雷达目标识别技术

合集下载

雷达的目标识别技术

雷达的目标识别技术

雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。

一.引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。

地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。

1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。

信号带宽与时间分辨率成反比。

例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。

其基本原理如图1所示。

2.极化成象技术电磁波是由电场和磁场组成的。

若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。

线性极化电磁波的反射与目标的形状密切相关。

当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。

根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。

通过计算目标散射矩阵便可以识别目标的形状。

该方法对复杂形状的目标识别很困难。

3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。

通过解调反射电磁波的频率调制,复现目标振动频谱。

根据目标振动频谱进行目标识别。

传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。

点状目标的回波宽度等于入射波宽度。

一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。

通过目标回波宽度的变化可估计目标的大小。

目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。

雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术引言雷达技术作为一种广泛应用于军事、航空、航海和交通领域的测量技术,一直以来都备受关注和研究。

在雷达应用领域中,目标识别与跟踪技术是十分重要的一个研究方向,主要用于确定被测目标的特征或性质,随后跟踪该目标的运动变化。

本文将深入探讨雷达测量中的目标识别与跟踪技术。

一、雷达目标识别技术1. 散射截面及目标特征分析雷达识别某一特定目标的首要问题是确定目标的散射截面。

散射截面的值决定了目标对雷达波的反射程度,与目标的形状、大小和边缘特性等有关。

目标特征分析可以帮助确定不同目标之间的差异,并提供用于识别目标的信息。

2. 多普勒特征分析多普勒效应是指由于目标的运动而引起的接收信号频率发生变化的现象。

通过分析接收信号的多普勒频移,可以获得目标的运动状态、速度和方向,从而进一步识别目标。

3. 反射波束特征分析雷达工作时产生的波束会与目标发生相互作用,反射出的信号会带有目标的形状和结构信息。

通过分析返回信号的波束特征,可以推测出目标的形状、方位和内部结构等,为目标识别提供重要线索。

二、雷达目标跟踪技术1. 滤波器与滤波技术针对目标跟踪问题,滤波器是一种常用的处理手段。

常见的滤波器有卡尔曼滤波器、粒子滤波器和无迹卡尔曼滤波器等。

这些滤波器通过对雷达信号进行滤波处理,估计目标的状态并持续跟踪目标运动。

2. 目标运动模型目标运动模型是描述目标运动规律的数学模型。

常见的目标运动模型有匀速模型、自由加速度模型和粒子模型等。

通过建立适当的目标运动模型,可以更好地预测目标的运动行为,提高目标跟踪的准确性和鲁棒性。

3. 数据关联算法数据关联算法是在已知目标状态的情况下,根据测量数据关联目标和测量结果,并进行目标跟踪的一种方法。

常见的数据关联算法有最近邻算法、卡尔曼滤波算法和粒子滤波算法等。

这些算法能够有效处理多目标跟踪问题,提高跟踪性能。

三、雷达目标识别与跟踪在实际应用中的挑战与展望1. 复杂环境下的干扰雷达目标识别与跟踪在实际应用中面临着复杂的环境干扰,比如地形变化、气象条件和其他电磁源等。

电子信息工程中的雷达信号处理与目标识别技术研究

电子信息工程中的雷达信号处理与目标识别技术研究

电子信息工程中的雷达信号处理与目标识别技术研究雷达信号处理与目标识别技术是电子信息工程中的重要研究方向。

随着科技的不断发展,雷达技术在军事、航空航天、气象、交通等领域得到广泛应用。

本文将从雷达信号处理的基本原理、目标识别技术的研究进展以及未来发展方向等方面进行探讨。

一、雷达信号处理的基本原理雷达信号处理是指对接收到的雷达回波信号进行处理和分析,以提取目标信息。

雷达系统通过发射脉冲信号并接收回波信号,通过信号处理技术可以获得目标的位置、速度、方位等信息。

雷达信号处理的基本原理包括脉冲压缩、目标检测与跟踪、目标参数估计等。

脉冲压缩是雷达信号处理的关键环节之一。

由于雷达系统发射的脉冲信号具有宽度较大,会导致目标回波信号在时间上发生模糊。

脉冲压缩技术通过降低脉冲信号的宽度,提高雷达系统的分辨能力和测距精度。

目标检测与跟踪是雷达信号处理的另一个重要环节。

目标检测是指在雷达回波信号中识别出目标存在的位置和特征,而目标跟踪则是在多个雷达回波信号中追踪目标的运动轨迹。

目标检测与跟踪技术可以帮助雷达系统实时监测目标的位置和运动状态,为后续的目标识别提供基础。

目标参数估计是雷达信号处理的最终目标。

通过对雷达回波信号进行分析和处理,可以估计目标的位置、速度、方位等参数。

目标参数估计技术是雷达信号处理的核心内容,其准确性和精度直接影响着目标识别的效果。

