第一章:机械优化设计概述经典.ppt
合集下载
机械优化设计PPT课件
ⅱ)设计方案—由设计常量和设计变量组成。
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
机械优化设计PPT
2.梯度投影法
约束面上的梯度投影方向
四、步长的确定
1.取最优步长
2. αk取到约束边界的最大步长
1.取最优步长
2. αk取到约束边界的最大步长
1) 取一试验步长αt,计算试验点xt。
2) 判别试验点xt的位置。 3) 将位于非可行域的试验点xt,调整到约束面上。
2. αk取到约束边界的最大步长
3.计算步骤
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
图6-36 增广乘子法框图
第七节 非线性规划问题的线性化解法——线性逼近法
一、 序列线性规划法
二、割平面法 三、小步梯度法 四、非线性规划法
一、 序列线性规划法
6-37
二、割平面法
三、小步梯度法
1) 由设计者决定k个可行点,构成初始复合形。 2) 由设计者选定一个可行点,其余的(k-1)个可行点用随机法产生。 3) 由计算机自动生成初始复合形的全部顶点。
二、复合形法的搜索方法
1.反射 2.扩张 3.收缩 4.压缩
1.反射
1) 2) 3) 4) 计算复合形各顶点的目标函数值,并比较其大小,求出最好点L、最坏 点H及次坏点G 计算除去最坏点H外的(k-1)个顶点的中心C 从统计的观点来看,一般情况下,最坏点H和中心点C的连线方向为目标
四、非线性规划法
第八节 广义简约梯度法
一、 简约梯度法
一、 简约梯度法
二、 广义简约梯度法
二、 广义简约梯度法
三、 不等式约束函数的处理和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
《机械优化设计》第一章 优化设计概述
f ( x) W1 f1 ( x) W2 f2 ( x) ... Wq f q ( x)
Wq:加权因子,是个非负系数。
第一章 优化设计概述
第三节 优化设计问题的数学模型
求设计变量 x [ x1 x2 xn ]T , xn ) min , l) 使目标函数f ( x) f ( x1 , x2 , 和g j ( x) 0( j 1, 2, , m)
第一章 优化设计概述
第一节 人字架的优化设计
FL F ( B 2 h ) 钢管所受的压力F1 h h 2 EI 压杆失稳的临界压力Fe 2 L 其中,I是钢管截面惯性矩 I
1 2 2
θ
θ
L
A 2 (T D 2 ) 4 8 A是钢管截面面积A ( R 2 r 2 ) TD (R4 r 4 ) r和R分别是钢管的内半径和外半径 D=r+R而T=R-r
第一章 优化设计概述
第三节 优化设计问题的数学模型
优化设计的维数:设计变量的数目称为优化设计的维数,如 有n(n=1,2,…)个设计变量,则称为n维设计问题。
任意一个特定的向量都可以说是一个“设计”。
第一章 优化设计概述
第三节 优化设计问题的数学模型
设计空间:由n个设计向量为坐标所组成的实空间称作设计 空间。 一个“设计”,就是设计空间中的一个点,这个点可以看 成是设计变量向量的端点(始点是坐标原点),称这个点式 设计点。 设计空间的维数(设计的自由度):设计变量愈多,则设计 的自由度愈大、可供选择的方案愈多,设计愈灵活,但难度 亦愈大、求解亦愈复杂。 • 含有2—10个设计变量的为小型设计问题; • 10—50个为中型设计问题; • 50个以上的为大型设计问题。
机械优化设计方法ppt课件
目标函数的一般表示式为:
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1
FL h
F(B2 h
25
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1
FL h
F(B2 h
25
机械优化设计课件2
用如下二维问题来说明有约束优化问题的几何解释 可知该问题的最优点为目标函数等值线 与可行域边界 g2 ( x) 0 的切点
( x1* , x2* ) (1.34,0.58)
* * 最优值为: f ( x1 , x2 ) 3.8
该问题的目标函数及等值线
该问题的设计空间及可行域
有约束的二维优化问题极值点所处位置的不同情况:
等式约束
---要求设计点同时在n维设计空间l个约束曲面上
不等式约束
---要求设计点在设计空间约束曲面的一侧(包括曲面本身)
在设计空间中,满足所有约束条件的区域称为可行域。
在设计空间中,至少不满足一个约束条件的区域称为非可行域。 可行域可记为: D x g j ( x) 0 ( j 1, 2,
在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最 后求得F(X)值最好或最满意的X值。
在实际优化问题中,对目标函数有两种要求形式
