公共部分连接在一起。

这个装置的结构类似于两个二极管背靠背连接,其中一个晶体充当另外两个晶体的公共部分。

中间的材料通常被做得比外面的两片都要薄。

图1.1表示的是此晶体管的结构,原件名称,和不同双极性晶体管的语义符号。

一个双极性晶体管主要被用做放大器来限制流经它的电流。

电流从电源流入发射极,经过基极,再流出集电极。

集电极的电流量通常被定义为晶体管的输出量。

集电极电流由基极电流中的一小部分控制。

这个关系被描述为电流增量或β。

数学表达式如下:电流增量=集电极电流:基极电流。

公式中希腊字母△表示变化的值。

它用来表示当有交流输入时晶体管的响应。

这种类型的状态被称为动态特性。

公式中的△的省略部分表示直流或静态工作条件。

所有从发射极进入晶体管的电流被定义为发射极电流。

集电极电流Ic通常小于Ie。

Ie和Ic的不同归因于基极电流。

从数学角度看,Ib=Ie-IcUnit 2一个运算放大器的内部结构相当复杂,常常包含大量的分立元件。

一个运算放大器的使用者通常不需要关心它的内部结构。

然而,对于如何理解内部电子电路的完成却是有所帮助的。

这就允许使用者来观察设备是如何工作的,以及表明它作为一个功能单元的一些局限性。

运算放大器的内部电子线路可以被分为三个功能单元。

图1.7即是一个运算放大器内部功能的简图。

注意每一个功能都被附在一个三角形内。

电子图表中用三角形来表示放大功能。

这个简图显示了运算放大器有三个基本的放大功能。

这些功能一般叫作放大级。

一个放大级包含一或更多有源器件,所有相联元件需实现放大。

第一阶段或一个运算放大器的输入常常是一个差动放大器。

Operational Amplifier

Operational Amplifier

Operational Amplifier(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in,single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout=(V+-V-)*Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai 由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。

因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。

运算放大器

运算放大器

运算放大器(英语:Operational Amplifier,簡稱OP、OPA、OPAMP、运放)是一种直流耦合,差模(差動模式)輸入、通常為單端輸出(Differential-in, single-ended output)的高增益(gain)電壓放大器,因为刚开始主要用于加法,減法等類比运算电路中,因而得名。

通常使用運算放大器時,會將其輸出端與其反相輸入端(inverting input node)連接,形成一負反馈(negative feedback)組態。

原因是運算放大器的電壓增益非常大,範圍從數百至數萬倍不等,使用負回授方可保證電路的穩定運作。

但是這並不代表運算放大器不能連接成正反馈(positive feedback)組態,相反地,在很多需要產生震盪訊號的系統中,正回授組態的運算放大器是很常見的組成元件。

运算放大器有许多的規格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位邊限(phase margin)、功耗、输出摆幅、共模抑制比(common-mode rejection ratio)、电源抑制比(PSRR,power-supply rejection ratio)、共模输入范围(input common mode range)、電壓擺動率(slew rate)、输入偏移電壓(input offset voltage,又譯:失调电压)、还有雜訊等。

目前運算放大器廣泛應用於家電,工業以及科學儀器領域。

一般用途的積體電路運算放大器售價不到一美元,而現在運算放大器的設計已經非常可靠,輸出端可以直接短路到系統的接地端(ground)而不至於被短路電流(short-circuit current)破壞。

目录[隐藏]∙ 1 運算放大器的歷史o 1.1 運算放大器的里程碑∙ 2 運算放大器的基礎o 2.1 電路符號o 2.2 理想運算放大器的操作原理▪ 2.2.1 Golden Rules▪ 2.2.2 開迴路組態▪ 2.2.3 負回授組態▪ 2.2.3.1 反相閉迴路放大器▪ 2.2.3.2 非反相閉迴路放大器▪ 2.2.4 正回授組態∙ 3 實際運算放大器的侷限o 3.1 直流的非理想問題▪ 3.1.1 有限的開迴路增益▪ 3.1.2 有限的輸入阻抗▪ 3.1.3 大於零的輸出阻抗▪ 3.1.4 大於零的輸入偏壓電流3.1.5 大於零的共模增益o 3.2 交流的非理想問題o 3.3 非線性的問題o 3.4 功率損耗的考量∙ 4 在電路設計中的應用∙ 5 直流特性∙ 6 交流特性∙7 運算放大器的應用∙8 741運算放大器的內部結構o8.1 電流鏡與偏壓電路o8.2 差分輸入級o8.3 增益級o8.4 輸出級∙9 CMOS運算放大器的內部結構∙10 其他應用∙11 參見∙12 參考資料與附註∙13 外部鏈接以DIP-8型式封裝的積體電路運算放大器1960年代晚期,仙童半導體(Fairchild Semiconductor)推出了第一個被廣泛使用的積體電路運算放大器,型號為μA709,設計者則是鮑伯·韋勒(Bob Widlar)。

运算放大器的输出计算公式

运算放大器的输出计算公式

运算放大器的输出计算公式运算放大器(Operational Amplifier,简称Op-Amp)是一种电子器件,用于放大输入信号并输出放大后的信号。

它是现代电子技术中使用最广泛的集成电路之一,具有高增益、高输入阻抗、低输出阻抗等特点。

运算放大器的输出计算公式可以用以下公式表示:Vout = A * (Vp - Vn),其中Vout表示输出电压,A表示运算放大器的开环增益,Vp和Vn 分别表示输入信号的正输入端和负输入端的电压。

运算放大器的输出计算公式是基于运算放大器的工作原理得出的。

它利用差分放大器的原理,将输入信号的差值放大后输出。

运算放大器内部有一个差分放大器电路,它可以放大输入信号的差值。

运算放大器的输出电压与输入信号的差值成正比,比例系数就是运算放大器的开环增益。

运算放大器的开环增益是一个重要的参数,它决定了运算放大器的放大能力。

一般情况下,运算放大器的开环增益很大,可以达到几十倍甚至几百倍。

这就意味着输入信号经过放大后,输出信号的幅度会大大增加。

运算放大器的输出计算公式中的Vp和Vn分别表示输入信号的正输入端和负输入端的电压。

正输入端和负输入端的电压差值决定了输出信号的大小。

当正输入端的电压大于负输入端的电压时,输出电压为正值;当正输入端的电压小于负输入端的电压时,输出电压为负值。

运算放大器的输出计算公式可以用于分析和设计各种电路。

通过改变输入信号的电压,可以得到不同的输出电压。

在实际应用中,可以根据需要选择合适的运算放大器和合适的电路连接方式,以实现所需的放大功能。

除了基本的放大功能,运算放大器还可以用于实现各种电路功能,如比较器、积分器、微分器、滤波器等。

利用运算放大器的高增益和高输入阻抗,可以设计出各种高性能的电路。

运算放大器的输出计算公式是通过运算放大器的工作原理得出的,它可以用来计算运算放大器的输出电压。

运算放大器作为一种重要的电子器件,在电子技术领域有着广泛的应用。

通过合理地使用运算放大器和设计合适的电路,可以实现各种功能的电子系统。

运算放大器使用指南(中英文)