二、目标识别技术的研究进展目标识别技术是雷达信号处理的重要应用方向之一。

目标识别是指根据目标的特征和属性,将其与其他物体进行区分和识别。

目标识别技术可以帮助雷达系统快速准确地识别目标,提高作战效能和监测能力。

目标识别技术的研究进展主要包括传统方法和深度学习方法两个方面。

传统的目标识别方法主要基于特征提取和分类器设计。

特征提取是指从雷达回波信号中提取与目标相关的特征,常用的特征包括散射特性、形状特征、运动特征等。

分类器设计是指根据提取到的特征,通过训练分类器对目标进行识别。

雷达信号处理中的目标识别与特征提取方法

雷达信号处理中的目标识别与特征提取方法

雷达信号处理中的目标识别与特征提取方法雷达信号处理是一种关键的技术,在许多领域中都有广泛的应用。

目标识别与特征提取是雷达信号处理的重要任务之一。

通过分析雷达接收到的信号,我们可以识别出不同的目标,并提取出与目标相关的特征信息。

本文将介绍雷达信号处理中常用的目标识别与特征提取方法。

一、目标识别方法目标识别是指将雷达接收到的信号与已知目标模型进行比对,从而确定目标的类别。

常用的目标识别方法包括以下几种:1. 信号处理与匹配滤波:匹配滤波是一种经典的目标识别方法。

它利用目标的特征信息构建一个滤波器,将雷达接收到的信号与滤波器进行卷积运算,得到目标的匹配度。

通过设置合适的阈值,即可识别目标。

2. 统计判决方法:统计判决方法利用目标的统计特征进行目标识别。

常用的统计判决方法包括贝叶斯判决、最小距离判决等。

这些方法通过建立目标的统计模型,并根据观测到的信号特征进行判决,从而实现目标的识别。

3. 特征匹配方法:特征匹配方法利用目标的特征信息进行目标识别。

常用的特征匹配方法包括相关匹配、相位匹配等。

这些方法通过计算目标特征之间的相似度,从而确定目标的类别。

特征匹配方法具有较高的准确性和鲁棒性,广泛应用于雷达目标识别中。

二、特征提取方法特征提取是指从雷达接收到的信号中提取出与目标相关的特征信息。

目标的特征信息可以包括目标的形状、尺寸、运动状态等。

常用的特征提取方法包括以下几种:1. 波形特征提取:波形特征提取是从雷达接收到的信号波形中提取出目标的特征信息。

常用的波形特征包括峰值、频率、幅度等。

通过分析这些波形特征,可以识别出目标的一些基本特征。

2. 多普勒频谱特征提取:多普勒频谱特征提取是从雷达接收到的信号的多普勒频谱中提取出目标的特征信息。

通过分析多普勒频谱的幅度、频率等特征,可以识别出目标的运动状态。

3. 极化特征提取:极化特征提取是从雷达接收到的信号的极化信息中提取出目标的特征信息。

雷达信号的极化信息包括目标的极化散射矩阵等。

雷达目标识别技术

雷达目标识别技术

雷达目标识别技术1.引言雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。

目前,经过国内外同行的不懈努力,应该说雷达目标识别技术已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,雷达目标识别技术已成功应用于星载或机载合成孔径雷达地面侦察、毫米波雷达精确制导等方面。

但是,雷达目标识别技术还远未形成完整的理论体系,现有的雷达目标识别系统在功能上都存在一定程度的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。

本文讨论了目前理论研究和应用比较成功的几类雷达目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了问题的可能解决思路。

2. 雷达目标识别技术的回顾雷达目标识别的研究始于20世纪50年代,早期雷达目标特征信号的研究工作主要是研究目标的有效散射截面积。

但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。

几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。

雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。

目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。

原则上,任何一个雷达目标识别系统均可模化为图1所示的基本结构。

雷达遥感图像处理方法与目标识别的基本原理与应用

雷达遥感图像处理方法与目标识别的基本原理与应用

雷达遥感图像处理方法与目标识别的基本原理与应用概述雷达遥感是一种利用雷达技术获取地球表面信息的遥感技术。

雷达遥感图像处理方法与目标识别是该领域中的关键技术,本文将介绍其基本原理与应用。

一、雷达遥感图像处理方法1. 预处理雷达遥感图像预处理是为了提高后续处理的可靠性和有效性。

包括噪声抑制、几何校正和辐射校正等。

噪声抑制通过滤波、去斑等算法降低雷达图像中的噪声干扰;几何校正将雷达图像与地面实际位置对应起来;辐射校正则是为了消除图像中的辐射差异。

2. 特征提取特征提取是雷达遥感图像处理中的关键一步,目的是将图像中的目标与背景区分开来。

常用的特征包括纹理特征、形状特征和频谱特征等。

纹理特征描述图像中的像素分布和灰度级变化;形状特征描述目标的形态和几何结构;频谱特征描述目标反射和散射特性。

3. 分割与分类分割将雷达图像分为不同的区域,使不同目标或背景出现在不同区域中。

常用的分割算法包括基于阈值、基于边缘、基于区域和基于特征等。

分类将图像中的区域分为不同的类别,以达到目标识别或目标检测的目的。

常用的分类算法包括最近邻分类器、支持向量机、决策树等。

二、目标识别的基本原理目标识别是雷达遥感图像处理的重点任务之一,其基本原理如下:1. 目标特征提取通过特征提取算法提取目标在雷达图像中的特征,包括目标的形状、纹理、尺寸和位置等信息。

