激光测距(非常详细)PPT演示课件

合集下载

《激光干涉测量技术》PPT课件

《激光干涉测量技术》PPT课件
···
P
线偏振光 I
偏振化方向 (透振方向)
I 1 I 2
我们研发各种偏振片和延迟器件
o光 e光
双 折折射射现现象
方解石晶体
CaCO 3
纸面
当方解石晶体旋转时, o光不动,e光围绕o光旋转
纸面
双 折
光光

方解石 晶体
晶体的光轴
当光在晶体内沿某个特殊方向传播时不发生双折射,该 方向称为晶体的光轴。
在干涉测量中,干涉仪以干涉条纹来反映被测件的信 息,其原理是将光分成两路,干涉条纹是两路光光程差相 同点联成的轨迹。而光程差△是干涉仪两支光路光程之差, 可用下式表示
式中,nj、ni分别为干涉仪两支光路的介质折射率:li, lj分别为干涉仪两支光路的几何路程差。若把被测件放入
干涉仪的一支光路中,干涉仪的光程差将随着被测件的 位置与形状而变,干涉条纹也随之变化,测量出干涉条
激光干涉测量技术
干涉测量技术是以光波干涉原理为基础进行测量的一 门技术。20世纪60年代以来,由于激光的出现、隔振条件 的改善及电子与计算机技术的成熟,使干涉测量技术得到 长足发展。
干涉测量技术大都是非接触测量,具有很高的测量灵 敏度和精度。干涉测量应用范围十分广泛,可用于位移、 长度、角度、面形、介质折射率的变化及振动等方面的测 量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马 赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年 代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速, 如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉 仪结构更加简单、紧凑,干涉仪性能也更加稳定。
(4)“猫眼”反射器 如下图(c)所示,它由一个透镜L和一 个凹面反射镜M组成、反射镜放在透镜的主焦点上,从左边来 的入射光束聚焦在反射镜上,反射镜又把光束反射到透镜, 并沿与入射光平行的方向射出(与反射镜的曲率无关)。若反 别镜的曲率中心C’和透镜的中心C重合,那么当透镜和反射 镜一起绕C点旋转时,光程保持不变:“猫眼“反射器的优点 是容易加工和不影响偏振光的传输。在光程不长的情况下也 可考虑用平面反射镜代替凹面反射镜,这样更容易加工和调 整。

激光测距(非常详细)

激光测距(非常详细)
脉冲测距和相位测距。
一、激光测距方程
1、从测距仪发射的激光到达目标上的激光功率 1)对于点目标,目标面积小于激光照亮面积:
Pt Pt Kt At T / As 1
Pt——激光发射功率(W)
Tα ——大气单程透过率 Kt——发射光学系统透过率 At——目标面积(m2) As——光在目标处照射的面积(m2)
d ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测
我国卫星测距站
卫星激光测距应用
卫星激光测距(Satellite Laser Ranging:SLR)是
随着现代激光、光电子学、 计算机和空间科学发展而建立
起来的一门崭新观测技术。由于它具有独特的测距方式和 较高的测量精度,已在地学领域广泛应用。目前,其观测资 料已可用于地球物理学、地球动力学、大地测量学、天文 学和地震预报等多种学科。
2、小的激光发散角: 措施:增大扩束准直系统的角放大率。 3、高透过率光学系统;
4、大的接收孔径角;
5、大目标对测距有利; 6、高灵敏度探测器。
二、光电读数
1 1 N 1 因为 s ct c f ( fT 为晶振频率;T ) T 2 2 fT 测距仪的最小脉冲正量δ为:
令N=1
SPAD
接收望远镜