运算放大器使用指南(中英文)

运算放大器使用指南(中英文)运算放大器使用指南一、简介运算放大器(Operational Amplifier,简称OPAMP),是一种广泛应用于电子电路中的放大器。

本指南旨在为用户提供有关运算放大器的详细信息,包括操作指南、特性介绍和应用示例等。

二、基本原理1:工作原理:运算放大器是一种基于反馈原理的电路,通过输入和输出之间的差异来放大电压信号。

2:术语解释:- 输入端:运算放大器具有一个非反相输入端和一个反相输入端。

- 反馈:运算放大器通过将输出信号与输入信号进行比较,并将差异信号反馈到输入端,实现放大。

- 开环增益:运算放大器在没有反馈时的增益。

- 关断频率:运算放大器的频率响应曲线在-3dB处的频率。

- 输入偏置电流:输入端电流偏离零电平的程度。

三、常见特性1:增益:- 开环增益:运算放大器的开环增益一般非常大,可达到几十dB至几十万dB。

- 闭环增益:通过合适的反馈网络,可以调整运算放大器的闭环增益。

2:输入电阻:运算放大器的输入端具有很高的输入电阻,可在电路中提供有效的阻抗匹配。

3:输出电阻:运算放大器的输出端具有相对较低的输出电阻,可驱动较低阻抗负载。

4:噪声:运算放大器引入的噪声可能会影响信号的质量和准确性,用户在设计中需考虑噪声因素。

四、使用指南1:连接电源:将运算放大器的正电源和负电源正确连接到电路中。

2:输入信号接入:将输入信号正确连接到运算放大器的输入端。

3:输出信号接出:将运算放大器的输出端连接到下一级电路或负载。

4:反馈设置:根据所需的增益和性能要求,正确设置反馈电阻和电容。

五、常见应用示例1:基本放大器电路:使用运算放大器实现信号放大功能。

2:滤波器:通过组合运算放大器和电容电感等元件,实现信号的滤波功能。

3:参考电压源:利用运算放大器的稳定性和精确度,提供一个稳定的参考电压。

附件:1:运算放大器数据手册:包含了各种型号的运算放大器的详细参数和特性。

2:运算放大器应用电路图集:提供了一系列常见的运算放大器应用电路图示例。

运算放大器工作原理

运算放大器工作原理

运算放大器工作原理运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,它在现代电子电路中有着广泛的应用。

运算放大器的工作原理是基于差分放大器的基础上进行改进和优化,使得它具有高增益、高输入阻抗、低输出阻抗等优良特性。

本文将从运算放大器的基本原理、内部结构、工作特性以及应用领域等方面进行详细介绍。

一、基本原理运算放大器是一种差动放大器,它由多个晶体管、电阻、电容等元件组成。

在运算放大器的内部,有两个输入端和一个输出端。

其中一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。

运算放大器的输出端输出的是输入信号的放大值,其放大倍数由运算放大器的增益决定。

运算放大器的工作原理可以用简单的电路模型来描述。

在理想情况下,运算放大器的增益是无穷大的,输入阻抗是无穷大的,输出阻抗是零。

这意味着运算放大器可以放大微小的输入信号,并且不会对输入信号产生影响,同时输出的电压可以根据输入信号的大小进行线性放大。

二、内部结构运算放大器的内部结构非常复杂,一般由多个晶体管、电阻、电容等元件组成。

其中最核心的部分是差分放大器。

差分放大器由两个晶体管和若干电阻组成,它的作用是将输入信号进行放大,并将放大后的信号送入后级放大器进行进一步放大。

在运算放大器的内部,还有许多其他的电路,如反馈电路、偏置电路等,它们都起着至关重要的作用。

三、工作特性运算放大器具有许多优良的工作特性,这些特性使得它在电子电路中有着广泛的应用。

首先,运算放大器具有高增益。

在理想情况下,运算放大器的增益是无穷大,这意味着它可以对微小的输入信号进行高度放大。

其次,运算放大器具有高输入阻抗和低输出阻抗。

这使得它可以接受各种不同的输入信号,并且可以驱动各种不同的负载。

此外,运算放大器还具有良好的线性特性、宽带宽等特点。

四、应用领域由于其优良的工作特性,运算放大器在电子电路中有着广泛的应用。

它可以用于信号放大、滤波、比较、积分、微分等各种电路中。

专业自动化英语句子翻译

专业自动化英语句子翻译

专业自动化英语句子翻译第一篇:专业自动化英语句子翻译专业英语翻译1.In the case of a resistor(电阻), the voltage-current relationship is given by Ohm’s law, which states that the voltage across the resistor is equal to the current through the resistor multiplied by the value of the resistance.就电阻而言,电压—电流的关系由欧姆定律决定,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。

2. the fundamental law that is applied in(被应用)this method is Kirchhoff’s first law, which states that the algebraic sum of the voltages(电压的代数和)around a closed loop is 0,or ,in any closed loop, the sum of the voltage rises must equal the sum of the voltage drops.这里用到的基本定理是基尔霍夫第一定理,这一定理指出:闭合回路电压代数和为0,在任何闭合回路中,电压增加总量与电压下降的总量相同。

3.Mesh analysis consists of assuming that currents—termed loop(回路)currents—flow in each loop of a network, algebraically summing(代数和)the voltage drops around each loop, and setting each sum equal to 0.网孔分析指的是:假设有一个电流—即所谓的回路电流—流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。