目标函数极小化 目标函数极大化
等价
所以,今后优化问题的数学表达一律采用目标函数的极小化形式
目标函数在设计空间的图像描述
一般地,n维目标函数可以在n+1维空间中描述其图像。 为了在n维设计空间中反映目标函数的变化情况,常采用 目标函数等值面的方法。其数学表达式:
1、
2、
采用作图法进行人字架的优化设计
3、数值迭代法(数学规划法):
xk
k 从一个初始设计 x 出发,按如下迭代公式:
x k 1 x k x k k 1 x 得到一个改进的设计 。
( x k ——修改量)
k 在这类方法中,许多算法是沿着某个搜索方向 ,以适当步长 k 的方式 d k 实现对 x 的修改,以获得x k 的值。
第一章 机械优化设计的基本问题PPT课件
10d D 0 或 10d0.62831805
n
n
该问题属于二维约束问题
12
1.1.3连杆机构优化设计
由图所示六杆机构。它是铰链四杆机构ABCD和带有 滑块5的摆杆6由连杆BE连接而成的。原动件AB逆时 针转动使从动件6绕P点往复摆动。机架AD水平置放, F点已选定。 要求: 当原动件AB转角φ0在180—300o范围内, 摆杆6处于LM位置不动, 即从动件摆杆产生间歇运动。
单价c与螺栓材料,直径d,长度l及加工状况有关。本组 螺栓取35号钢,长度l=50mm的六角头半精制螺栓,单 价见下表
直径d (mm)
单价c (元)
10 0.052
12 0.091
14 0.142
16 0.174
18 0.228
20 0.251
9
由表中数据初步画C=f(d)曲线,由下图线形回归法求得 方程:
表a,每小时生产零件利润量
零件种类
机器序号
1
2
3
4
1
5
6
4
3
2
5
4
5
4
3
6
7
2
8
表b,各机器生产零件速率
零件种类
机器序号
1
2
3
4
1
8
2
4
9
2
7
6
6
3
3
4
8
5
2
19
解:为获利润最大,需合理确定每台机器生产某种零件
若干,设xij表示第j台机器生产第i中零件的件数。
一个月内获总利润: W 5 x 1 16 x 1 24 x 1 33 x 1 45 x 2 14 x 2 25 x 2 34 x 24 6 x 3 17 x 3 22 x 3 38 x 34 且要满足以下约束条件: (1)数量需求限制
机械优化设计优化设计概述精品PPT课件
1模糊优化设计技术微分学和变分学的解析解法2面向产品创新设计的优化技术满足设计要求3广义优化设计技术满足经济性安全性和美观性等4产品全寿命周期的优化设计技术强度刚度运动学动力学和寿命面向产品的全系统设计全过程全寿命周期5cadcappcam集成系统中的优化技术结合cad有限元可靠性等6智能优化算法模拟退火遗传人工神经网络算法蚁群算法等7多学科综合优化涉及多领域复杂系统的多学科修复替代衰老损伤器官成为医学界的重点研究领域再生医学研究和应用成为治疗许多传统医学难以解决的重大疾病如白血病帕金森氏症的新希望
方法低效,一般只能获得一个可行的设计方案。
优化设计:借助计算机技术,应用一些精度较高的力 学的数值分析方法(如有限元法等)进行分析计算,并 从大量的可行设计方案中寻找到一种最优的设计方案。
能从“所有的”的可行方案中找出“最优的”的设计方案。
绪论
二、从传统设计到优化设计:
绪论
二、从传统设计到优化设计:
钢管的临界应力是 e
Fe A
2E(T 2 D2 ) 8(B2 h2 )
1
根据强度约束条件有 F (B2 h2 )2 TDh
y
1
根据稳定约束条件有 F (B2 h2 )2 TDh
2E(T 2 D2 ) 8(B2 h2 )
第一章 优化设计概述
第一节 人字架的优化设计
解析法:
人字架总质量
第一章 优化设计概述
第三节 优化设计问题的数学模型
设计变量:
在设计过程中进行选择并最终必须确定的各项独立参数,
称为设计变量。
设计变量向量:
x [x1x2 xn ]T
设计常量:参数中凡是可以根据设计要求事先给定的,称为设计常量 。 设计变量:需要在设计过程中优选的参数,称为设计变量。
方法低效,一般只能获得一个可行的设计方案。
优化设计:借助计算机技术,应用一些精度较高的力 学的数值分析方法(如有限元法等)进行分析计算,并 从大量的可行设计方案中寻找到一种最优的设计方案。
能从“所有的”的可行方案中找出“最优的”的设计方案。
绪论
二、从传统设计到优化设计:
绪论
二、从传统设计到优化设计:
钢管的临界应力是 e
Fe A
2E(T 2 D2 ) 8(B2 h2 )
1
根据强度约束条件有 F (B2 h2 )2 TDh
y
1
根据稳定约束条件有 F (B2 h2 )2 TDh
2E(T 2 D2 ) 8(B2 h2 )
第一章 优化设计概述
第一节 人字架的优化设计
解析法:
人字架总质量
第一章 优化设计概述
第三节 优化设计问题的数学模型
设计变量:
在设计过程中进行选择并最终必须确定的各项独立参数,
称为设计变量。
设计变量向量:
x [x1x2 xn ]T