测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的; 因此激光脉冲宽度影响测距精度: L C t

激光相位法测距页PPT文档

激光相位法测距页PPT文档
接收系统基本结构图
模拟开关切换电路
6、CPLD电路设计 具体的设计指标:电路I/O 口为LVTTL电平;计数频 率大于100MHZ 在该系统中,差频系统与检相系统都是在CPLD内部 实现
CPLDEPM240核心电路
7、单片机相关电路设计 单片机为ATM128
单片机及其外围电路
8、电源模块设计 整个系统所需的电源电压有+9V, +5V, -5V, +3.3V和 +1.8V。 其中+9V可由交流转直流的变压器提供,也可由蓄 电池提供,而其它电源则由+9V转化而来。 (1)+5V 电源 二极管为常用的1N5824,开关电压调节器LM2596
(4)接收部分使用PIN光电二极管,经前置放大后, 使用MFB带通滤波提取有用信号,精尺频率与粗尺 频率经过通道切换幵关后采用同一组放大整形电路, 减小系统复杂度,缩小电路板面积,节约成本。 (5)在高速CPLD内部实现参考信号与本振信号的差 频、测量信号与本振信号的差频,两个差频采用自
主要元件:两片AD9954(直接数字式频率合成器), ATM128单片机, EPM--240T100C5N, 液晶显示器LCD12864,开关电容芯片LM2662 ,低压差电压调节芯片LM1117, LM2596-5.0(开关电压调节器), 电平转换芯片MAX3232和DB9的串口线接口, 高速比较器芯片AD8611, 高速电流反馈宽带运放AD8001 单刀双掷(SPDT)模拟开关ADG636, 电压反馈放大器AD8045, 激光二极管BOS650010, 双路、宽带跨导运算放大器OPA2662
1、频率综和电路 具体设计指标:产生5MHz,50MHz, 5.001MHz, 50.0001MHz的频 率;可在低频与高频间快速切换;电压幅度为-500mV~500mV。

激光测距非常详细ppt课件

激光测距非常详细ppt课件

8.2 脉冲激光测距
激光测距的基本公式为:
d 1 ct 2
c——大气中的光速
t——为光波往返所需时间
由于光速极快,对于一个不太大的D来说,t是一个很小的量,
例:设D=15km,c=3×105km/sec
则t=5×10-5sec
由测距公式可知,如何精确测量出时间t的值是测距的关键。由 于测量时间t的方法不同,产生了两种测距方法:
卫星激光测距-激光器 :
总的来讲在其它条件相同时,发射激光的脉冲能量 越高,脉宽越窄,重复率越高,峰值功率越大,则 系统的测距能力越高。
千赫兹皮秒激光器为第四代卫星激光测距之激光器。 下一代卫星测距用激光器为双波长激光器。
测距误差分析
(1) 测距系统仪器误差 – 激光脉冲宽度误差 – 时间间隔测量误差 – 主波计时探测误差 – 回波计时探测误差 – 时钟同步误差 – 时钟频率标准误差
卫星激光测距技术集光机电于一身,涉及计算机软、硬件技术, 光学、激光学、大地测量学、机械学、电子学、天文学、自动控制 学、电子通讯等多种学科。因此SLR测距仪系统十分复杂,消耗较大, 故障率较高,同时受天气因素制约,维护起来也比较困难,需要花费 较大的人力物力,但它又是目前精度最高的绝对观测技术手段。
即Ii=IN·Cosi 则该漫反射体称作“余弦幅射体”或“郎伯幅射体”。 设激光发射光轴与目标漫反射面法线重合,且主要反射 能量集中在1rad以内(约57°) 则Ω=πu2=π
则Pe Pt T / Pt T 1 2
式中:ρ——目标漫反射系数 Tα——大气单程透过率
3、测距仪光接受系统能接受到的激光功率Pr
SPAD
接收望远镜
转台
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的;

激光测距(非常详细).ppt

激光测距(非常详细).ppt

?
? ? 2? L c
L? c ?? 2nf 2?
?t
短距离、
高精度, 精度可达 毫米级。
三、卫星激光测距
作为激光测距应用的最重要成果之一 ——卫星激光测距 Satellite Laser Ranging ,简称为 SLR)技术起源于二十世纪六 十年代,是目前单次测距精度最高的卫星观测技术,其测距精度已 达到毫米量级,对卫星的测轨精度可达到 1-3 cm。
激光测距是通过测量激光光束在待测距离上往返传播的时间来换算出 距离的,其换算公式为:
d ? ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测 量精度较高,因而在大地和工程测量中得到了广泛的应用。
第九讲 激光测距
电子工程学院光电子技术系
主要内容
8.1 概述 8.2 脉冲激光测距 8.3 多周期脉冲激光测距 8.4 相位激光测距
8.1 概述
激光测距的特点
激光测距仪与其它测距仪(如微波测距仪等)相比, 具备的特点: ? 探测距离远测距精度高 ? 抗干扰性强 ? 保密性好 ? 体积小 ? 重量轻
一、脉冲激光测距
由激光器对被测目标发射一个光脉冲,然后接收系统接收目标 反射回来的光脉冲,通过测量光脉冲往返的时间来算出目标的距离:
d ? ct 2
测程远,精度与激光脉宽有关,普通的纳秒 激光测距精度在米的量级 。
t 的测量:



束Байду номын сангаас

激光测距非常详细课件

激光测距非常详细课件

一、脉冲激光测距
由激光器对被测目标发射一个光脉冲,然后接收系统接收目标 反射回来的光脉冲,通过测量光脉冲往返的时间来算出目标的距离:
d ct 2
测程远,精度与激光脉宽有关,普通的纳秒 激光测距精度在米的量级 。
t 的测量:




在确定时间起始点之间 用时钟脉冲填充计数。
t
时钟 脉冲
t=NT
激光测距是通过测量激光光束在待测距离上往返传播的时间来换算出 距离的,其换算公式为:
d ct 2
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测 量精度较高,因而在大地和工程测量中得到了广泛的应用。



伺服系统
发射望远镜
SPAD
接收望远镜
转台
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的;
因此激光脉冲宽度影响测距精度:L C t
表:测距精度与脉宽的比较
脉宽
10ns
100ps
测距精度 3m
3cm
10ps 3mm
卫星激光测距主要指标与激光器分系统的关系
• 测距精度—激光脉宽. • 测程(近地星、远地星)—激光能量、发散角. • 回波率—激光能量、发散角、激光脉冲重复频率.
(2) 卫星反射器误差 – 反射器质心修正值误差
(3) 系统延迟测量误差 – 地靶距离标定误差 – 地靶常规标校测量误差

第九章激光测距

第九章激光测距
2f 2 L定义为测距仪的电尺长度:等于调制波长的二分之一。
则相位测距方程为: D LN 2 LLN N L
结论:因为L为已知的,所以只需测得N和ΔN即可求D。
二、相位测距的多值性
在测距方程中是可以通过仪器测得的,但不能测得N值, 因此,以上方程存在多值解,即存在测距的多值性。但若我 们预先知道所测距离在一个电尺长度L之内,即令N=0,此时, 测距结果将是唯一的。
其测距方程变为:D L 2
例:设光调制频率为fυ=150×103Hz 则电尺长度 L C 3108m 100m0
2f 2150103 当被测距离小于1000m时,测距值是唯一的。
即在1000m以内的测距时N=0(不足一个电尺长度)
三、相位测距精度 将 D L两边微分后,取有限微量,
m0t0fT 201 0 09101 06 020
§9-3 相位激光测距
一、相位测距原理 通过检测被高频调制的连续激光往返后和初始信号的
相位差可使测距精度大大提高。 连续激光经过高频调制后成为高频调制光,设调制频
率为fυ,如图9-11所示。 激光往返一周的时间t可以用调制波的整数周期数及不
足一个周期的小数周数来表示。
图9-11
t N 1 2 f
fυ——调制频率(Hz) N——光波往返全程中的整周期数
Δ φ——不是一个周期的位相值
则 令 D L 1 2C C C t2 C TN v,等 2 校 f1 1个 于 2 C f调 N 制 4 C 频 f 率 对应 的长度
大气衰减系数α=2.66/V,(V:为大气能见距离km)
A S t KrAre2/P r2
以光电探测器所能探得的最小光功率Pmin代替上式中的

激光相位法测距课件

激光相位法测距课件
详细描述
在信号处理过程中,放大器噪声和ADC量化误差是主要的误差源。放大器噪声是由于电子热运动产生的随机波动,而ADC量化误差是由于有限位数对模拟信号的近似表示造成的。此外,时钟源的误差也会影响信号处理的精度,因为时钟源决定了信号处理的采样率和时间基准。
05
CHAPTER
提高激光相位法测距精度的措施
定期清洁光学元件,确保光路畅通无阻,减少光的散射和反射。
保持光路的清洁
保持光路环境的恒温,避免温度变化对光学元件的影响,确保光路的稳定性。
温度控制
采取有效的减震措施,降低外界振动对光路稳定性的干扰。
振动隔离
根据测距范围和精度要求,选择适当的调制频率,以提高信号的信噪比和抗干扰能力。
调制频率选择
根据调制频率和系统带宽,选择合适的采样频率,确保能够准确捕获信号相位信
感谢您的观看。
远距离测量
由于激光的相干性和干涉效应,激光相位法测距具有较强的抗干扰能力,能够在复杂的环境中进行测量。
抗干扰能力强
激光相位法测距需要稳定的测量环境,以避免外界因素对干涉信号的影响。
需要稳定环境
激光相位法测距在航天领域中广泛应用于卫星轨道测量、地球观测和天文观测等。
航天测量
激光相位法测距在军事领域中用于远程武器定位、导弹精确制导和战场侦察等。
04
CHAPTER
激光相位法测距的误差分析
光路调整误差是由于发射和接收光路的不对准或光学元件的误差所引起的。
总结词
在激光相位法测距中,发射和接收光路必须精确对准,以确保测量结果的准确性。任何光路的不对准都会导致测量误差,因为接收器可能无法正确接收发射器发出的激光信号。此外,光学元件的误差也会影响光路的调整,如透镜和反射镜的制造误差。