自动化专业英语教程(王宏文)第二版全文翻译

自动化专业英语教程(王宏文)第二版全文翻译

《自动化专业英语教程》-王宏文-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。

自动化专业中英文对照外文翻译文献

自动化专业中英文对照外文翻译文献

中英文对照外文翻译Automation of professional developmentAutomation in the history of professional development, "industrial automation" professional and "control" professional development of the two main line, "industrial automation" professional from the first "industrial enterprises electrified" professional.In the 1950s, the New China was just founded, the 100-waste question, study the Soviet Union established system of higher education, Subdivision professional. Corresponding to the country in the construction of industrial automation and defense, military construction in automatic control, successively set up the "electrification of industrial enterprises" professional and "control" professional (at that time in many schools, "Control" professional secrecy is professional) . After several former professional name of evolution (see below), and gradually develop into a "biased towards applications, biased towards strong," Automation, and the latter to maintain professional name of "control" basically unchanged (in the early days also known as the "automatic learning And remote learning, "" Automatic Control System "professional), and gradually develop into a" biased towards theory, biased towards weak, "the automation professional, and come together in 1995, merged into aunified" automatic "professional . In 1998, according to the Ministry of Education announced the latest professional undergraduate colleges and universities directory, adjusted, the merger of the new "automated" professional include not only the original "automatic" professional (including "industrial automation" professional and "control" professional ), Also increased the "hydraulic transmission and control of" professional (part), "electrical technology" professional (part) and "aircraft guidance and control of" professional (part).Clearly, one of China's automation professional history of the development of China's higher education actually is a new development of the cause of a microcosm of the history, but also the history of New China industrial development of a miniature. Below "industrial automation" professional development of the main line of this example, a detailed review of its development process in the many professional name change (in real terms in the professional content changes) and its industrial building at the time of the close relationship.First a brief look at the world and China's professional division history. We know that now use the professional division is largely from the 19th century to the beginning of the second half of the first half of the 20th century stereotypes of the engineering, is basically industry (products) for the objects to the division, they have been the image of people Known as the "industry professionals" or "trade associations." At present the international education system in two categories, with Britain and the United States as the representative of the education system not yet out of "industry professionals" system, but has taken the "generalist" the road of education and the former Soviet Union for Europe (close to the Soviet Union) as the representative The education system, at the beginning of theimplementation of "professionals" education, professional-very small, although reforms repeatedly, but to the current "industry professionals" are still very obvious characteristics.In the 1950s, just after the founding of New China, a comprehensive study and the Soviet Union and sub-professional very small; Since reform and opening up, only to Britain and the United States to gradually as the representative of the education system to move closer, and gradually reduce the professional, the implementation of "generalist" education through a number of professional Restructuring and merger (the total number of professionals from the maximum of 1,343 kinds of gradually reducing the current 249 kinds), although not out of "industry professionals" and "Mei Ming," but many of the colleges and universities, mostly only one of a Professional, rather than the past more than a professional.Before that, China's first professional automation from the National University in 1952 when the first major readjustment of the establishment of professional - electrified professional industrial enterprises. At that time, the Soviet Union assistance to the construction of China's 156 large industrial enterprises, automation of much-needed electrical engineering and technical personnel, and such professional and technical personnel training, and then was very consistent with China's industrial construction. By the 1960s, professional name changed to "industrial electric and automation," the late 1970s when to resume enrollment "Electric Industrial Automation" professional. This is not only professional name changes, but has its profound meaning, it reflects China's industries from "electrified" step by step to the "automatic" into the real history and that part of the development trend of China's automation professional reflects how urgent countries Urgent for the country'seconomic construction services that period of history and development of real direction.1993, after four years of the third revision of the undergraduate professional directories, the State Education Commission issued a call "system integrity, more scientific and reasonable, the harmonization of norms," the "ordinary professional directory of undergraduate colleges and universities." "Electric Industrial Automation" and "production process automation" merger of the two professional electrician to set up a kind of "industrial automation" professional, by the then Ministry of Industry Machinery centralized management colleges and universities to set up industrial automation teaching guide at the Commission, responsible for the "Industrial Automation "professional teaching and guiding work at the same time," Control "was attributable to the professional category of electronic information, the then Ministry of Industry of electronic centralized management control to set up colleges and universities teaching guide at the Commission, responsible for the" control " Professional teaching guide our work. After the professional adjustment, further defined the "industrial automation" professional and "control" professional "- both strong and weak, hardware and software into consideration and control theory and practical system integration, and the movement control, process control and other targets of control "The common characteristics with the training objectives, but also the basic set of" industrial automation "biased towards strong, professional, biased towards applications," Control "professional biased towards weak, biased towards the theory of professional characteristics and pattern of division of labor. 1995, the State Education Commission promulgated the "(University) undergraduate engineering leading professional directory", the electrical category "industrialautomation" professional and the original electronic information such as "control" of professional electronic information into a new category of "automatic" professional . As this is the leading professional directory, are not enforced, coupled with general "industrial automation" strong or weak, both professional "into" a weak professional category of electronic information is not conducive to professional development and thus many Schools remain "industrial automation" professional and "control" the situation of professional co-exist. Since 1996 more, again commissioned by the Ministry of National Education Ministry of Industry and electronic machinery industries of other parts of the establishment of the new session (second session) centralized management guidance at the University Teaching Commission, making the leading professionals have not been effective Implemented.1998, to meet the country's economic construction of Kuan Koujing personnel training needs, further consolidation of professional and international "generalist" education track by the Ministry of Education announced a fourth revision of the latest "Universities Undergraduate Catalog." So far in the use of the directory, the total number of professionals from the third amendments to the 504 kinds of substantially reduced to 249 species, the original directory is strong, professional electrician and a weak professional category such as electronics and information into categories Electric power, the unity of Information, a former electrician at the same time kind of "industrial automation" professional and the type of electronic information "control" professional formal merger, together with the "hydraulic transmission and control of" professional (part) , "Electric technology" professional (part) and "aircraft guidance and controlof" professional (part), the composition of the new (enforcement) are electrical information such as "automatic" professional. According to statistics, so far the country has more than 200 colleges and universities set up this kind of "automatic" professional. If the name of automation as part of their professional expertise (such as "electrical engineering and automation," "mechanical design and manufacturing automation," "agricultural mechanization and automation" and other professionals) included Automation has undoubtedly is the largest in China A professional.Of the characteristics of China's automation professional:Recalling China's professional history of the development of automation, combined with the corresponding period of the construction of China's national economy to the demand for automation and automated the development of the cause, it is not difficult to sum up following professional characteristics:(1) China's automation professional is not only a relatively long history (since 1952 have been more than 50 years), and from the first day of the establishment of professional automation, has been a professional one of the countries in urgent need, therefore the number of students has also been The largest and most employers welcome the allocation of the professional one.(2) China's automation is accompanied by a professional from the electrification of China's industrial automation step by step to the development of stable development, professional direction and the main content from the first prominent electrified "the electrification of industrial enterprises" step by step for the development of both the electric and automation " Industrial electric and automation ", highlighting the electrical automation" Electric Industrial Automation "and prominent automation" industrial automation ", then the merger of professional education reform in1995 and" control "of professional content into a broader" automated " Professional. From which we can see that China's automation professional Although the initial study in the Soviet education system established under the general environment, but in their development and the Soviet Union or the United States and Britain did not copy the mode, but with China's national conditions (to meet national needs for The main goal) from the innovation and development of "cross-industry professionals," features the professional.自动化专业的发展自动化专业的发展历史中,有“工业自动化”专业与“自动控制”专业两条发展主线,其中“工业自动化”专业最早源于“工业企业电气化”专业。