这些特征可以用于后续的目标分类和识别。

2. 目标分类通过将目标与已知类别进行比较,将其归入某个类别中。

常用的分类算法包括最近邻分类器、支持向量机和人工神经网络等。

3. 目标检测与定位目标检测是指在雷达图像中找到目标的位置和尺寸。

常用的目标检测算法包括基于阈值、基于边缘和基于模板匹配等。

目标定位是指确定目标在地球表面的精确位置,一般通过地理坐标转换技术实现。

三、雷达遥感图像处理方法与目标识别的应用雷达遥感图像处理方法与目标识别技术在军事、农业、气象和城市规划等领域有广泛应用。

1. 军事雷达遥感图像处理与目标识别在军事领域中具有重要意义。

雷达信号处理中的目标识别与跟踪研究

雷达信号处理中的目标识别与跟踪研究

雷达信号处理中的目标识别与跟踪研究雷达(Radar)是一种利用电磁波进行探测和测距的技术。

它通过发射脉冲电磁波并接收其反射信号,利用信号的时间延迟和频率特征来探测和跟踪周围的目标物体。

在雷达信号处理中,目标识别与跟踪是两个重要的研究方向,它们对于实现雷达的自主目标探测和跟踪具有重要作用。

目标识别是在雷达信号中确定目标的位置、速度和其他特征属性的过程。

它的主要任务是将雷达接收到的信号与预先建立的目标模型进行匹配,通过特征提取和目标比对算法来判断目标是否存在。

目标识别可以分为传统方法和深度学习方法两种。

传统的目标识别方法主要依靠数学模型和信号处理算法。

常见的方法包括卡尔曼滤波器、最小二乘估计以及基于特征提取的算法等。

这些方法通过对信号的频谱、时频分析和特征提取等技术手段,对目标进行匹配和判断。

虽然传统方法在一定程度上可以实现目标识别,但是在处理复杂场景和目标变化较大的情况下效果有限。

近年来,深度学习方法在目标识别领域取得了显著的成果。

深度学习利用神经网络模型对大量数据进行训练,实现对数据的高级特征提取和模式识别。

在雷达信号处理中,深度学习可以利用卷积神经网络(CNN)和循环神经网络(RNN)等网络结构,对雷达信号进行直接处理和分类。

这种端到端的学习方式能够更好地解决目标识别中的非线性、多样性和时变性等问题。

目标跟踪是在目标识别基础上,在雷达扫描过程中连续追踪目标运动状态的过程。

目标跟踪的主要任务是通过对雷达接收到的连续信号进行滤波和关联,预测目标的位置和运动轨迹,实现实时监测和跟踪。

目标跟踪可以分为基于滤波的方法和基于关联的方法两种。

基于滤波的目标跟踪方法主要应用卡尔曼滤波器和扩展卡尔曼滤波器等算法。

这些方法通过建立目标的状态空间模型,对目标位置和速度进行状态估计和预测。

通过更新观测信息,不断优化目标的运动轨迹。

这种方法简单且实时性较好,适用于快速目标跟踪。

基于关联的目标跟踪方法主要利用关联算法对连续的雷达信号进行处理。

基于多普勒雷达的目标识别与跟踪技术研究

基于多普勒雷达的目标识别与跟踪技术研究

基于多普勒雷达的目标识别与跟踪技术研究引言:多普勒雷达是一种能够实时监测和跟踪目标运动状态的重要工具。

在现代军事、民用航空和交通管理等领域,多普勒雷达的应用日益广泛。

通过利用多普勒效应,多普勒雷达可以通过测量目标返回的雷达信号频率变化,精确地计算目标的运动状态和速度,从而实现目标的识别和跟踪。

本文将重点研究基于多普勒雷达的目标识别与跟踪技术,探讨其原理、方法和应用。

一、多普勒雷达原理多普勒效应是物理学中的一个基本原理,它描述了当一个物体相对于观察者运动时,物体的频率会发生变化。

多普勒雷达利用这一原理来识别目标的运动状态。

多普勒雷达在发射脉冲信号后,通过接收目标返回的回波信号,测量信号频率的变化。

根据多普勒效应,当目标向雷达靠近时,回波信号频率会增大;当目标远离雷达时,回波信号频率会减小。

通过计算回波信号频率的变化,可以确定目标的运动速度和方向。

二、多普勒雷达目标识别技术1. 频谱分析法频谱分析法是一种基于频谱特征的目标识别技术。

通过分析回波信号的频谱特征,可以确定目标的速度。

当目标的速度超过雷达系统的测量范围时,回波信号的频谱将出现模糊,难以识别。

因此,频谱分析法在目标速度较小的情况下应用较为广泛。

2. 脉冲压缩技术脉冲压缩技术是一种通过增加脉冲信号的带宽来提高雷达分辨率的方法。

通过将发射的脉冲信号与接收到的回波信号进行相关运算,可以实现对目标的高分辨率识别。

脉冲压缩技术可以有效地识别高速运动目标。

3. 频域分析法频域分析法是一种基于频域特征的目标识别技术。

通过将回波信号转换到频域,可以获得目标的频谱特征。

不同目标由于尺寸、材料和运动状态的不同,其频域特征也会有所差异。

通过对比目标的频域特征和参考库中的特征,可以实现目标的识别和分类。

三、多普勒雷达目标跟踪技术1. 单目标跟踪技术单目标跟踪技术是一种基于目标运动特征的跟踪方法。

通过计算目标的速度和方向,可以预测目标的运动轨迹,并实时更新目标的位置信息。

雷达目标识别技术研究及应用

雷达目标识别技术研究及应用

雷达目标识别技术研究及应用引言雷达目标识别技术作为一项重要的军事技术,在军事领域的应用已经非常广泛。

随着科技的不断发展,雷达目标识别技术也得到了不断的更新和升级,使得其在军事上的应用越来越广泛、越来越强大。

本文将就雷达目标识别技术进行深入的研究和分析,并对其在广泛应用中所取得的优异成果进行深入探讨。

一、雷达目标识别技术的概述雷达目标识别技术,简单来说,就是通过雷达技术,对目标的形态、特征、物性等进行采集和分析,将目标与其他物体进行区分的技术。

在军事领域中,雷达目标识别技术被广泛应用于敌我识别、空中情报、目标跟踪、导弹制导、防空预警等领域,在实现战场手段的精细化、多样化上发挥了重要的作用。

目前,雷达目标识别技术主要分为多个方向,其中常见的方向包括基于物理特征的目标识别、基于雷达信号特征的目标识别和基于图像处理的雷达目标识别。

这些方向分别有其优点和缺点,在实际应用中,需要根据不同场景、不同任务需求,精选合适的方向和技术手段。

二、基于物理特征的目标识别技术基于物理特征的雷达目标识别技术,主要是通过对目标物理特性的分析来识别目标。

目前应用较广的方法包括极化特征、形态特征、散射截面等。

其中,通过极化分析,可以利用目标表面的材料、纹理等特征进行目标识别;而通过形态分析,则可利用目标的几何形态、表面形态等进行目标识别。

基于物理特征的雷达目标识别技术以其识别准确率高、鲁棒性好等特点,被广泛的应用于目标识别任务。

在飞机、舰船、车辆等目标的识别中取得了显著的成果。

但是,同时也存在着目标复杂性高,目标表面特征丰富,识别算法繁琐等问题。

三、基于雷达信号特征的目标识别技术基于雷达信号特征的目标识别技术,主要是通过对目标信号的特征进行分析,确定目标的种类和型号。