第九章 激光测距.完整版PPT资料

第九章  激光测距.完整版PPT资料

可产生±1个脉冲当量的误差,且影响2次:
·对电路的性能要求很高。
上两式相减,并以L2代入得:
则脉冲激光测距中最小脉冲当量的公式:
连续激光经过高频调制后成为高频调制光,设调制频率为fυ,如图9-11所示。
对如图9-9所示的出窗探测系统,设接收物镜口径为D,视场角为w,在象面上光斑直径为φ,则当w很小时,可用下式建立它们之间的
图9-7
场镜的作用是减小探测器口径,并使孔径光栏成像在光 电探测器上
设计时满足以下关系:
1 l1 D
1 l
0 .8
0
1
f 2
1
l l
式中:β为横向放大倍率,φ0为光电探器光敏面直径。
解以上方程组,可得 l、f2和 值。
2、出窗探测系统(图9-8) 图9-8
(二)设计中几个光学参数的讨论 1、接受物镜相对孔径 D f 和探测器光敏面(φ0)的关系。
欲使激光能量充分利用,则要求At≤As,此时
At<As时,
A≤t 1 As
At As
max
但1 当
2、激光回波在单位立体角内所含的激光功率Pe(激光在目
标产生漫反射,其漫反射系数为ρ)
附注:几个概念
(1)*立体角(Ω)的概念:(如图9-2)
ds R 2(球面度)
图9-2
(2)一点光光源向三维空间幅射的立体角为:
二、光电读数(图9-4) 图9-4
因为 s12ct12cNfT(fT为晶振)频率 测距仪的最小脉冲正量δ为:
令N=1
则 c
2 fT
例:设fT=150MHz=1.5×108Hz,C=3×108m
则: 318 0 1m
21.518 0 三、测距精度

《激光测距》课件

《激光测距》课件
激光测距技术的突破
目前,激光测距技术已经取得了很多突破,如高精度、高速度、高稳定性的测量,以及在复杂环境下 的测量能力。未来,激光测距技术有望实现更多突破,如实现更高精度的测量、更远距离的测量、更 小体积的设备等。
激光测距与其他技术的融合发展
要点一
激光测距与机器视觉技术的融合
要点二
激光测距与物联网技术的融合
激光测距在智能化和物联网领域的应用
智能化应用
激光测距技术在智能化领域有着广泛的应用 前景。例如,在智能制造中,激光测距技术 可以用于自动化生产线上的测量和定位;在 智能交通中,激光测距技术可以用于车辆距 离和速度的测量,提高交通安全性。
物联网应用
激光测距技术在物联网领域也有着重要的应 用价值。例如,在智能农业中,激光测距技 术可以用于农田面积和作物高度的测量,实 现精准农业管理;在智能安防中,激光测距 技术可以用于建筑物和设施的安全监测和预 警。
通过测量激光脉冲往返时间来计算距 离。精度高,但受限于光速和时间测 量精度。
通过测量激光光束在目标表面产生的 光斑位置来计算距离。具有结构简单 、测量范围大等优点,但精度较低。
相位激光测距
通过测量激光光束的相位变化来计算 距离。具有较高的测量精度和动态范 围,但易受环境影响。
激光测距系统的性能指标
THANK YOU