通信工程类外文翻译、中英文翻译、外文文献翻译

通信工程类外文翻译、中英文翻译、外文文献翻译

宽带,稳定增益,FET输入的运算放大器特征:●400MHz稳态增益带宽●低输入偏置电流:5pA●高输入电阻:1012Ω或1.0pF●极低的dG/dP :0.006%/0.009°●低扭曲:在5MHz为90dB●快速设置:17ns(0.01%)●高输出电流:60mA●超速传动快速恢复应运:●宽带光电二极管放大器●峰值检测●CCD输出缓冲器●ADC输入缓冲器●高速积分仪●检测和测量前端宽带光电二极管转移阻抗放大器一种包含宽带,稳态增益,电压反馈运算OPA655,当有FET输入时,能为ADC 缓冲器和转移阻抗设备提供十分宽广的动态放大范围。

良好的脉冲设置和极低的调和扭曲将支持更高要求的ADC输入缓冲需要。

宽带稳态增益和FET输入在高速,低噪声积分器中允许特殊的操作。

由FET输入所提供的高输入阻抗和低偏置电流能被极低的输入电压噪声支持,在宽带光电二极管设备中达到极低的积分噪声。

给定的OPA655高达240MHZ的增益带宽产品可以提供高宽带转移阻抗。

如下图所示,来自于47PF 的电容高达1兆欧的转移阻抗可以提供1MHZ,-3增益的带宽。

性能讨论:使用FET输入阻抗的放大器具有同那些用biploar阻抗相似的功能外,还有一些重要的优点。

在标准运算中,低输入偏置电流可以减少由于一个非常高或者未知源的阻抗所产生的直流电压错误。

在绝大多数OPA655使用中,输出直流错误只是由于低于1mv输入激励电压所造成的。

类似地,输入电流噪声几乎对输出电流噪声影响很小。

对于低电流噪声和低于6nv/ 输入电压噪声的OPA655对于宽带阻抗的应用极为有益。

OPA655的高宽带增益和近乎线性的输出,可以通过5MHz对于2v的峰值电压摆动在100Ω处,来控制调和扭曲低于-90dbc.在低频率或高负载阻抗时,这种显著地减少扭曲可以被观察到。

图1 放大器的内部原理操作时需考虑的问题对于PC板外形的仔细观察可以实现如典型性能曲线中所示的特殊操作。

运算放大器主要参数

运算放大器主要参数

运算放大器主要参数运算放大器(Operational Amplifier,简称Op-Amp)是电子电路中的一个重要部件,广泛应用于模拟电路电路中。

它具有输入阻抗高、增益大、输出阻抗低等特点,可以起到信号放大、滤波、求积分、求微分、比较等作用。

在使用运算放大器时,需要了解其主要参数,以便选择合适的运算放大器并设计出稳定可靠的电路。

下面介绍几个常见的主要参数。

1. 增益(Gain)增益是运算放大器的一个重要指标,表示运算放大器输入和输出之间的电压增值比。

具体地,电压增益为输出电压与输入电压之比。

通常用dB(分贝)表示,公式为:voltage gain = 20*log (Vout / Vin)。

增益越大,表示放大器的输出电压变化更灵敏,适合要求精度高的应用。

但是,增益不能过大,否则容易产生噪声、漂移等问题。

2. 输入阻抗(Input Impedance)输入阻抗指运算放大器对输入信号的电阻抵抗,也就是输入端电路的电阻。

输入阻抗越高,说明输入信号被放大器“欢迎”,放大器可以提供更好的输入信号放大效果。

一般而言,输入阻抗越高,保证了信号的高噪声性,但是会降低放大器的带宽。

3. 输出阻抗(Output Impedance)输出阻抗是指运算放大器的输出端对外部电路所带来的等效电阻抗。

输出阻抗越低,说明输出信号更能维持所需的电压波形,应用范围更广。

一般而言,输出阻抗越低意味着输出信号更稳定,功率损耗更小等优点。

4. 偏置电流(Bias Current)偏置电流是指运算放大器内部存在的无输入信号时流经输入端的电流。

这种电流流过时序电阻等元器件,它们产生的电压陡度呈指数增长,这种电流有可能影响放大器和被测电路的稳定性和性能。

因此,它的大小要求越小越好。

5. 限幅电流(Slew Rate)当运算放大器输出电压变化速度很快时,就会出现斜率限制(Slew Rate)现象。

限幅电流是输出电压的变化率,量纲为伏特/微秒(V/μs),表示放大器输出端电压的变化速率。

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理

最简单讲解运算放大器的工作原理运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。

一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。

最基本的运算放大器如图1-1。

一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。

原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。

但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路运算放大器如图1-2。

当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout = ( V+ -V-) * Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。