其主要依托于雷达工作原理中的回波信号处理理论,通过分析接收到的目标雷达信号的频率、振幅、相位等参数,从而实现目标识别。

基于雷达信号特征的目标识别技术具有所需数据量少、识别自动化程度高等优点,已经得到广泛的应用。

雷达目标识别

雷达目标识别

4.4 神经网络模式识别方法
• 采用BP算法、感知器算法的多层前向网络;径向基函 数网络(RBFN);模糊ARTMAP网络、自组织特征 映射(SOFM)等自组织神经网络;以及异联想存储 器神经网络、自划分神经网络、实时循环神经网络、 模糊极大——极小神经网络,等等,在目标识别中都 有成功的应用。总之,先进的模式识别方法对于提高、 改善雷达自动目标识别系统的性能将起到至关重要的 作用,对它的进一步研究将具有重要的意义。
3.1 基于目标运动的回波起伏和调制谱特性 的目标识别
• 这类方法大都基于目前广泛使用的雷达时域一维 目标回波波形,抽取波形序列中包含的目标特征 信息来实现目标分类。这类研究已获得一些成功 应用。
3.1 基于目标运动的回波起伏和调制谱特性 的目标识别
• 1)利用目标回波起伏特性的识别
• 空中目标对低分辨率雷达来讲可以看作点目标, 其运动过程中,目标回波的幅度和相位将随目标 对雷达的相对姿态的不同而变化,根据目标回波 的幅度与相位的变化过程,判断其形状,对复信 息数据进一步分析,可以判断目标的运动情况。
3.雷达目标识别技术回顾
• 雷达目标识别的研究始于20世纪50年代。早期雷 达目标特征信号的研究工作主要是研究雷达目标 的有效散射截面积。
• 但对形状不同、性质各异的各类目标,笼统用一 个有效散射截面积来描述,就显得过于粗糙,也 难以实现有效识别。
• 近年来理论研究和实际应用比较成功的目标识别 方法有以下4类。
• 在模糊集理论基础上发展起来的模糊模式识别技术, 适于描述目标特征存在不同程度的不确定性。在目标 识别过程中,模糊模式识别技术通过将数值变换提取 的目标特征转换成由模糊集及隶属函数表征,再通过 模糊关系和模糊推理等对目标的所属关系加以判定了。

基于雷达数据的目标识别与跟踪技术研究

基于雷达数据的目标识别与跟踪技术研究

基于雷达数据的目标识别与跟踪技术研究目标识别与跟踪技术在现代雷达应用中扮演着至关重要的角色。

通过准确地识别和跟踪目标,雷达系统能够提供关键的信息,用于军事、民用和科研等领域。

本文将讨论基于雷达数据的目标识别与跟踪技术的研究进展和应用。

一、目标识别技术研究目标识别是雷达中的一个关键任务,旨在将雷达数据转化为可理解的目标信息。

目标识别技术可以通过提取目标的特征来实现,例如目标的形状、尺寸、运动模式等。

1.1 特征提取技术特征提取是目标识别的核心环节。

雷达数据中的目标特征包括雷达散射截面、速度、加速度、运动方向等。

通过分析目标的散射特性和运动状态,可以有效地区分目标与背景杂波,从而实现目标识别。

1.2 机器学习方法机器学习在目标识别技术中扮演着重要的角色。

通过对大量的雷达数据进行训练和学习,可以构建有效的分类模型,实现目标的自动识别。

常用的机器学习算法包括支持向量机(SVM)、人工神经网络(ANN)和决策树等。

二、目标跟踪技术研究目标跟踪是指通过连续观测,估计目标的位置、速度和方向等参数的技术。

在雷达应用中,目标跟踪技术被广泛用于跟踪移动目标,如飞机、船只和车辆等。

2.1 滤波器方法滤波器方法是目标跟踪中常用的技术之一。

常见的滤波器包括卡尔曼滤波器、粒子滤波器和扩展卡尔曼滤波器等。

这些滤波器通过观测数据和状态方程来预测和更新目标的状态,从而实现目标跟踪。

2.2 轨迹关联方法轨迹关联是在多个雷达观测周期内识别和关联目标的独立轨迹的技术。

轨迹关联方法可以通过分析目标的运动模式、速度差异和相对距离等参数,实现目标的跟踪和关联。

三、目标识别与跟踪技术的应用目标识别与跟踪技术在军事、民用和科研等领域有着广泛的应用。

3.1 军事应用在军事领域,目标识别与跟踪技术被广泛用于军事侦察、目标导航和作战决策等方面。

通过实时准确地识别和跟踪敌方目标,可提供关键的情报支持,增强军事作战的效能和胜算。

3.2 民用应用在民用领域,目标识别与跟踪技术被应用于雷达气象、交通监控和智能驾驶等方面。

雷达信号处理中的目标识别技术

雷达信号处理中的目标识别技术

雷达信号处理中的目标识别技术雷达作为现代武器系统中不可缺少的一部分,具有广泛的应用。

在使用过程中,雷达需要将接收到的信号进行处理,以实现对目标的探测与识别。

其中,目标识别技术是雷达信号处理中的重要组成部分,也是决定雷达性能和作战效果的关键因素之一。

一、目标特征提取目标识别技术的核心是目标特征提取,即通过对雷达接收到的信号进行分析和处理,提取出与目标相关的特征信息。

目标特征主要包括散射特征、运动特征和形态特征等。

其中,散射特征是指目标使雷达接收到的电磁波在空间和时间上的分布特性,通常用雷达截面积(RCS)来描述;运动特征是指目标运动的速度、方向和加速度等,可以通过多普勒频移和相位变化等特征进行提取;形态特征是指目标的几何形状、轮廓和纹理等,常用的提取方法包括边缘检测、轮廓提取、特征点匹配等。

目标特征的提取方法有很多种,如时域分析、频域分析、小波分析、深度学习等。

其中,时域分析是最基本和常用的方法之一,目标的散射信号通常通过时域信号处理进行分析和处理,得到目标的距离、径向速度和加速度等信息;频域分析则是通过傅里叶变换等方法将信号变换到频域,从而获得目标的频率和幅值等信息;小波分析是一种新型的信号处理方法,它通过小波变换将信号分解为多个不同频率的子带,以提高信号处理的精度和效率;深度学习则是近年来兴起的一种人工智能技术,通过神经网络等方法对海量数据进行学习和训练,以实现目标特征的高效提取和识别。

二、目标分类和识别目标特征提取后,还需要对目标进行分类和识别,即根据特征信息将目标归类到不同的目标库中,并判断目标是否是敌我识别。

目标分类和识别的方法主要包括基于特征匹配、基于统计分类、基于神经网络等多种方法。

基于特征匹配的方法是将目标特征与目标库中已知的目标特征进行比对,通过一定的相似度判断将目标归类到相应的目标类型中。

该方法需要建立大量的目标库,对目标特征的匹配精度以及库中目标的类型和数量要求较高,适用于目标类型比较固定的场景。

雷达的目标识别技术

雷达的目标识别技术

雷达的目标识别技术摘要:对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明: 采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。

