八年级数学一次函数图象PPT优秀课件

合集下载

初中数学人教八年级下册第十九章一次函数-《一次函数的图像与性质》PPT

初中数学人教八年级下册第十九章一次函数-《一次函数的图像与性质》PPT
y=2x-3
-5
b>0,向上平移;b<0,向下平移。 -6
一次函数的图象和性质
y=2x+2
一次函数y=kx+b(k≠0)的图 象是一条_直__线_.
当k>0时,y随x的增大而增大
y
· 6 · 5
y=2x
4
·· 3
2
当K相等时,两直线平行。
·o1
x
-4 -3 -2 -1
1 23 4 5
b>0, 向上平移|b|个单位 ; b<0,向下平移|b|个单位 。
· -1 -2
· -3 -4
y=2x-3
-5
-6
一次函数y=ax+b与y=ax+c(a>0)在同 一坐标系中的图象可能是( )
A
y
y
y
y
o
x
A
o
x
o
x
B
C
o
x
D
y x
y
·6 y x 6 ·· 5
4
3
2•
1
·· -3 -2 -1 O● 1 2 3 4 5 6
· -1
x
当k<0时,y随x的增大而减小-2
已知一次函数y=(k-2)x+k不经过第三象限,则k的取值范围是 _____________
已知一次函数y=(1-2m)x+m-1,若y随x的增大而减小,并且不 经过第一象限,则m的取值范围是_____________
一次函数y=2x-6的图像与x轴的交点坐标为___________
已知点(-4,y1),(2,y2)都在直线y=2x+2上,则y1__y2(填<,>或=)

《一次函数的图象》一次函数PPT课件

《一次函数的图象》一次函数PPT课件

观察图象可以发现:①直线y=x,y=3x向右


逐渐
,
上升

即y的值随x的增大而增大;

②直线
,y=-4x向右逐渐

即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.

2
增大

分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x

一次函数课件(共50张PPT)

一次函数课件(共50张PPT)
例2.画出函数y =-6x与 y =-6x +5的图 象。
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2

这时函数的图象从左到右上升;
观察分析:
y 2 x 1和

一次函数的图像ppt课件

一次函数的图像ppt课件

取一些点,这些点的坐标分别满足y=-2x或y=-2x+1上
由此可见,一次函数y=kx+b(k、b为常数, k≠0 )可以用直角坐标系
中的一条直线来表示, 这条直线就叫做一次函数y=kx+b的图象.
y=2x
y=-2x
观察图象,它们有什么异同?
你能得出一次函数的图象特点吗?
相同点:两图象都经过原点
不同点:函数y=2x的图象经过第一、三象限,从左向右呈上升状态,
–3
–4
一般地,你能从函数y=k+b的图象上直接看出b
的数值吗?
y = 2x+3
–5
–6
–7
–8
y = -x
5
x
归纳总结
一次函数y=kx+b(k,b是常数,k≠0)的图象与性质
k>0
y随x的增大而增大
k<0
y随x的增大而减小
k相等
图象平行
b相等
图象相交于点(0,b)
例1、在同一坐标系中作出下列函数的图象,并求它们与坐标轴的交点
取x=1,得y=-1,得到点(1,-1)
2
-2 -1
0
1
2
3
x
-1
-2
y=-3x+2
1.设下列两个函数:
当 x =x1时,y = y1; 当x=x2时,y=y2,
用“<”或“>”号填空
①对于函数y=


②对于函数y= -
x,若x2>x1,则y2


x+3,若x2
>
>
y1
x1,则y2<y1
观察一次函数y=kx+b(k≠0)的图象,总结一次函数图象的k,b的

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.