因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。

运算放大器中英文资料外文翻译文献

运算放大器中英文资料外文翻译文献

运算放大器中英文资料外文翻译文献A: The Operational AmplifierOne problem with electronic devices corresponding to the generalized amplifiers is that the gains, Au or A~, depend upon internal properties of the two-port system (p, fl, R~, Ro, etc.)?~ This makes design difficult since these parameters usually vary from device to device, as well as with temperature. The operational amplifier, or Op-Amp, is designed to minimize this dependence and to maximize the ease of design. An Op-Amp is an integrated circuit that has many component part such as resistors and transistors built into the device. At this point we will make no attempt to describe these inner workings.A totally general analysis of the Op-Amp is beyond the scope of some texts. We will instead study one example in detail, then present the two Op-Amp laws and show how they can be used for analysis in many practical circuit applications. These two principles allow one to design many circuits without a detailed understanding of the device physics. Hence, Op-Amps are quite useful for researchers in a variety of technical fields who need to build simple amplifiers but do not want to design at the transistor level. In the texts of electrical circuits and electronics they will also show how to build simple filter circuits using Op-Amps. The transistor amplifiers, which are the building blocks from which Op-Amp integrated circuits are constructed, will be discussed.The symbol used for an ideal Op-Amp is shown in Fig. 1-2A-1. Only three connections areshown: the positive and negative inputs, and the output. Not shown are other connections necessary to run the Op-Amp such as its attachments to power supplies and to ground potential. The latter connections are necessary to use the Op-Amp in a practical circuit but are not necessary when considering the ideal 0p-Amp applications we study in this chapter. The voltagesat the two inputs and the output will berepresented by the symbols U+, U-, and Uo. Each is measured with respect t~ ground potential. Operational amplifiers are differential devices. By this we mean that the output voltage with respect to ground is given by the expressionUo =A(U+ -U-) (1-2A-l) where A is the gain of the Op-Amp and U+ and U - the voltages at inputs. In other words, the output voltage is A times the difference in potential between the two inputs.Integrated circuit technology allows construction of many amplifier circuits on a single composite "chip" of semiconductor material. One key to the success of an operational amplifier is the "cascading" of a number of transistor amplifiers to create a very large total gain. That is, the number A in Eq. (1-2A-1) can be on the order of 100,000 or more. (For example, cascading of five transistor amplifiers, each with a gain of 10, would yield this value for A.) A second important factor is that these circuits can be built in such a way that the current flow into each of the inputs is very small. A third important design feature is that the output resistance of the operational amplifier (Ro) is very small. This in turn means that the output of the device acts like an ideal voltage source.We now can analyze the particular amplifier circuit given in Fig. 1-2A-2 using these characteristics. First, we note that the voltage at the positive input, U +, is equal to the source voltage, U + = Us. Various currents are defined in part b of the figure. Applying KVL around the outer loop in Fig. 1-2A-2b and remembering that the output voltage, Uo, is measured with respect to ground, we have-I1R1-I2R2+U0=0(1-2A-2)Since the Op-Amp is constructed in such a way that no current flows into either the positive or negative input, I- =0. KCL at the negative input terminal then yieldsI1 = I2Using Eq. (1-2A-2) and setting I1 =I2 =I,U0=(R1+R2)I(1-2A-3)We may use Ohm's law to find the voltage at the negative input, U-, noting the assumed current direction and the fact that ground potential is zero volts:(U--0)/ R1=ISo, U-=IR1and from Eq. (1-2A-3), U- =[R1/(R1+R2)] U0Since we now have expressions for U+ and U-, Eq. (1-2A-l) may be used to calculate the output voltage,U 0 = A(U+-U-)=A[US-R1U/(R1+R2)]Gathering terms,U0 =[1+AR1/(R1+R2)]= AU S(1-2A-4) and finally,A U = U0/U S= A(R1+R2)/( R1+R2+AR1) (1-2A-5a) This is the gain factor for the circuit. If A is a very large number, large enough that AR~ >> (R1+R2),the denominator of this fraction is dominated by the AR~ term. The factor A, which is in both the numerator and denominator, then cancels out and the gain is given by the expressionA U =(R1+R2)/ R1(1-2A-5b) This shows that if A is very large, then the gain of the circuit is independent of the exact value of A and can be controlled by the choice of R1and R2. This is one of the key features of Op-Amp design the action of the circuit on signals depends only upon the external elements which can beeasily varied by the designer and which do not depend upon the detailed character of the Op-Amp itself. Note that if A=100 000 and (R1 +R2)/R1=10, the price we have paid for this advantage is that we have used a device with a voltage gain of 100 000 to produce an amplifier with a gain of 10. In some sense, by using an Op-Amp we trade off "power" for "control."A similar mathematical analysis can be made on any Op-Amp circuit, but this is cumbersome and there are some very useful shortcuts that involve application of the two laws of Op-Amps which we now present.1) The first law states that in normal Op-Amp circuits we may assume that the voltage difference between the input terminals is zero, that is,U+ =U-2) The second law states that in normal Op-Amp circuits both of the input currents may be assumed to be zero:I+ =I- =0The first law is due to the large value of the intrinsic gain A. For example, if the output of an Op- Amp is IV and A= 100 000, then ( U+ - U- )= 10-SV. This is such a small number that it can often be ignored, and we set U+ = U-. The second law comes from the construction of the circuitry inside the Op-Amp which is such that almost no current flows into either of the two inputs.B: TransistorsPut very simply a semiconductor material is one which can be 'doped' to produce a predominance of electrons or mobile negative charges (N-type); or 'holes' or positive charges (P- type). A single crystal of germanium or silicon treated with both N-type dope and P-type dope forms a semiconductor diode, with the working characteristics described. Transistors are formed in a similar way but like two diodes back-to-back with a common middle layer doped in the opposite way to the two end layers, thus the middle layer is much thinner than the two end layers or zones.Two configurations are obviously possible, PNP or NPN (Fig. 1-2B-l). These descriptions are used to describe the two basic types of transistors. Because a transistor contains elements with two different polarities (i.e., 'P' and 'N' zones), it is referred to as a bipolar device, or bipolartransistor.A transistor thus has three elements with three leads connecting to these elements. To operate in a working circuit it is connected with two external voltage or polarities. One external voltage is working effectively as a diode. A transistor will, in fact, work as a diode by using just this connection and forgetting about the top half. An example is the substitution of a transistor for a diode as the detector in a simple radio. It will work just as well as a diode as it is working as a diode in this case.The diode circuit can be given forward or reverse bias. Connected with forward bias, as in Fig.l-2B-2, drawn for a PNP transistor, current will flow from P to the bottom N. If a second voltage is applied to the top and bottom sections of the transistor, with the same polarity applied to the bottom, the electrons already flowing through the bottom N section will promoteaflow of current through the transistor bottom-to-top.By controlling the degree of doping in the different layers of the transistor during manufacture, this ability to conduct current through the second circuit through a resistor can be very marked. Effectively, when the bottom half is forward biased, the bottom section acts as a generous source of free electrons (and because it emits electrons it is called the emitter). These are collected readily by the top half, which is consequently called the collector, but the actual amount of current which flows through this particular circuit is controlled by the bias applied at the center layer, which is called the base.Effectively, therefore, there are two separate 'working' circuits when a transistor is working with correctly connected polarities (Fig. 1-2B-3). One is the loop formed by the bias voltage supply encompassing the emitter and base. This is called the base circuit or input circuit. The second is the circuit formed by the collector voltage supply and all three elements of the transistor. This is called the collector circuit or output circuit. (Note: this description applies onlywhen the emitter connection is common to both circuits ~ known as common emitter configuration.) This is the most widely used way of connecting transistors, but there are, of course, two other alternative configurations -- common base and common emitter. But, the same principles apply in the working of the transistor in each case.The particular advantage offered by this circuit is that a relatively small base current can control and instigate a very much larger collector current (or, more correctly, a small input power is capable of producing a much larger output power). In other words, the transistor works as an amplifier.With this mode of working the base-emitter circuit is the input side; and the emitter through base to collector circuit the output side. Although these have a common path through base and emitter, the two circuits are effectively separated by the fact that as far as polarity of the base circuit is concerned, the base and upper half of the transistor are connected as a reverse biased diode. Hence there is no current flow from the base circuit into the collector circuit.For the circuit to work, of course, polarities of both the base and collector circuits have to be correct (forward bias applied to the base circuit, and the collector supply connected so that the polarity of the common element (the emitter) is the same from both voltage sources). This also means that the polarity of the voltages must be correct for the type of transistor. In the case of a PNP transistor as described, the emitter voltage must be positive. It follows that both the base and collector are negatively connected with respect to the emitter. The symbol for a PNP transistor has an arrow on the emitter indicating the direction of current flow, always towards the base. ('P' for positive, with a PNP transistor).In the case of an NPN transistor, exactly the same working principles apply but the polarities of both supplies are reversed (Fig. 1-2B-4). That is to say, the emitter is always made negativerelative to base and collector ('N' for negative in the caseof an NPN transistor). This is also inferred by the reverse direction of the arrow on the emitter in the symbol for an NPN transistor, i.e., current flow away from the base.While transistors are made in thousands of different types, the number of shapes in which they are produced is more limited and more or less standardized in a simple code -- TO (Transistor Outline) followed by a number.TO1 is the original transistor shape a cylindrical 'can' with the three leads emerging in triangular pattern from the bottom. Looking at the base, the upper lead in the 'triangle' is the base, the one to the fight (marked by a color spot) the collector and the one to the left the emitter.[2] The collector lead may also be more widely spaced from the base lead than the emitter lead.In other TO shapes the three leads may emerge in similar triangular pattern (but not necessarily with the same positions for base, collector and emitter), or in-line. Just to confuse the issue there are also sub-types of the same TO number shape with different lead designations. The TO92, for example, has three leads emerging in line parallel to a flat side on an otherwise circular 'can' reading 1,2,3 from top to bottom with the flat side to the right looking at the base.With TO92 sub-type a (TO92a): 1=emitter2=collector3=baseWith TO92 sub-type b (TO92b): 1=emitter2=base3=collectorTo complicate things further, some transistors may have only two emerging leads (the third being connected to the case internally); and some transistor outline shapes are found with more than three leads emerging from the base. These, in fact, are integrated circuits (ICs), packaged in the same outline shape as a transistor. More complex ICs are packaged in quite different form, e.g., flat packages.Power transistors are easily identified by shape~ They are metal cased with an elongated bottom with two mounting holes. There will only be two leads (the emitter and base) and these will normally be marked. The collector is connected internally to the can, and so connection to the collector is via one of the mounting bolts or bottom of the can.A 运算放大器对应于像广义放大器这样的电子装置,存在的一个问题就是它们的增益AU或AI,它们取决于双端口系统(µ、β、Ri、R等)的内部特性。