02
激光测距系统
激光测距系统的组成
激光发射器
用于产生激光束,通常 采用脉冲或连续波方式

目标反射器
用于将激光束反射回接 收器,通常为平面反射
镜或漫反射器。
接收器
用于接收反射回来的激 光束,并进行光电转换

信号处理单元
用于处理接收到的信号 ,计算出目标距离。

雷达应用电路-激光雷达测距ppt课件.ppt

雷达应用电路-激光雷达测距ppt课件.ppt
信号和探测器接收到的激光信号转化得到电信号,
看出探测器输出的信号与激光器的触发信号有一 固定延时,即系统延时。
3.2 时刻判别电路
时刻判别电路的作用是对放大电路的输 出信号进行实时监测,为后端时间间隔测 量电路提供计时终I卜信号。其性能直接 影响着计时精度和测距精度。主要由高速 比较器及其附属电路实现。目前用于激光 测距的时刻判别方法主要有三种:前沿定 时法,恒比定时法和高通定时法。
3.1 激光器外调制电路
• 此激光器有两种调制方式:内调制和外调 制。
• 本系统采用外调制方式,调制脉冲由单片 机编程产生。外调制脉冲有一下要求:
1)、调制频率:1~50 KHZ; 2)、脉冲宽度1.101 ts; 3)、下降沿触发。
• 根据外触发脉冲的要求,系统采用宏晶科技公司 的STC89C52RC单片机编程实现激光器外触发。
激光脉冲测距雷达是典型的非相干激光 雷达。它的优点是测距精度高,测距精度 与测程的远近无关;系统体积小(天线尺 寸小和重量轻),测量迅速,可以数字显
示;有通信接口,可以连成测量网络,或 与其它设备联机进行数字信息处理和传输, 激光测距仪和微波测距仪相比,具有波束 窄,角分辨率高,抗干扰能力强,避免了 近地面和海面的多路径效应的优点。
本文所研制系统的结构如图:
由图可以看出,单片机产生激光器的外触发信号,同时将触发信号作为时间间 隔测量电路的开始计时信号,时间间隔测量电路开始计时;光电探测器将接收到的 回波信号转化为电信号;时刻判别电路将光电探测器输出的模拟电信号脉冲整形为 规则的TTL电平信号;时刻判别电路输出的TTL信号作为时间间隔测量电路的 计时终止信号,时间间隔电路将测得的开始计时信号和计时终止信号之间的时间差 送给单片机,在经过单片机的运算得到距离信息,单片机将距离信息经过串口传送 给PC机,在PC上实时显示距离。

激光测距(非常详细)演示幻灯片共73页文档

激光测距(非常详细)演示幻灯片共73页文档
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
激光测距(非常详细)演示幻灯片 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
பைடு நூலகம்
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由激光器对被测目标发射一个光脉冲,然后接收系统接收目标 反射回来的光脉冲,通过测量光脉冲往返的时间来算出目标的距离:
d ct 2
测程远,精度与激光脉宽有关,普通的纳秒 激光测距精度在米的量级 。
t 的测量:




在确定时间起始点之间 用时钟脉冲填充计数。
t
时钟 脉冲
t=NT
脉冲分配器



伺服系统
发射望远镜
SPAD
接收望远镜
转台
14
15
测距精度与激光脉宽
测距精度是由于激光脉冲前后沿时间差造成的;
因此激光脉冲宽度影响测距精度:L C t
表:测距精度与脉宽的比较
脉宽
10ns
100ps
测距精度 3m
3cm
10ps 3mm
16
卫星激光测距主要指标与激光器分系统的关系
千赫兹皮秒激光器为第四代卫星激光测距之激光器。 下一代卫星测距用激光器为双波长激光器。
19
测距误差分析
(1) 测距系统仪器误差 – 激光脉冲宽度误差 – 时间间隔测量误差 – 主波计时探测误差 – 回波计时探测误差 – 时钟同步误差 – 时钟频率标准误差
(2) 卫星反射器误差 – 反射器质心修正值误差
激光测距是通过测量激光光束在待测距离上往返传播的时间来换算出 距离的,其换算公式为:
d ct 2
4
测距方法分类
脉冲测距法:测距仪发出光脉冲,经被测目标反射后,光 脉冲回到测距仪接收系统,测量其发射和接收光脉冲的时 间间隔,即光脉冲在待测距离上的往返传播时间t。脉冲法 测距精度大多为米的量级; 相位测距法:它是通过测量连续调制的光波在待测距离上 往返传播所发生的相位变化,间接测量时间t。这种方法测 量精度较高,因而在大地和工程测量中得到了广泛的应用。
2L
c
L c 2nf 2
t
短距离、 高精度, 精度可达 毫米级。
9
三、卫星激光测距
作为激光测距应用的最重要成果之一 ——卫星激光测距 Satellite Laser Ranging ,简称为 SLR)技术起源于二十世纪六 十年代,是目前单次测距精度最高的卫星观测技术,其测距精度已 达到毫米量级,对卫星的测轨精度可达到 1-3 cm。
100ps,测距精度3cm; • 第三代:SESAM锁模,50Hz; • 第四代:SESAM锁模,KHz,精度< 1cm; • 第五代:双波长激光器,去除大气干扰。
18
卫星激光测距-激光器 :
总的来讲在其它条件相同时,发射激光的脉冲能量 越高,脉宽越窄,重复率越高,峰值功率越大,则 系统的测距能力越高。
• 测距精度—激光脉宽. • 测程(近地星、远地星)—激光能量、发散角. • 回波率—激光能量、发散角、激光脉冲重复频率.
注:测距精度还受光电接收分系统的影响;回波率与天气 好坏关系较大。
17
卫星激光测距—激光器发展历史
• 第一代: 1964年,调Q激光器,脉宽ns,测距精度3m; • 第二代:70-90年代,主被动锁模激光器,脉宽
(3) 系统延迟测量误差 – 地靶距离标定误差 – 地靶常规标校测量误差
(4) 气象参数采集和大气修正模型误差
20
我国卫星测距站
21
卫星激光测距应用
卫星激光测距(Satellite Laser Ranging:SLR)是 随着现代激光、光电子学、 计算机和空间科学发展而建立 起来的一门崭新观测技术。由于它具有独特的测距方式和 较高的测量精度,已在地学领域广泛应用。目前,其观测资 料已可用于地球物理学、地球动力学、大地测量学、天文 学和地震预报等多种学科。
12
卫星激光测距系统组成
卫星激光测距系统功能分为七大分系统: • 望远镜转台分系统 • 激光器分系统 • 光电接收分系统 • 伺服驱动控制分系统 • 测距控制分系统 • 微光导星分系统 • 软件分系统
13
测量原理
GPS
点火
天线
激光器