初二数学《一次函数》课件

初二数学《一次函数》课件

进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。

初二数学《一次函数》ppt课件

初二数学《一次函数》ppt课件
直线y=3x+2还经过第二象限
倾斜度一样(平行)
都经过一、三象限
直线 还经过第二象限
b相同
k不同
都与y轴相交于点(0,2)
都经过一、二、三象限
倾斜度不一样(不平行)
1
-1
2
3
4
5
-4
-3
-2
-5
1
2
3
4
5
-1
-2
-3
-4
-5
0
观察:这些函数的图像 有什么特点?
x
y
在同一个平面直角坐标系中画出下列函数的图象: 1. 2. y=3x y=3x+2
y
x
o
-4
2
7.一个函数图像过点(1,2),且y随x增大而增大,则这个函数的解析式是___
B
如图所示,三峡工程在6月1日至6月10日下阐蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图像中,能正确反映这10天水位h(米)随时间t(天)变化的是( )
从图中可以看出: 1.当一次函数的k值相等时,直线互相平行.
2.当一次函数的b值相等时,直线在y轴交于一点.
特殊位置关系—平行
y=3x
y=3x+2
观察函数y=3x和y=3x+2的图象,我 们知道:它们是互相平行的,所以 ,其中 一条直线可以看作是由另一 条直线平移得到的。 你能说出直线y=3x+2是由直线y=3x 向____平移____个单位得到的吗?
3.一次函数y=x+2的图像不经过第____象限
EX
5.一次函数 y 1=kx+b与y 2=x+a的图像如图所示,则下列结论(1)k<0;(2)a>0;(3)当x<3时,y 1<y 2中,正确的有____个

《一次函数与正比例函数》一次函数PPT优秀课件

《一次函数与正比例函数》一次函数PPT优秀课件

《一次函数与正比例函数》一次函数PPT优秀课件北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT优秀课件,共29页。

素养目标1. 结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式.2. 能辨别正比例函数与一次函数的区别与联系.3. 能利用一次函数解决简单的实际问题.探究新知一次函数与正比例函数的概念问题1 某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加1 kg,弹簧长度y增加0.5 cm.(1)计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:(2)你能写出y与x之间的关系式吗?分析:它们之间的数量关系是:弹簧长度=原长+增加的长度问题2 某辆汽车油箱中原有汽油60 L,汽车每行驶50 km耗油6 L.研讨以下两个函数关系式:(1)y=0.5x+3. (2)y=-0.12x+60.它们的结构有什么特点?解析:1.都是含有两个变量x,y的等式.2.x和y的指数都是一次.3.自变量x的系数都不为0.定义:若两个变量 x,y间的对应关系可以表示成y=kx+b (k, b为常数,k≠0)的形式,则称 y是x的一次函数.函数是一次函数关系式为:y=kx+b(k,b为常数,k≠0)特别地,当b=0时,称y是x的正比例函数.函数是正比例函数关系式为:y=kx(k为常数,k≠0)思考一次函数的结构特征有哪些?答:一次函数的结构特征:(1)k≠0 .(2)x 的次数是1.(3)常数项b可以为一切实数.方法点拨1.判断一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;2.判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.一次函数与正比例函数的应用写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60km/h的速度匀速行驶,行驶路程为y(km)与行驶时间x(h)之间的关系;解:由路程=速度某时间,得y=60x ,y是x的一次函数,也是x的正比例函数.(2)圆的面积y (cm2 )与它的半径x (cm)之间的关系.解:由圆的面积公式,得y=πx2, y不是x的正比例函数,也不是x的一次函数.(3)某水池有水15m3,现打开进水管进水,进水速度为5m3/h,x h后这个水池有水y m3.解:这个水池每时增加5m3水,x h增加5x m3水,因而y=15+5x,y是x的一次函数,但不是x的正比例函数.课堂小结一次函数与正比例函数一次函数形式:y=kx+b(k≠0)特别地,当b=0时,y=kx(k≠0)是正比例函数一次函数的简单应用... ... ...关键词:一次函数与正比例函数PPT课件免费下载,一次函数PPT下载,.PPTX格式;。

精美获奖课件54《一次函数的图像》课件(1)

精美获奖课件54《一次函数的图像》课件(1)

精美获奖课件54《一次函数的图像》课件一、教学内容本节课的内容为《一次函数的图像》,选自人教版八年级数学下册第十一章第一节。

详细内容包括:一次函数的定义、图像及其性质;一次函数图像的绘制方法;一次函数图像在实际问题中的应用。

二、教学目标1. 让学生掌握一次函数的定义、图像及其性质,能熟练绘制一次函数的图像。

2. 培养学生运用一次函数图像解决实际问题的能力,提高学生的数学思维。

3. 培养学生合作交流、动手实践的能力。

三、教学难点与重点教学难点:一次函数图像的绘制方法,一次函数图像在实际问题中的应用。

教学重点:一次函数的定义、图像及其性质。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:直尺、圆规、量角器。