运算放大器通俗讲解

运算放大器通俗讲解

运算放大器通俗讲解1什么是运算放大器运算放大器(Operational Amplifier,简称Op Amp)是一种集成电路,它的功能是放大电压差异。

在电路中,运算放大器的两个输入端口通常被标记为正号和负号。

正输入端(+)接收输入信号,负输入端(-)接收参考信号。

Op Amp放大输入信号并输出到负载电阻或下一级电路中。

2运算放大器的特点运算放大器有很多特点,比如高增益、低失真、高输入阻抗、低输出阻抗等等。

以下是几个重要的特点:2.1高增益Op Amp的增益很高,达到几万以上,而且增益稳定性很好。

因此,在电路中它通常用来放大微弱的信号。

2.2高输入阻抗Op Amp的输入阻抗很高,因此对输入信号的影响很小。

这对于需要输入高阻抗信号的电路来说非常有用。

2.3低输出阻抗Op Amp的输出阻抗很低,因此它可以驱动负载电阻或下一级电路而不会影响输出信号的质量。

3运算放大器的应用运算放大器有很多常见的应用,例如:3.1比较器将运算放大器的负输入端接地,正输入端接收信号。

当正输入端的电压高于负输入端时,Op Amp的输出电平变成高电平。

反之,输出电平变成低电平。

3.2滤波器将运算放大器连接到RC电路上,可以制作出滤波器。

滤波器可以用来去除电路中的噪声和杂波,使信号更加干净。

3.3放大器将运算放大器的负输入端接地,正输入端接收信号,并在输出端接上一个负载电阻,就形成了一个放大器。

放大器可以将微弱的信号放大到足够的程度。

4总结运算放大器是一种功能强大的电子元器件,具有高增益、低失真、高输入阻抗、低输出阻抗等特点。

它广泛应用于比较器、滤波器、放大器等电路中,并在电子电路设计中扮演着重要的角色。

自动化专业英语教程(王宏文)第二版全文翻译

自动化专业英语教程(王宏文)第二版全文翻译

《自动化专业英语教程》-王宏文-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。

运算放大器的工作原理

运算放大器的工作原理

运算放大器的工作原理运算放大器(Operational Amplifier,简称Op-Amp)是一种用于放大电压信号的集成电路。

它通常被用于各种电子设备中,如放大器、滤波器、比较器等。

运算放大器的工作原理是通过放大输入信号并输出一个放大后的信号,同时还具有一些特殊的性质,如高输入阻抗、低输出阻抗、大增益等。

在本文中,我们将详细介绍运算放大器的工作原理及其应用。

首先,让我们来了解一下运算放大器的基本结构。

一个典型的运算放大器通常由一个差分输入级、一个级联的电压放大器和一个输出级组成。

差分输入级通常由两个输入端和一个差动放大器组成,用于将输入信号进行放大。

电压放大器用于进一步放大信号,并控制放大倍数。

输出级则用于将放大后的信号输出到外部电路中。

运算放大器的工作原理基于反馈机制。

通过将一部分输出信号反馈到输入端,可以控制放大器的增益和性能。

负反馈可以使运算放大器的增益更加稳定,并且可以控制输出信号的精确度。

正反馈则可以用于产生振荡或者比较器等特殊应用。

运算放大器的工作原理可以用一个简单的数学模型来描述。

假设一个运算放大器的输入电压为Vin,输出电压为Vout,放大倍数为A,则有以下关系:Vout = A * (Vin+ - Vin-)其中Vin+和Vin-分别代表运算放大器的正输入端和负输入端的电压。