一 .引言随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。

地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。

1.一维距离成象技术一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。

信号带宽与时间分辨率成反比。

例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。

其基本原理如图1所示。

滤波器图1侑号海波示意图2.极化成象技术电磁波是由电场和磁场组成的。

若电场方向是固定的,例如为水平方向或垂直方向,则叫做线性极化电磁波。

线性极化电磁波的反射与目标的形状密切相关。

当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。

根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。

通过计算目标散射矩阵便可以识别目标的形状。

该方法对复杂形状的目标识别很困难。

3.目标振动声音频谱识别技术根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。

通过解调反射电磁波的频率调制,复现目标振动频谱。

根据目标振动频谱进行目标识别。

传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。

点状目标的回波宽度等于入射波宽度。

一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。

通过目标回波宽度的变化可估计目标的大小。

目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。

基于图像处理的雷达目标识别与跟踪技术研究

基于图像处理的雷达目标识别与跟踪技术研究

基于图像处理的雷达目标识别与跟踪技术研究概述:基于图像处理的雷达目标识别与跟踪技术是一项前沿的研究领域,其目标是实现对雷达图像中的目标进行自动、精确的识别与跟踪。

本文将从问题背景、技术原理、相关方法以及应用前景等方面进行探讨。

1. 问题背景雷达技术在军事、航空、航天、遥感等领域具有重要应用价值。

然而,传统的雷达技术存在一些限制,比如难以对目标实现高精度的识别与跟踪。

因此,基于图像处理的雷达目标识别与跟踪技术的研究对于提高雷达系统的性能具有重要意义。

2. 技术原理基于图像处理的雷达目标识别与跟踪技术主要包括以下步骤:2.1 图像预处理:对雷达图像进行噪声去除、图像增强等预处理,提高目标的可见性。

2.2 特征提取:利用图像处理算法提取目标的特征,比如颜色、纹理、形状等。

常用的特征提取方法包括边缘检测、纹理特征提取、形状描述等。

2.3 目标识别:利用机器学习、模式识别等方法对提取的特征进行分类和识别,实现对不同目标的自动识别。

2.4 目标跟踪:根据目标识别的结果,使用跟踪算法对目标进行连续跟踪,实时更新目标的位置、速度、运动轨迹等信息。

3. 相关方法3.1 传统方法传统的基于图像处理的雷达目标识别与跟踪技术主要使用人工设计的特征和分类器进行目标识别与跟踪。

这种方法需要依赖领域专家对特征进行设计,且对于复杂场景的目标识别与跟踪效果较差。

3.2 深度学习方法近年来,深度学习在图像处理领域取得了巨大成功,也在雷达目标识别与跟踪中得到了广泛应用。

深度学习可以从数据中学习到更高级别的特征表示,相比传统方法具有更好的泛化能力和适应性。

4. 应用前景基于图像处理的雷达目标识别与跟踪技术在军事、安防、无人驾驶、智能交通等领域具有广阔的应用前景。

通过提高目标识别与跟踪的精度和实时性,可以提升系统的自动化程度,减少人工干预,增加系统的可靠性和安全性。

5. 结语基于图像处理的雷达目标识别与跟踪技术是一个充满挑战和机遇的研究领域。

雷达目标识别

雷达目标识别

雷达目标识别雷达目标识别是一种利用雷达技术来识别目标的方法。

雷达(Radar)是一种利用电磁波进行探测和测量的技术,其工作原理类似于声纳。

通过发送一束电磁波并接收其反射回来的信号,雷达可以探测到目标物体的存在和位置,并进一步对目标进行识别和特征提取。

目标识别是雷达技术中一个重要的应用领域。

目标识别主要通过对雷达返回信号进行分析,从中提取目标的特征信息,并与事先建立的目标数据库进行比对,进而确定目标的身份和属性。

目标识别可以应用于多个领域,如军事防御、航空航天、交通监控等。

在雷达目标识别中,首先需要对雷达返回信号进行预处理,以去除噪声和杂波干扰,并提取目标的特征信息。

常用的特征包括目标的尺寸、形状、速度、方向等。

这些特征可以通过波形分析、频谱分析、图像处理等方法来提取。

在目标识别过程中,可以根据目标的特征信息进行分类和识别。

常见的分类方法包括基于模式识别的方法、基于机器学习的方法等。

基于模式识别的方法主要是通过比对目标的特征信息与事先建立的目标数据库,来确定目标的身份。