设计常量:参数中凡是可以根据设计要求事先给定的,称为设计常量 。 设计变量:需要在设计过程中优选的参数,称为设计变量。
机械优化设计第1章概述-PPT精品文档
50年代末数学规划方法被首次用于结构最优化,并成为优 化设计中求优方法的理论基础。数学规划方法是在第二次世界 大战期间发展起来的一个新的数学分支,线性规划与非线性规 划是其主要内容。
最优化设计是在数学规划方法的基础上发展起来的,是 6O年代初电子计算机引入结构设计领域后逐步形成的一种有效的 设计方法。
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd.
第一章 优化设计的基本概念
§1-1 绪论
Evaluation only. §1-2 优化设计问题的示例 eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd. §1-3 优化设计的数学模型
第三阶段 工程优化:近二十余年来,计算机技术的发展给 Evaluation only. 解决复杂工程优化问题提供了新的可能,非数学领域专家开发 了一些工程优化方法,能解决不少传统数学规划方法不能胜任 eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 的工程优化问题。在处理多目标工程优化问题中,基于经验和 Copyright 2019-2019 Aspose Pty Ltd. 直觉的方法得到了更多的应用。
机械优化设计
机械工程系 吴军 2009.8
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0 Copyright 2019-2019 Aspose Pty Ltd.
机械优化设计概述(PPT共 95张)
求:在钢管压应力 不超过
和失稳临界应力
e
y
条件下,
使质量m最小的高度h和直径D?
第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计
解:(1)钢管满足的强度与稳定条件
钢管所受压力
2 FL F (B h ) F 1 h h 1 2 2
2 EI 压杆临界失稳的临界力 Fe L2
A 2 T D2 8
第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计 强度约束条件: y 稳定约束条件: e
F B h TDh
2
1 2 2
y
FB h
2
1 2 2
T D h
2 2ET2 D 2 2 8B h
使传统机械设计中,求解可行解上升为求解最优解成为 使传统机械设计中,性能指标的校核可以不再进行;
使机械设计的部分评价,由定性改定量成为可能;
使零缺陷(废品)设计成为可能;
大大提高了产品的设计质量,从而提高了产品的质量;
大大提高了生产效率,降低了产品开发周期。
绪论
2 机械的设计方法 实际案例:
2 r i arccos i
2 2 r l l 2 l l i 1 4 1 4cos i
2
2
第一章 优化设计概述
1.1 最优化问题示例 例1-3 平面连杆机构的优化 解:(2)约束条件
g 1 l1 l 2 0 g 2 l1 l 3 0 g 3 l1 l 4 l 2 l 3 0 g 4 l1 l 2 l 3 l 4 0 g 5 l1 l 3 l 2 l 4 0 l 22 l 32 l 1 l 4 2 g 6 arccos 2 l2l3 max 0
哈工大孙靖民机械优化设计总复习PPT课件
F L x2
F xn
]T x
0
即在极值点处函数的梯度为n维零向量。
12
2. x *处取得极值充分条件
2F
x12
2F
2
F
(
x*
)
x2x1
M
2F
xnx1
2F x1x2 2F
x22 M 2F xnx2
L
2F
x1xn
2 f X k 2 f X k
2
x12 fX
k
H
X k
2 f
Hale Waihona Puke X k
x2x1
2 f X k
xnx1
x1x2
2 f X k
x22
2 f X k
是设计变量的函数。
约束条件的分类 (1)根据约束的性质分 边界约束 直接限定设计变量的取值范围的约束条件,即
ai xi bi i = 1,2, ···,n
性能约束 由结构的某种性能或设计要求,推导出 来的约束条件。
4
(2)根据约束条件的形式分
不等式约束
gu X 0
等式约束
u=1,2, ···,m
函数的等值面(线)是用来描述、研究函数的整体性质的。
二 函数的最速下降方向 f
梯度
x1
f
X
f
x2 f
f X
x1
f X
x2
xn
机械优化设计方法(PPT 203页)
则函数f(x)在x * 附近的一切x均满足不等式
f xf x*
所以函数f(x)在 x * 处取得局部极小值,称x * 为
局部极小点。 而优化问题一般是要求目标函数在某一区域内 的全局极小点。 函数的局部极小点是不是一定是全局极小点呢?