根据这个数学模型,我们可以看出,当Vin+大于Vin-时,输出电压Vout为正值;当Vin+小于Vin-时,输出电压Vout为负值。

这就是运算放大器的基本工作原理。

在实际应用中,运算放大器可以用于各种电子电路中。

比如,它可以被用作信号放大器,将微弱的信号放大到可以被测量或者控制的范围内。

它也可以被用作比较器,用于比较两个信号的大小。

此外,运算放大器还可以被用作滤波器,通过控制输入信号的频率来实现滤波效果。

总之,运算放大器是一种非常重要的电子器件,它的工作原理基于反馈机制,并且可以被用于各种电子电路中。

通过控制输入信号和反馈信号,可以实现对输出信号的精确控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动化专业外文翻译--运算放大器UNIT 2A: The Operational AmplifierOne problem with electronic devices corresponding to the generalized amplifiers is that the gains, Au or A~, depend upon internal properties of the two-port system (p, fl, R~, Ro, etc.)?~ This makes design difficult since these parameters usually vary from device to device, as well as with temperature. The operational amplifier, or Op-Amp, is designed to minimize this dependence and to maximize the ease of design. An Op-Amp is an integrated circuit that has many component part such as resistors and transistors built into the device. At this point we will make no attempt to describe these inner workings.A totally general analysis of the Op-Amp is beyond the scope of some texts. We will instead study one example in detail, then present the two Op-Amp laws and show howthey can be used for analysis in many practical circuit applications. These two principles allow one to design many circuits without a detailed understanding of the device physics. Hence, Op-Amps are quite useful for researchers in a variety of technical fields who need to build simple amplifiers but do not want to design at the transistor level. In the texts of electrical circuits and electronics they will also show how to build simple filter circuits using Op-Amps. The transistor amplifiers, which are the building blocks from which Op-Amp integrated circuits are constructed, will be discussed.The symbol used for an ideal Op-Amp is shown in Fig. 1-2A-1. Only three connections are shown: the positive and negative inputs, and the output. Not shown are other connections necessary to run the Op-Amp such as its attachments to power supplies and to ground potential. The latterconnections are necessary to use the Op-Amp in a practical circuit but are not necessary when considering the ideal 0p-Amp applications we study in this chapter. The voltages at the two inputs and the outputwill berepresented by the symbols U+, U-, and Uo. Each is measured with respect t~ ground potential. Operational amplifiers are differential devices. By this we mean that the output voltage with respect to ground is given by the expressionUo=A(U+ -U-) (1-2A-l)where A is the gain of the Op-Amp and U+ and U - the voltages at inputs. In other words, the output voltage is A times the difference in potential between the two inputs.Integrated circuit technology allows construction of many amplifier circuits on a single composite "chip" of semiconductor material. One key to the success of an operational amplifier is the "cascading" of a number of transistor amplifiers to create a very large total gain. That is, the number A in Eq. (1-2A-1) can be on the order of 100,000 or more. (For example, cascading of five transistor amplifiers, each with a gain of 10, would yield this value for A.) A second important factor is that these circuits can be built in such a way that the current flow into each of the inputs is very small. A third important design feature is that the output resistance of the operational amplifier (Ro) is very small. This in turn means that the output of the device acts like an ideal voltage source. We now can analyze the particular amplifier circuit given in Fig. 1-2A-2 using these characteristics. First, wenote that the voltage at the positive input, U +, is equal to the source voltage, U + = Us. Various currents are defined in part b of the figure. Applying KVL around the outer loop in Fig. 1-2A-2b and remembering that the output voltage, Uo, is measured with respect to ground, we have-I1R1-I2R2+U=0(1-2A-2)Since the Op-Amp is constructed in such a waythat no current flows into either the positive or negative input, I-=0.KCL at the negative input terminal thenyieldsI1= I2Using Eq. (1-2A-2) and setting I1 =I2=I,U0=(R1+R2)I (1-2A-3)We may use Ohm's law to find the voltage at the negative input, U-, noting the assumed current direction and the fact that ground potential is zero volts:(U--0)/ R1=I So, U-=IR1and from Eq. (1-2A-3), U- =[R1/(R1+R2)] U0 Since we now have expressions for U+ and U-, Eq. (1-2A-l) may be used to calculate the output voltage,U0 = A(U+-U-)=A[US-R1U/(R1+R2)]Gathering terms,U 0 =[1+AR1/(R1+R2)]= AUS(1-2A-4)and finally,AU = U/US= A(R1+R2)/( R1+R2+AR1)(1-2A-5a)This is the gain factor for the circuit. If A is a very large number, large enough that AR~ >> (R1+R2),the denominator of this fraction is dominated by the AR~ term. The factor A, which is in both the numerator anddenominator, then cancels out and the gain is given by the expressionA U =(R1+R2)/ R1(1-2A-5b)This shows that if A is very large, then the gain of the circuit is independent of the exact value of A and can be controlled by the choice of R1and R2. This is one of the key features of Op-Amp design the action of the circuit on signals depends only upon the external elements which can beeasily varied by the designer and which do not depend upon the detailed character of the Op-Amp itself. Note that if A=100 000 and (R1 +R2)/R1=10, the price we have paid for this advantage is that we have used a device with a voltage gain of 100 000 to produce an amplifier with a gain of 10. In some sense, by using an Op-Amp we trade off "power" for "control."A similar mathematical analysis can be made on any Op-Amp circuit, but this iscumbersome and there are some very useful shortcuts that involve application of the two laws of Op-Amps which we now present.1) The first law states that in normal Op-Amp circuits we may assume that the voltage difference between the input terminals is zero, that is,U+ =U- 2) The second law states that in normal Op-Amp circuits both of the input currents may be assumed to be zero:I+ =I- =0The first law is due to the large value of the intrinsic gain A. For example, if the output of an Op- Amp is IV and A= 100 000, then ( U+ - U- )= 10-SV. This is such a small number that it can often be ignored, and we set U+ = U-. The second law comes from the construction of the circuitry inside the Op-Amp which is such that almost no current flows into either of the two inputs.B: TransistorsPut very simply a semiconductor material is one which can be 'doped' to produce a predominance of electrons or mobile negative charges (N-type); or 'holes' or positive charges (P- type). A single crystal of germanium or silicon treated with both N-type dope and P-type dope forms a semiconductor diode, with the working characteristics described. Transistors are formed in a