而基于机器学习的方法则是通过将大量的目标数据输入到机器学习模型中,从中学习并建立目标的识别规则。

在雷达目标识别中,有一些常用的算法和技术,如相关器识别算法、最小二乘法、径向基函数网络等。

这些算法和技术可以对目标进行分类、特征提取和参数估计,从而实现对目标的准确识别。

总之,雷达目标识别是一种利用雷达技术对目标进行识别和分类的方法。

通过对雷达返回信号进行分析和处理,可以提取目标的特征信息,并与目标数据库进行比对,从而实现对目标的准确识别。

雷达目标识别在军事、航空航天、交通等领域具有重要的应用价值,可以为相关领域的决策提供有效支持。

雷达跟踪系统中的目标探测与识别技术

雷达跟踪系统中的目标探测与识别技术

雷达跟踪系统中的目标探测与识别技术雷达技术一直在航空、导航、军事等领域扮演着重要的角色。

雷达跟踪系统中的目标探测与识别技术是其中至关重要的一环。

本文将探讨雷达目标探测与识别的相关技术,以及当前的研究和发展趋势。

第一部分:目标探测技术雷达目标探测是指利用雷达系统进行目标的探测与确认。

传统上,雷达系统使用连续波雷达或脉冲雷达进行目标的探测。

连续波雷达通过发送连续的电磁波并接收被目标散射的波,根据接收到的信号来判断目标是否存在。

脉冲雷达则利用发射短时脉冲的方式来检测被目标反射的脉冲信号。

然而,随着科技的不断发展,新的目标探测技术也应运而生。

比如,目标探测技术中的成像雷达,它能够获取目标的图像信息,从而实现对目标的更准确的探测。

成像雷达通过发射短脉冲序列,并利用波束形成和合成孔径雷达技术,可以获取目标的三维形状和位置信息。

第二部分:目标识别技术雷达目标识别是指根据目标的雷达特性,对目标进行分类和识别。

传统上,目标识别主要依靠目标的回波信号的特征,如目标的反射截面、多普勒频移等。

基于这些特征,通过与数据库进行匹配或者使用特征提取算法,可以对目标进行分类和识别。

近年来,随着人工智能和深度学习的发展,新的目标识别技术也逐渐兴起。

深度学习技术可以从大量的数据中学习和识别特征,从而实现对目标的自动分类和识别。

例如,通过构建深度神经网络模型,并使用大量的雷达图像数据进行训练,可以实现对雷达目标的高效自动识别。

第三部分:研究和发展趋势雷达目标探测与识别技术正不断地发展和演进。

未来的研究和发展趋势有以下几个方向:1. 多传感器融合:将雷达与其他各种传感器技术相结合,如红外传感器、光学传感器等,以形成更完整、准确的目标探测与识别系统。

2. 多维信息提取:除了传统的距离和速度等信息外,还可以提取更多维度的信息,比如目标的形状、材料组成等,以更全面地识别和判别目标。

3. 实时目标跟踪:目标跟踪是对目标在时间上的连续追踪。

未来的目标跟踪技术将更加注重对目标的轨迹、运动模式等动态信息的捕捉和分析。

利用雷达数据进行目标识别及跟踪

利用雷达数据进行目标识别及跟踪

利用雷达数据进行目标识别及跟踪雷达是一种电子测量技术,利用无线电波在空间中传播,并接收和处理由目标反射回来的反射波。

利用雷达技术对目标进行识别和跟踪已经成为现代军事和民用领域中的重要应用。

本文将探讨如何通过雷达数据实现目标识别和跟踪。

一、雷达技术的基本原理雷达技术的基本原理是通过发射无线电波,将它们从目标上反射回来,并测量其时间和频率,以确定目标的位置、速度和方向。

雷达系统由发射机、接收机、天线和处理器组成。

发射机产生连续的射频信号,经天线后发射出去。

当信号碰到目标时,会被反射回来,信号经天线再次进入接收机。

接收机会对信号进行放大和处理,以提取目标信息。

处理器将提取的信息转换成有用的数据,如目标的位置、速度和方向等。

二、雷达数据的分析与处理雷达数据的分析与处理是雷达技术中最重要的环节之一。

雷达数据可以包含大量的信息,如目标反射强度、距离、速度、方位角和高程等。

在进行目标识别之前,需要对雷达数据进行预处理和滤波。

预处理的主要任务是将原始数据转换成可视化的格式,以方便对数据进行分析和处理。

滤波则是为了去除噪声,保留有用的信号,以提高目标识别的准确性和可靠性。

进行目标识别时,需要根据目标的特征进行分类。

目标的特征包括反射强度、速度、方位角和高程等。

通过对这些特征的分析和处理,可以确定目标的类别和属性。

三、雷达数据的目标跟踪目标跟踪是利用雷达数据对目标的运动轨迹进行预测和跟踪的过程。

目标跟踪的主要任务是在目标动态变化的情况下,对其位置进行准确预测和跟踪。

目标跟踪的算法可以分为传统算法和智能算法两类。

传统算法主要包括卡尔曼滤波、贝叶斯滤波和粒子滤波等。

智能算法则包括人工神经网络、遗传算法和模糊逻辑等。

四、雷达技术在军事上的应用雷达技术在军事上的应用主要包括目标识别和跟踪、雷达导航、目标指引和武器制导等。

其中,目标识别和跟踪是一项关键技术,可以帮助军事指挥部对敌方军事活动进行监测和预警。

在现代战争中,雷达技术的发展已经成为军事优势的重要标志之一。

雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术雷达是一种广泛应用于军事和民用领域的无线电探测设备,可以通过发射和接收电磁波来探测和跟踪目标。