五、教学过程1. 导入:通过展示一次函数在实际生活中的应用实例,激发学生兴趣,引出本节课的主题。

2. 新课导入:(1)讲解一次函数的定义,引导学生理解并掌握。

(2)通过例题讲解,让学生学会一次函数图像的绘制方法。

3. 随堂练习:(1)让学生独立绘制一次函数的图像。

4. 应用拓展:(1)展示一次函数在实际问题中的应用,引导学生学会运用。

(2)分组讨论,让学生互相交流,提高解决问题的能力。

(1)让学生回顾本节课所学内容,加深对一次函数的认识。

六、板书设计1. 定义:一次函数的定义。

2. 图像:一次函数的图像及其性质。

3. 绘制方法:一次函数图像的绘制方法。

4. 应用:一次函数在实际问题中的应用。

七、作业设计1. 作业题目:情境一:小明骑自行车去学校,速度为4km/h,行驶1小时后,距离学校还有6km。

情境二:小华买了一个玩具车,原价100元,每过一年,价值降低10元。

2. 答案:(1)略。

(2)情境一:y = 4x + 10;情境二:y = 10x + 100。

八、课后反思及拓展延伸1. 反思:本节课学生对一次函数的定义和图像绘制方法掌握较好,但在实际问题中的应用还需加强。

2. 拓展延伸:(1)引导学生探究一次函数图像的平移、伸缩变换。

一次函数的图像课件

一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。

一次函数图像(共14张PPT)

一次函数图像(共14张PPT)

-2
向上平移b个单位而来。
-3
-4
会用两点作一次函数图象; 会求一次函数与坐标轴的交点坐标; 会判断点是否在函数图象上及图象所经过的象限; 会求两函数的交点坐标,理解其实际意义。
思考
在同一坐标系中画出下列直线
y =—2x-1 ; y = —2x+3.
y 1 x2 2
y 1x2 2
观察图像,你发现了什么?
智力冲 浪
一个长方形的周长是12厘米,一边长是X厘米,
另一边长为y厘米,下列表示y关于x的函数关
系的图像中,正确的是( )B
4
A C
B D
(1)一次函数y=kx+b的图像是一条直线; 正比例函数y=kx的图像是一条过原点的直线。
y
7
6
y=2x+1
5
4
y=2x
3
2
1
-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 x
-1
-2
-3
-4
-5
-6
-7
练一练
1.下列各点中,在直线y=2x-3上的是( C )
(A)(0,3)
(B)(1,1)
(C)(2,1) (D)( -1,5)
2.若点(a,3)在直线y=2x-5上,则a=__4____
3 2 1 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 x -1
-2
描点法
-3
-4
-5
-6
-7
画函数y=2x+1的图象。
1.列表 x y=2x+1 点( x, y)
2.描点
3.连线

-2

一次函数课件(共36张PPT)

 一次函数课件(共36张PPT)

3 2
∴ 2k+b=0,
1
b=2.
O 1 2 3 x 解得 k=-1,
b=2.
∴y=-x+2.
情景导课
反思小结: 确定正比例函数的解析式需要一个条件,确定 一次函数的解析式需要两个条件.
情景导课
问题1 前面,我们学习了一次函数及其图象和性 质,你能写出两个具体的一次函数解析式吗?如何画出 它们的图象?
19-2.2 一次函数(3) 第 3 课时
待定系数法求一次函数 的解析式
人教版八年级数学下册
情景导课
教材导读
练习展示
反思小结
测评反馈
拓展延伸
阅读教材第93页至95页,明确学习目标
学习目标:
1、学会运用待定系数法和数形结合思想求一次函数解析式;了 解两个条件确定一个一次函数;一个条件确定一个正比例函数, 能根据函数的图象确定一次函数的表达式,培养学生的数形结 合能力. 2、了解分段函数的表示及其图象. 3、能通过函数解决简单的实际问题
下列问题:
y
(1)求出y关于x的函
120
数解析式.
80
(2)根据关系式计算,
小明经过几个月才能存够
40
200元?
O 12 3 4 x
y=20x+40
(1)填写下表.
购买量 0.5 1 1.5 2 2.5 3 3.5 4 …
/kg
付款金额/ 元
2.5
5
7.5
10 12.5 15
17.5 20