similar way but like two diodes back-to-back with a common middle layer doped in the opposite way to the two end layers, thus the middle layer is much thinner than the two end layers or zones. Two configurations are obviously possible, PNP or NPN (Fig. 1-2B-l). These descriptions are used to describe the two basic types of transistors. Because a transistor contains elements with twodifferent polarities (i.e., 'P' and 'N' zones), it is referred to as a bipolar device, or bipolar transistor.A transistor thus has three elements with three leads connecting to these elements. To operate in a working circuit it is connected with two external voltage or polarities. One external voltage is working effectively as a diode. A transistor will, in fact, work as a diode by using just this connection and forgetting about the top half. An example is the substitution of a transistor for a diode as the detector in a simple radio. It will work just as well as a diode as it is working as a diode in this case.The diode circuit can be given forward or reverse bias. Connected with forward bias, as in Fig.l-2B-2, drawn for a PNP transistor, current will flow from P to the bottom N. If a second voltage is applied to the top and bottom sections of the transistor, with thesame polarity applied to the bottom, the electrons already flowing through the bottom N section will promoteaflow of current through the transistor bottom-to-top.By controlling the degree of doping in the different layers of the transistor during manufacture, this ability to conduct current through the second circuit through a resistor can be very marked. Effectively, when the bottom half is forward biased, the bottom section acts as a generous source of free electrons (and because it emits electrons it is called the emitter). These are collected readily by the top half, which is consequently called the collector, but the actual amount of current which flowsthrough this particular circuit is controlled by the bias applied at the center layer, which is called the base.Effectively, therefore, there are two separate 'working' circuits when a transistor is working with correctly connected polarities (Fig. 1-2B-3). One is the loop formed by the bias voltage supply encompassing the emitter and base. This is called the base circuit or input circuit. The second is the circuit formed by the collector voltage supply and all three elements of the transistor. This is called the collector circuit or output circuit. (Note: this description applies only when the emitter connection is common to both circuits ~ known as common emitter configuration.) This is the most widely used way of connecting transistors, but there are, of course, two other alternative configurations -- common base and common emitter. But, the same principles apply inthe working of the transistor in each case. The particular advantage offered by this circuit is that a relatively small base current can control and instigate a very much larger collector current (or, more correctly, a small input power is capable of producing a much larger output power). In other words, the transistor works as an amplifier.With this mode of working the base-emitter circuit is the input side; and the emitter through base to collector circuit the output side. Although these have a common path through base and emitter, the two circuits are effectively separated by the fact that as far as polarity of the base circuit is concerned, the base and upper half of the transistor are connected as a reverse biased diode. Hence there is no current flow from the base circuit into the collector circuit.For the circuit to work, of course,polarities of both the base and collector circuits have to be correct (forward bias applied to the base circuit, and the collector supply connected so that the polarity of the common element (the emitter) is the same from both voltage sources). This also means that the polarity of the voltages must be correct for the type of transistor. In the case of a PNP transistor as described, the emitter voltage must be positive. It follows that both the base and collector are negatively connected with respect to the emitter. The symbol for a PNP transistor has an arrow on the emitter indicating the direction of current flow, always towards the base. ('P' for positive, with a PNP transistor).In the case of an NPN transistor, exactly the same working principles apply but the polarities of both supplies are reversed (Fig. 1-2B-4). That is to say, the emitter is always made negative relative to base andcollector ('N' for negative in thecaseof an NPN transistor). This is also inferred by the reverse direction of the arrow on the emitter in the symbol for an NPN transistor, i.e., current flow away from the base.While transistors are made in thousands of different types, the number of shapes in which they are produced is more limited and more or less standardized in a simple code -- TO (Transistor Outline) followed by a number.TO1 is the original transistor shape a cylindrical 'can' with the three leads emerging in triangular pattern from the bottom. Looking at the base, the upper lead in the 'triangle' is the base, the one to the fight (marked by a color spot) the collector and the one to the left the emitter.[2] Thecollector lead may also be more widely spaced from the base lead than the emitter lead.In other TO shapes the three leads may emerge in similar triangular pattern (but not necessarily with the same positions for base, collector and emitter), or in-line. Just to confuse the issue there are also sub-types of the same TO number shape with different lead designations. The TO92, for example, has three leads emerging in line parallel to a flat side on an otherwise circular'can' reading 1,2,3 from top to bottom with the flat side to the right looking at the base.With TO92 sub-type a (TO92a): 1=emitter2=collector3=base With TO92 sub-type b (TO92b):1=emitter2=base3=collectorTo complicate things further, some transistors may have only two emerging leads (the third being connected to the case internally); and some transistor outline shapes are found with more than three leads emerging from the base. These, in fact, are integrated circuits (ICs), packaged in the same outline shape as a transistor. More complex ICs are packaged in quite different form, e.g., flat packages.Power transistors are easily identified by shape~ They are metal cased with an elongated bottom with two mounting holes. There will only be two leads (the emitter and base) and these will normally be marked. The collector is connected internally to the can, and so connection to the collector is via one of the mounting bolts or bottom of the can.A 运算放大器对应于像广义放大器这样的电子装置,存在的一个问题就是它们的增益AU或AI,它们取决于双端口系统(µ、β、Ri、R等)的内部特性。

相关文档
最新文档