雷达测量中的目标识别与跟踪技术在现代社会中发挥着重要作用,不仅有助于军事作战,还广泛应用于航空、航海、气象、交通等领域。

一、雷达目标识别技术雷达目标识别技术是指通过分析雷达回波信号的特征,确定目标的类型和性质。

目标识别可以通过目标的尺寸、形状、反射截面以及运动轨迹等特征来实现。

在雷达目标识别中,一种常见的方法是基于目标的回波信号的频率谱。

不同目标对电磁波的反射能力不同,因此其回波信号的频谱也不同。

通过比对已知目标的频谱特征和实际回波信号的频谱,可以对目标进行识别。

另一种常用的目标识别技术是基于目标的散射特性。

目标与电磁波相互作用,产生散射现象。

通过分析目标的散射信号,可以了解目标的形状、结构以及材料成分,从而实现目标的识别。

此外,雷达目标识别还可以通过目标的运动特征来实现。

不同类型的目标在运动过程中表现出不同的特征,比如速度、加速度等。

通过分析目标的运动特征,可以对目标进行分类和识别。

二、雷达目标跟踪技术雷达目标跟踪技术是指通过分析雷达回波信号,实时追踪目标的位置、速度和轨迹等信息。

目标跟踪是雷达应用于实际场景中的重要环节,对于实现有效的目标探测和监测至关重要。

在雷达目标跟踪中,一种常见的方法是基于比较分析目标的回波强度变化。

通过寻找回波强度最强的点,可以确定目标的位置。

同时,结合雷达的扫描方式,可以得到目标的速度和运动方向信息。

通过不断更新目标的位置、速度和方向信息,可以实现目标的跟踪。

另一种常用的目标跟踪技术是基于多普勒效应。

多普勒效应指的是当目标相对雷达运动时,雷达接收到的回波频率会发生变化。

通过分析回波频率的变化,可以推测目标的速度和运动方向,从而实现目标的跟踪。

除此之外,雷达目标跟踪还可以利用图像处理和信号处理技术。

通过对雷达回波信号进行图像化处理,可以直观地观察目标的位置和运动轨迹。

雷达目标识别与跟踪算法研究

雷达目标识别与跟踪算法研究

雷达目标识别与跟踪算法研究引言雷达技术在军事、航空航天、交通、环境监测等领域具有重要的应用价值。

雷达目标识别与跟踪算法是雷达系统中的核心技术之一,它能够实时识别并跟踪雷达系统所探测到的目标,从而为决策与应用提供重要的信息支持。

本文将对雷达目标识别与跟踪算法进行研究,并探讨其在不同领域的应用。

一、雷达目标识别算法研究雷达目标识别是指通过分析雷达探测到的目标特征,判断目标种类或属性的过程。

常见的雷达目标识别算法有检测算法、特征提取算法和分类算法。

1.1 检测算法雷达探测到的目标通常被表示为点云或距离-速度图像。

检测算法就是基于这些数据,识别目标是否存在的过程。

传统的检测算法有CFAR(常规恒虚警率)法和霍夫变换法,还有基于模型的检测算法,如基于高斯分布模型和基于机器学习的检测算法。

1.2 特征提取算法特征提取算法是在检测到目标之后,提取目标的关键特征,以实现目标分类与识别。

常用的特征包括目标的形状、纹理、颜色、运动等。

特征提取算法主要包括边缘检测、纹理分析、运动估计等。

1.3 分类算法目标的分类与识别是指将识别到的目标分为不同的类别或属性。

分类算法主要基于目标的特征进行分类,如支持向量机(SVM)、决策树、人工神经网络等。

近年来,深度学习算法在目标分类与识别领域取得了巨大的成功,如卷积神经网络(CNN)等。

二、雷达目标跟踪算法研究雷达目标跟踪是指在目标识别的基础上,持续追踪目标并估计目标的运动状态。

雷达目标跟踪算法可以分为传统方法和基于深度学习的方法。

2.1 传统方法传统的雷达目标跟踪方法包括卡尔曼滤波器、粒子滤波器、扩展卡尔曼滤波器等。

这些方法既适用于单目标跟踪,也适用于多目标跟踪。

但是,由于目标的非线性运动、目标数量变化和目标间相互遮挡等问题,传统方法在复杂场景中表现较差。

2.2 基于深度学习的方法近年来,深度学习算法在目标跟踪领域取得了重要突破。

基于深度学习的目标跟踪算法利用卷积神经网络(CNN)或循环神经网络(RNN)等架构,结合大规模标注的数据集进行训练。

基于雷达技术的目标识别与跟踪系统设计

基于雷达技术的目标识别与跟踪系统设计

基于雷达技术的目标识别与跟踪系统设计在现代社会,雷达技术被广泛应用于军事、民用、航空航天等领域。

其中,雷达目标识别与跟踪系统是其中一个重要的组成部分。

雷达目标识别与跟踪系统的设计,可以帮助人们更准确地进行目标的监测、追踪和控制,提高了人类在各种领域中的管理和应用水平。

一、雷达技术的原理雷达是一种利用电波来探测目标位置和运动状态的技术。

雷达系统通过向目标发射连续或间歇的电磁波,然后接收反射回来的信号,并对其进行处理,从而获得目标的位置、运动速度等信息。

雷达的核心是收发设备和信号处理系统,其中收发设备主要包括雷达天线、发射机和接收机等。

二、雷达目标识别技术雷达目标的识别是指通过对目标反射回来的信号特征进行分析和处理,从而判断目标的种类及其特征。

目标识别技术的目标是实现对目标情况的准确分析和对目标种类的自动判断。

在雷达目标识别中,常用的方法有SAR成像、HRR特征识别、频谱分析等。

其中,SAR(合成孔径雷达)具有对地面目标进行成像、探测以及识别的能力。

HRR(高分辨率雷达)技术可以获得高质量的目标特征数据,进而实现目标的识别。

三、雷达目标跟踪技术雷达目标跟踪是指系统能够对目标的位置、速度等参数进行实时检测,从而对其进行追踪。

目标跟踪技术是雷达技术应用的重要组成部分,主要是通过对目标的位置和运动状态进行实时分析和计算,来实现目标的跟踪。

在实际应用中,经常采用的目标跟踪算法有传统卡尔曼滤波、扩展卡尔曼滤波、粒子滤波和平滑滤波等。

四、基于雷达技术的目标识别与跟踪系统设计基于雷达技术的目标识别与跟踪系统设计的目的是能够快速且准确地识别和跟踪目标,为后续的分析和决策提供有效的数据支持。

该系统主要由雷达设备、数据采集与处理模块、目标识别算法模块和目标跟踪算法模块等组成。

1.雷达设备部分,主要是对雷达设备进行选型和配置。

针对不同类型的目标,需要选择不同类型的雷达设备。

同时,也需要考虑设备性能、探测距离、探测精度等因素,选择合适的雷达设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达目标识别技术述评孙文峰(空军雷达学院重点实验室,湖北武汉430010)摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。

关键词:雷达目标识别;低分辨雷达Review on Radar Target RecognitionSUN Wen-feng(Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service.Key words: radar target recognition; low resolution radar1.引言雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。

1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。

目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。

目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。

但是,RTR还远未形成完整的理论体系,现有的RTR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。

本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。

2.雷达目标识别技术的回顾与展望雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。

其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。

一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。

就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。

在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

原则上,任何一个RTR系统均可模化为图1所示的基本结构[3]。

它由目标识别预处理、特征信号提取、特征空间变换、模式分类器、样本学习等模块组成。

图中虚线部分的断开和启动,决定RTR系统是否具备自学习功能。

图1 雷达目标识别系统方框图2.1 雷达目标识别技术简介下面就从RTR系统的几个主要环节出发,对常用的RTR技术进行简要回顾。

(1)雷达目标特征信号雷达目标特征信号(RTS—Radar Target Signature)是雷达发射的电磁波与目标相互作用所产生的各种信息,它载于目标散射回波之上,是雷达识别目标的主要信息来源。

雷达目标特征信号包括雷达散射截面积(RCS—Radar Cross Section)及其统计参数、角闪烁误差(AGE—Angular Glint Error)及其统计参数、极化散射矩阵、散射中心分布、极点等。

但是,不是任何雷达都能获得所有目标特征信号的。

早期的雷达由于分辨力不够,只能将探测对象看作点目标,得到目标的距离、方位、速度等简单信息,难以满足目标识别的要求。

随着高分辨力雷达的问世,才有条件将探测对象当作扩展目标来研究,获得更多的雷达目标特征信号,使复杂电磁环境中的雷达目标识别成为可能。

雷达目标特征信号的研究手段有仿真实验、暗室测量和外场试验三种,它们各有其优缺点,应根据具体情况进行取舍。

仿真实验主要是将目标分解或利用某种近似理论,用计算机对目标的雷达回波进行模拟。

其优点是花费少,能产生任意姿态角的目标回波数据,但数据可信度不高;暗室测量主要是在微波(毫米波)暗室中对目标的缩比模型进行测量,花费较大,且由于有近场推远场等近似手段,数据可信度居中。