(2)写出购买量关于付款金额的函数解析式,并画出 函数图象.
分析:从题目可知,种子的价格与 购买种子量 有关。
若购买种子量为0≤x≤2时,种子价格y为: y=5x 。

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
01
2
2
x
-1
试一试,把你们所观察的结果大胆进行填空:
直线y=2x过____原____点,直线y=2x+1与y轴
交 于(__0__,__1_)点 , 直 线 y=2x-1 与 y 轴 交 于(__0_,__-_1) 点。故直线y=2x+1可以看作直线y=2x向__上____
y 1
平行规律: 平移___1___个单位长度而得到,直线y=2x-1可
以看作直线y=2x向__下_____平移____1___个单位
长度而得到。
1 0 2 -1
y=2x+1
y=2x
y=2x-1
1
2
x
上加下减变化 y 直线y= 1 x过__原____点,直线y= 1 x-2与y轴
2
2
交 于 ____(0_,_-_2_)_ 点 , 直 线 y= 1 x+2 与 y 轴 交 于
再观察:直线y=2x,y=2x+1,y=2x-1的位置关系如何呢?
当k1=k2,b1≠b2时,两直线平行; 当k1=k2,b1=b2时, 两直线重合
练一练: 1、直线y=3x与y=kx+2平行,则k=__ _3_ __ 2、直线y=kx+b平行于y=2x且过(3,4),
则k=__2__,b=__-_2_
_向___(__0__,__2上__)____点_平。移故_直__线__2y_=__ 个12 x单+2位可长以2 度看而作得直到线,y=直 12线x
y= 1 x-2 可 以 看 作 直 线 y= 1 x 向 __下______ 平 移 -4
2
2
____2____个单位长度而得到。
y
2
0 -2
4
y=
x
y=
1
1 2
x
x+2
2
y= 1 x-2
2
练习:
直线y=3x 向向再将下上平平发仔移移1现2个细个单单一观位位个察得秘到,直密线你解析式为__y_=_3_x_-+12__ __
我肯定具有迁移能力!Let’s me try!
直线y=3x+2 向向上下平平移移31个个单单位位得到直线解析式为__yy_==_33x_x+_+51__ __
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
试一试,把你们所观察的结果大胆进行填空:
直线y=2x过____原____点,直线y=2x+1与y轴 交 于(__0__,__1_)点 , 直 线 y=2x-1 与 y 轴 交 于(__0_,__-_1)
y 1
点。故直线y=2x+1可以看作直线y=2x向______
平 移 ______ 个 单 位 长 度 而 得 到 , 直 线 y=2x-1 可 以看作直线y=2x向_______平移_______个单位 长度而得到。
作课人:张娇敏
温故而知新,同学们忘记了吗?一定注意复习呦!
1 、直线y=2x过_原___点,直线y=2x+1与y轴交于_(__0_,__1_)__点,与x轴 交于_(___1_2 _,__0_)____点。43;2_b_x_(过k点≠_0。_原)_与_点x轴,交直于线_(y_=__ _12bk_x_+,_2_与0_)_y_轴点交,于与(_y_轴0_,_交_2_于)点(_,_0_,与__bx_)轴_点交。
练一练:
y= 1 x+1
a.画出函数
y=
1
2
x+1和y=2x-1的图像。
y
2
1
0 1 2
-1
y=2x-1
2x
b.画出函数 y= 1 x+1和y=x+1的图像
2
y
1
当k1 ≠ k2时,两直线相交
-1
1
0
x
2
y=x+1
y= 1 x+1 2
再接再厉,继续思考
怎样求交点坐标呢?
小结:
1、当 k1=k2,b1≠b2时,两直线平行; 2、当 k1=k2,b1=b2 时, 两直线重合; 3、当 k1≠k2 时,两直线相交。
相关文档
最新文档