图2-7 下凸的一元函数
第四节优化设计问题的基本解法
求解优化问题的方法:
解析法 数值法
数学模型复杂时不便求解
可以处理复杂函数及没有数学表达式 的优化设计问题
图1-11 寻求极值点的搜索过程
第二章 优化设计的数学基础
机械设计问题一般是非线性规划问题。
实质上是多元非线性函数的极小化问题,因 此,机械优化设计是建立在多元函数的极值 理论基础上的。
2.目前机械优化设计的应用领域
在机械设计方面的应用较晚,从国际范围来说, 是在上世纪60年代后期才得到迅速发展的。
国内近年来才开始重视,但发展迅速,在机构 综合、机械的通用零部件的设计、工艺设计方 面都得到应用。
优化设计本身存在的问题和某些发展趋势主要 有以下几方面:
1)目前优化设计多数还局限在参数最优化这种数 值量优化问题。结构型式的选择还需进一步研究 解决。
图2-5 二维问题的可行域
三、目标函数
目标函数是设计变量的函数,是设计中所 追求的目标。如:轴的质量,弹簧的体积,齿 轮的承载能力等。
在优化设计中,用目标函数的大小来衡量设 计方案的优劣,故目标函数也可称评价函数。
目标函数的一般表示式为:
f(x)f(x1,x2,...xn)
优化设计的目的就是要求所选择的设计变 量使目标函数达到最佳值,即使 f(x)Opt
通常 f(x)min
单目标设计问题
目标函数
f xf x*
所以函数f(x)在 x * 处取得局部极小值,称x * 为
局部极小点。 而优化问题一般是要求目标函数在某一区域内 的全局极小点。 函数的局部极小点是不是一定是全局极小点呢?
图2-7 下凸的一元函数
第四节优化设计问题的基本解法
求解优化问题的方法:
解析法 数值法
数学模型复杂时不便求解
可以处理复杂函数及没有数学表达式 的优化设计问题
图1-11 寻求极值点的搜索过程
第二章 优化设计的数学基础
机械设计问题一般是非线性规划问题。
实质上是多元非线性函数的极小化问题,因 此,机械优化设计是建立在多元函数的极值 理论基础上的。
2.目前机械优化设计的应用领域
在机械设计方面的应用较晚,从国际范围来说, 是在上世纪60年代后期才得到迅速发展的。
国内近年来才开始重视,但发展迅速,在机构 综合、机械的通用零部件的设计、工艺设计方 面都得到应用。
优化设计本身存在的问题和某些发展趋势主要 有以下几方面:
1)目前优化设计多数还局限在参数最优化这种数 值量优化问题。结构型式的选择还需进一步研究 解决。
图2-5 二维问题的可行域
三、目标函数
目标函数是设计变量的函数,是设计中所 追求的目标。如:轴的质量,弹簧的体积,齿 轮的承载能力等。
在优化设计中,用目标函数的大小来衡量设 计方案的优劣,故目标函数也可称评价函数。
目标函数的一般表示式为:
f(x)f(x1,x2,...xn)
优化设计的目的就是要求所选择的设计变 量使目标函数达到最佳值,即使 f(x)Opt
通常 f(x)min
单目标设计问题
目标函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.精品课件.
18
.精品课件.
19
.精品课件.
20
.精品课件.