一般目标的方位角可以360度准确控制,但俯仰角受暗室空间的限制,转动范围不大;外场试验就是在简单的电磁环境中对目标实物进行测量,其数据可信度最高,但花费最大,且目标的姿态难以准确控制。

(2)雷达目标识别预处理雷达目标识别预处理的主要任务是尽量减小各种不确定因素对目标识别性能的影响,包括抑制噪声、杂波及其它有源和无源干扰,虚警鉴别与多目标分辨,成像识别时的目标(载体)运动补偿、斑点效应的抑制和目标分割,等等。

有人认为预处理还包括目标类型的粗分类[2]。

总之,预处理是雷达目标识别过程中的一个重要环节,其具体过程随雷达体制和应用背景而异。

(3)雷达目标特征抽取雷达目标特征抽取的任务就是从目标的雷达回波中抽取与目标属性直接相关的一个或多个特征,作为目标识别的信息来源。

雷达目标特征抽取的客观依据是目标与环境的雷达特性。

目标的雷达特性除了雷达目标特征信号以外,还包括雷达常规测量得到的目标的位置、运动参数等。

环境的雷达特性一般是指地(海)面背景杂波的电磁散射特性,这里不予讨论。

雷达目标特征抽取所用的方法与目标和雷达体制二者密切相关,特征抽取时必须分析所有感兴趣目标的雷达特性,比较它们之间的异同,提取区分某种目标与其它目标的最显著特征,用于目标识别。

图2为某金属球在不同波长雷达波照射下的RCS曲线,其横坐标r为目标有效散射尺寸与雷达发射信号波长λ的比值。

根据这一曲线可以将目标的雷达特性粗略划分为瑞利区、谐振区和光学区。

在瑞利区,目标的尺寸远小于雷达的工作波长λ,目标的RCS与r近似成线性关系,目标的散射特性可以用一个点目标模型来模拟;在谐振区,目标的有效尺寸与雷达的工作波长λ处于同一个数量级,此时目标产生谐振,其RCS随λ的变化起伏较大;在光学区,目标的有效尺寸远大于λ,其RCS随λ的减小而趋于恒定值。

一般来说,频率高端有利于激励出目标的精细结构信息,频率低端则图2 金属球的RCS与雷达工作波长的关系能携带目标的总体粗结构信息。

就RTR 本身而言,要求雷达发射信号最好能跨越目标的三个区,此时目标回波携带的信息量最为丰富,对目标识别最有利,这就是超宽带雷达用于目标识别的优势。

我军现役雷达装备,除少数米波雷达的波长与军事目标的尺寸可以比拟外,大多数雷达都工作在目标的光学区。

因此,下面重点就光学区雷达目标识别常用的特征抽取方法加以说明。

光学区雷达目标识别的重要理论基础是多散射中心理论,即光学区目标的雷达回波可以近似等效为目标物体上少数几个强散射中心回波的矢量和。

散射中心是客观存在的,它主要指目标的边缘(棱线)、曲率不连续点、尖端、镜面、腔体、行波及蠕动波等强散射点,它反映了目标的精密结构特征。

光学区的雷达目标识别方法可分为宽带高分辨和窄带低分辨两类。

宽带高分辨雷达目标识别方法主要有成像识别(即估计散射中心在目标物体上的分布)和散射中心历程识别(即散射中心随目标姿态的变化过程)两种。

宽带高分辨成像识别的大体情况和窄带低分辨目标识别的具体思路将在本文后面进行介绍。

RTR中的特征抽取至今仍未形成完整的理论体系,个别特征对于目标识别的作用难以量化。

因此,现阶段的RTR研究都是在现有目标识别理论的指导下,不断尝试各种特征抽取手段,最后根据所掌握数据的分类效果对目标特征抽取方法进行取舍。

但是,经过大量的研究可以肯定的一点是,用于目标识别的特征数目并非越多越好。

因为从同一目标回波中抽取的特征难免存在一定的相关性,而这种相关性往往是不易觉察的。

冗余特征不仅会使运算量增大,而且还可能引入不必要的噪声。

避免冗余特征的唯一途径是从目标电磁散射的机理出发,抽取与目标属性直接相关的特征,使每个特征都能得到合理的解释,但实际上很难做到这一点。

此外,在光学区,由于目标特征对姿态角比较敏感,为了使特征抽取能够得到目标所有姿态下的完整信息,训练数据应来自目标所有的姿态,理论上相邻姿态角之间的间隔应越小越好。

(4)特征空间变换特征空间变换是RTR中的另一个重要环节,其目的是应用各种优化的变换技术改善特征空间中原始特征的分布结构,压缩特征维数,去除冗余特征。

常用的特征空间变换技术有四种,即卡南-洛伊夫(K-L)变换、沃尔什(Walsh)变换、梅林(Mellin)变换和基于离散度(Fisher)准则的维数压缩方法。

前三种特征空间变换方法的主要思想是通过正交变换消除特征之间的相关性,达到去除冗余特征、减小计算量的目的。

其中梅林变换还具有尺度不变性的特点,在RTR识别中有助于部分消除特征矢量对目标姿态的敏感性。

基于离散度准则的维数压缩方法则是通过正交投影提高同类目标特征之间的聚合性和异类目标特征之间的可分离性,同时达到大幅度压缩特征矢量维数的目的。

(5)目标模式分类目标各种姿态的训练数据,经过特征抽取和特征空间变换后就形成了目标识别时资用的若干个模板。

实测数据经过同样的处理过程也会成为一个与模板矢量维数相同的矢量,将该矢量与所有目标类型的所有模板进行比较,最终确定目标属性,就是模式分类算法需要解决的问题。

常用的模式分类算法有统计模式识别算法、人工神经元网络(ANN)模式分类算法、基于专家系统的人工智能识别算法、模糊模式分类算法及其它复合分类算法。

其中统计模式识别算法最为稳定可靠;模糊模式识别算法智能化程度高,容错性较强,但隶属度函数的得到和修正往往需要人的经验,不便于RTR系统的自学习;基于专家系统的人工智能识别算法容错性不强;人工神经元网络模式分类算法有较强的容错性,较高的智能化水平,高度的并行处理和较强的自学习能力,可能是RTR系统设计模式分类器的最佳选择;模糊推理与神经网络复合等类似的复杂分类器还有待进一步研究。

相关文档
最新文档