《一次函数与几何图形综合》 专题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数与几何图形综合》专题

总论:函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;

函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:

一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;

另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。

一次函数与几何综合题是八年级学生初次接触一种用代几综合解决问题的方法,这种方法和能力是九年级解决中考压轴题所必须具备的。

1.代数

(1)表达什么函数(包括其系数的代数意义、几何意义、物理意义)

(2)显现怎样的图形(自身、与坐轴、与其他图形) (3)既是一个方程,也是一个坐标

4)藏有那些数据,含有什么些关系(5)要建立某种代数关系缺少那些数据

2.几何

(1)基本图象有几个 (2)图象之间有怎样关系(3)图象与所要证明(求解)的结论怎样的关联(4)要建立图象与图象之间的关系缺少那些数据

3.代数与几何

(1)代数(几何)在那些地方为几何(代数)提供了怎样的数据

(2)几何(代数)通过什么方式为几何(代数)提供关系式

(3)怎样设数据(坐标或线段长)

函数与几何综合题的解题思想方法:

“函几问题”与“几函问题”涉及的知识面广、知识跨度大、综合性强,应用数学方法多、纵横联系较复杂、结构新颖灵活、注重基础能力、探索创新和数学思想方法,它要求学生有良好的心理素质和过硬的数学基本功,能从已知所提供的信息中提炼出数学问题,从而灵活地运用所学知识和掌握的基本技能创造性的解决问题,正因如此,解决这类问题时,要注意解决问题的策略,常用的解题策略一般有以下几种:

1.综合使用分析法和综合法。就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。

2.运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;

升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。

4.用数形结合的思想。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.在中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确地澄清“形”的模糊,而“形”能直观地启迪“数”的计算;使用数形结合的思想来解

5.运用转化的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题。

知识规律小结 :

(1)常数k ,b 对直线y=k x+b(k≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;

当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b异号时,即-k

b

>0时,直线与x轴正半轴相交; 当b=0时,即-

k

b

=0时,直线经过原点; 当k ,b同号时,即-k

b

﹤0时,直线与x 轴负半轴相交.

③当k>O ,b>O 时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O ,b

(2)直线y=kx+b(k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=k x+b (k ≠0)平行于直线y =kx(k≠0)

当b>0时,把直线y=k x向上平移b 个单位,可得直线y=kx+b;

当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y =kx+b. (3)直线b1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;

②⎩⎨⎧=≠2

121b b k k ⇔y1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2);

③⎩⎨⎧≠=2121,b b k k ⇔y 1与y2平行; ④⎩⎨⎧==2

121,

b b k k ⇔y 1与y 2重合.

例题精讲:

1.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l 1与经过点A的直线l 2相交于点B,点B 坐标为(18,6).

(1)求直线l1,l 2的表达式;2(ﻫ)点C 为线段O B上一动点(点C不与点O ,B重合),作CD∥y 轴交直线l 2于点D ,过点C ,D 分别向y 轴作垂线,垂足分别为F,E ,得到矩形CD EF .ﻫ①设点C 的纵坐标为a ,求点D 的坐标(用含a的代数式表示);ﻫ②若矩形CD EF 的面积为108,求出点C的坐标.

l 2

l 1

y x B

A

O

解:(1)设直线l 1的表达式为y =k1x ∵点(18,6)在直线l 1上 ∴6= 18k 1 ∴k1=13

∴y =

13

x 设直线l 2的表达式为y =k 2x +b ∵点A (0,24),B (18,6)在l 2上

待定系数法可得直线l 2的解析式为:y =-x+24

(2)①∵点C 在直线l 1上,且点C 的纵坐标为aﻫ∴ x =3a, ∴点C 的坐标为(3a,a) ∵CD ∥y 轴

∴点D 的横坐标为3a ﻫ∵点D 在直线l 2上,ﻫ∴y =-3a+24 ∴D (3a ,-3a +24)

②∵C(3a ,a),D(3a ,-3a +24)ﻫ∴CF =3a ,CD =-3a+24-a =-4a+24ﻫ∵矩形CDEF 的面积为108 ∴S矩形CDEF =CF •CD =3a ×(-4a +24)=108,解得a =3ﻫ当a =3时,3a =9ﻫ∴C 点坐标为(9,3) 2.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A、B 两点。

(1)当OA=OB 时,试确定直线L 的解析式;

(2)在(1)的条件下,如图②所示,设Q为AB 延长线上一点,作直线OQ,过A 、B 两点分别作AM⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,B N=3,求MN 的长。

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE,连EF 交y 轴于P点,如图③。问:当点B在 y轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 F E D

C

l 2

l 1

y x

B A O

相关文档
最新文档