控 1PPS

GPS时钟接收机
控 制
制 10MHz




计数器
第九讲 激光测距
电子工程学院光电子技术系
1
主要内容
8.1 概述 8.2 脉冲激光测距 8.3 多周期脉冲激光测距 8.4 相位激光测距
2
8.1 概述
激光测距的特点
激光测距仪与其它测距仪(如微波测距仪等)相比, 具备的特点: 探测距离远测距精度高 抗干扰性强 保密性好 体积小 重量轻
6
脉冲测距
激光脉冲测距仪的简化结构如下图所示:
激光脉冲测距仪的简化结构
7
测距仪对光脉冲的要求:
光脉冲应具有足够的强度 光脉冲的方向性要好 光脉冲的单色性要好 光脉冲的宽度要窄 用于激光测距的激光器: 红宝石激光器、钕玻璃激光器、 二氧化碳激光器、半导体激光器。
8
二、连续激光相位测距
采用无线电波段的频率对激光束进行幅度调制并测定调制光往返 一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代 表的距离,即用间接方法测定出光经往返所需的时间。
卫星激光测距技术集光机电于一身,涉及计算机软、硬件技术, 光学、激光学、大地测量学、机械学、电子学、天文学、自动控制 学、电子通讯等多种学科。因此SLR测距仪系统十分复杂,消耗较大, 故障率较高,同时受天气因素制约,维护起来也比较困难,需要花费 较大的人力物力,但它又是目前精度最高的绝对观测技术手段。
3
激光测距仪的分类
激光测距仪的分类:激光测距不同于激光测长,它的测量距离要大得 多,按照测量距离可分为下述三类: 1、短程激光测距仪,它的测程仅在五公里以内,适用于各种工程测量; 2、中长程激光测距仪,测程为五至几十公里,适用于大地控制测量和 地震预报等; 3、远程激光测距仪,它用于测量导弹、人造卫星、月球等空间目标的 距离;
10
11
卫星激光测距系统
卫星激光测距系统按照各部分用途大致分为:激光发射、激光接收、 信息处理和信息传输四大部分。 • 激光发射部分的作用是产生峰值功率高,光束发散角小的脉冲激光, 使其经过发射光学系统进一步准直后,射向所测卫星。 • 激光接收部分是接收从被测卫星反射回来的微弱激光脉冲信号,经 接收光学系统聚焦后,照在光电探测器的光敏面上,使光信号转变 为电信号并经过放大。 • 信息处理部分的主要作用是进行卫星测站预报,跟踪卫星,测量激 光脉冲从测距系统到被测卫星往返一次的时间间隔t,并准确显示 和记录在计算机硬盘上,再由人工或自动方式形成标准格式。 • 信息传输部分的作用是通过通讯网络接收轨道预报参数和其它指令 (下传),上传观测结果所形成的标准格式数据等。
相关文档
最新文档