21
.精品课件.
22
.精品课件.
23
第四节优化设计问题的基本解法
求解优化问题的方法:
解析法 数值法
数学模型复杂时不便求解
可以处理复杂函数及没有数学表达式 的优化设计问题
.精品课件.
24
图1-11 寻求极值点的搜索过程
.精品课件.
min F(x) C BT X 1 X T AX 2
s.t. QX D
X 0
.精品课件.
X
Rn
17
五、优化问题的几何解释
无约束优化:在没有限制的条件下,对设计 变量求目标函数的极小点。
其极小点在目标函数等值面的中心。
约束优化:在可行域内对设计变量求目标函数 的极小点。 其极小点在可行域内或在可行域边界上。
但应满足强度约束条件 x y 稳定约束条件 x e
.精品课件.
3
1
钢管所受的压力
F1
FL h
F(B2 h
h2 ) 2
失稳的临界力
Fe
2EI
L2
1
钢管所受的压应力 F1 F B2 h2 2
A TDh
.精品课件.
4
钢管的临界应力 e
Fe A
2E T 2 D2
.精品课件.
12
三、目标函数
目标函数是设计变量的函数,是设计中所 追求的目标。如:轴的质量,弹簧的体积,齿 轮的承载能力等。
在优化设计中,用目标函数的大小来衡量设 计方案的优劣,故目标函数也可称评价函数。
目标函数的一般表示式为:
f (x) f (x1, x2,...xn )
.精品课件.
13
优化设计的目的就是要求所选择的设计变
8 B2 h2
强度约束条件 x y 可以写成 1 F B2 h2 2 TDh y
稳定约束条件 x e 可以写成
1
F B2 h2 2 2E T 2 D2
TDh
8 B h 2
2
.精品课件.
5
人字架的总质量
1
mD, h 2 AL 2TD B2 h2 2
25
x x1 x2 ... xn T
.精品课件.
8
图2-4 设计空间
.精品课件.
9
二、约束条件
一个可行设计必须满足某些设计限制条件, 这些限制条件称作约束条件,简称约束。
性能约束 约束 (按性质分) 侧面约束
按数学表达形式分:
针对性能要求
只对设计变量的取值范 围限制(又称边界约束)
.精品课件.
10
103 kg /m3,许用压应力 y = 420MPa。求在钢管压应力
不超过许用压应力 y 和失稳临界应力 e 的条件下,人字
架的高h和钢管平均直径D,使钢管总质量m为最小。
.精品课件.
1
图2-2.精品人课件字. 架的受力
2
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W.精2品f课2件(.x) ... Wq fq (x) 14
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。
优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
.精品课件.
15
数学模型的分类: (1)按数学模型中设计变量和参数的性质分:
约束
等式约束 不等式约束
h(x) 0
g(x) 0
可行域:凡满足所有约束条件的设计点,它在 设计空间的活动范围。
一般情况下,其设计可行域可表示为:
x
gu (x) 0 hv (x) 0
u 1, 2,..., m v 1, 2,..., p n
.精品课件.
11
图2-5 二维问题的可行域
确定型模型
设计变量和参数取值确定
随机型模型
设计变量和参数取值随机
(2)按目标函数和约束函数的性质分:
a.目标函数和约束函数都是设计变量的线形函数 称为线性规划x) CT x x Rn
s.t. Ax B
x0
b.若目标函数是设计变量的二次函数、约束是线 性函数,则为二次规划问题。其一般表达式为:
第一章 机械优化设计概述
第一节 应用实例
机械优化设计问题来源于生产实际。 现在举典型实例来说明优化设计的基本问 题。
图1-1所示的人字架由两个钢管构成,其顶点受外力
2F=3×105 N。人字架的跨度2B=152cm,钢管壁厚T=0.25cm,
钢管材料的弹性模量E=2.1 ×105Mpa,材料密度ρ=7.8 ×
这个优化问题是以D和h为设计变量的二 维问题,且只有两个约束条件,可以用 解析法求解。
除了解析法外,还可以采用作图法求解。
.精品课件.
6
1-3人字.精架品课优件化. 设计的图解
7
第三节优化设计问题的数学模型
一、设计变量
在优化设计的过程中,不断进行修改、调整, 一直处于变化的参数称为设计变量。
设计变量的全体实际上是一组变量,可用一 个列向量表示: