化工原理课程设计管壳式换热器的设计
化工原理课程设计管壳式换热器汇总
![化工原理课程设计管壳式换热器汇总](https://img.taocdn.com/s3/m/0d443f8c87c24028905fc37d.png)
化工原理课程设计管壳式换热器汇总公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]设计一台换热器目录化工原理课程设计任务书设计概述试算并初选换热器规格1. 流体流动途径的确定2. 物性参数及其选型3. 计算热负荷及冷却水流量4. 计算两流体的平均温度差5. 初选换热器的规格工艺计算1. 核算总传热系数2. 核算压强降经验公式设备及工艺流程图设计结果一览表设计评述参考文献化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于50kPa。
4、每年按300天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:99000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。
3、设计结果概要或设计结果一览表。
4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
1.设计概述热量传递的概念与意义1.热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热。
由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
2. 化学工业与热传递的关系化学工业与传热的关系密切。
这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
管壳式换热器的课程设计
![管壳式换热器的课程设计](https://img.taocdn.com/s3/m/c8d770df50e79b89680203d8ce2f0066f53364b9.png)
避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。
化工原理课程设计换热器
![化工原理课程设计换热器](https://img.taocdn.com/s3/m/b3610d2453d380eb6294dd88d0d233d4b14e3f10.png)
化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
管壳式换热器的设计课程设计
![管壳式换热器的设计课程设计](https://img.taocdn.com/s3/m/9804911e7cd184254b353521.png)
课程设计化工原理课程设计设计题目:管壳式换热器选型班级:2012级一班姓名:季恩卉学号:2012507072指导教师:***完成日期:2015年 5 月 25 日化工系目录前言 (3)1.管壳换热器的设计书 (6)2.设计方案的确定 (6)2.1.管壳换热器的型式 (6)2.2.流程的选择 (6)3.确定流体的定性温度、物性数据并选择列管换热器的型式 (6)3.1.定性温度 (7)3.2.物性参数 (7)4.换热器的工艺计算 (7)4.1.估算总传热系数 (7)4.1.1.热流量 (7)4.1.2平均传热温差 (7)4.1.3.冷却剂水用量 (8)4.1.4. 选取K值,估算总传热系数 (8)4.2估算传热面积 (8)5.换热器的工艺结构尺寸设计 (8)6.5.1.管径和管内流速 (8)5.2.管程数和传热管数 (8)5.3.传热管排列和分程方法 (8)5.4.计算平均传热温差 (9)5.5.壳体内径 (9)5.6.折流板 (9)5.7.计算壳程流通面积及流速 (9)5.8.计算管程流通面积及流速 (10)6. 换热器核算 (10)6.1传热系数的校核 (10)6.1.1.传热面积 (10)6.1.2.核算总传热系数 (11)6.1.3.污垢热阻 (11)6.1.4对流传热系数 (11)6.1.5壳体对流传热系数 (11)6.1.6.传热面积 (11)6.2.换热器内流体的流动阻力 (12)6.2.1.管程流动阻力 (12)6.2.2.壳程流动阻力 (12)7. 换热器的主要结构尺寸和计算结果 (13)8.在ChemCAD中的结果 (14)9.附图 (15)10.总结 (17)11.参考文献 (17)前言换热器是化工、炼油工业中普遍应用的典型的工艺设备。
在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。
换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。
管壳式换热器设计 课程设计
![管壳式换热器设计 课程设计](https://img.taocdn.com/s3/m/a7c34093580216fc700afde9.png)
河南理工大学课程设计管壳式换热器设计学院:机械与动力工程学院专业:热能与动力工程专业班级:11-02班学号:姓名:指导老师:小组成员:目录第一章设计任务书 (2)第二章管壳式换热器简介 (3)第三章设计方法及设计步骤 (5)第四章工艺计算 (6)4.1 物性参数的确定 (6)4.2核算换热器传热面积 (7)4.2.1传热量及平均温差 (7)4.2.2估算传热面积 (9)第五章管壳式换热器结构计算 (11)5.1换热管计算及排布方式 (11)5.2壳体内径的估算 (13)5.3进出口连接管直径的计算 (14)5.4折流板 (14)第六章换热系数的计算 (20)6.1管程换热系数 (20)6.2 壳程换热系数 (20)第七章需用传热面积 (23)第八章流动阻力计算 (25)8.1 管程阻力计算 (25)8.2 壳程阻力计算 (26)总结 (29)第一章设计任务书煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。
设计任务及操作条件1、设备形式:管壳式换热器2、操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却水介质:入口温度26℃,出口温度40℃第二章管壳式换热器简介管壳式换热器是在石油化工行业中应用最广泛的换热器。
纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。
目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。
强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。
目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。
化工原理课程设计管壳式换热器的设计
![化工原理课程设计管壳式换热器的设计](https://img.taocdn.com/s3/m/75ca6f100b4e767f5acfce8b.png)
西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。
柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。
换热器的热损失可忽略。
管、壳程阻力压降不大于100kPa。
试设计能完成上述任务的列管式换换热器。
二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。
管壳式换热器课程设计
![管壳式换热器课程设计](https://img.taocdn.com/s3/m/fb96963d011ca300a6c390ff.png)
目录前言 (2)第一部分,甲苯冷凝器的设计一、设计任务 (4)二、设计要求 (4)三、工艺结构尺寸 (6)(1)管径和管内流速 (6)(2)管程数和传热管数 (6)(3)平均传热温差校正及壳程数 (6)(4)传热管的排列和分程数法 (7)(5)壳体内径 (7)四、换热器主要传热参数核算 (8)(1)计算管程对流传热系数 (8)(2)计算壳程对流传热系数 (8)(3)确定污垢热阻 (9)(4)总传热系数 (9)第二部分,甲苯冷却器的设计一、试算并初选换热器规格 (11)(1)流体流动途径的确定 (11)(2)确定流体的定性温度、物性数据,并选择列管换热器的型式 (11)二、计算总传热系数 (11)(1)计算热负荷 (11)(2)冷却水用量 (12)(3)计算平均传热温度差 (12)(4)总传热系数K (12)(5)估算换热面积 (12)三、工艺结构尺寸 (12)(1)管径和管内流速 (12)(2)管程数和传热管数 (12)(3)平均传热温差校正及壳程数 (13)(4)传热管的排列和分程方法 (14)(5)壳体内径 (14)四、换热器主要传热参数核算 (15)(1)壳程对流传热系数 (15)(2)管程对流传热系数 (16)(3)基于管内表面积的总传热系数 (16)(4)计算面积裕度 (17)化工原理课程设计任务书一、设计任务题目##.#万吨/年甲苯精馏塔冷凝冷却(水冷)换热系统工艺设计。
二、任务给定条件1.热流条件:流量为10500kg/h的甲苯蒸汽从120℃,0.14 MPa(绝压)冷凝到120℃,0.14 MPa(绝压) 甲苯液,再冷却到30℃;120℃甲苯汽相热焓140 Kcal/Kg,液相焓53 Kcal/Kg,30℃甲苯液相焓13 Kcal/Kg ;定性温度80℃时甲苯密度810Kg/m3 , 比热0.446(Kcal/Kg. ℃) 绝对粘度0.32(cp) ,比热0.104 (Kcal/(m.h. ℃)) 。
化工原理换热器课程设计(1)
![化工原理换热器课程设计(1)](https://img.taocdn.com/s3/m/82ac4390b90d6c85ed3ac65b.png)
重庆理工大学化工原理课程设计说明书题目:柴油预热原油的管壳式换热器学生班级:113150202学生姓名:余毛平学生学号:11315020232指导教师:白薇扬化学化工学院2016 年 7 月 4 日目录1.设计任务书 (1)2.概述 (2)3.设计条件及物性参数表 (2)4.方案设计和拟定 (3)5.设计计算 (7)6.参考文献 (11)1.设计任务书1.1设计题目用柴油预热原油的管壳式换热器1.2设计任务1.查阅文献资料,了解换热设备的相关知识,熟悉换热器设计的方法和步骤;2.根据设计任务书给定的生产任务和操作条件,进行换热器工艺设计及计算;3.根据换热器工艺设计及计算的结果,进行换热器结构设计;4.以换热器工艺设计及计算为基础,结合换热器结构设计的结果,绘制换热器装配图;5.编写设计说明书对整个设计工作的进行书面总结,设计说明书应当用简洁的文字和清晰的图表表达设计思想、计算过程和设计结果。
1.3操作条件2.概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。
列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。
3.设计条件及物性参数表3.1操作条件原油:入口温度60℃出口温度105℃质量流量:41416 kg/h加热介质柴油:入口温度170℃ 出口温度T2 质量流量:35320kg/h允许压降:不超过0.3×105Pa3.2物性参数表4.方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的浮头式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。
化工原理课程设计---列管式换热器的设计
![化工原理课程设计---列管式换热器的设计](https://img.taocdn.com/s3/m/0ca2a30730126edb6f1aff00bed5b9f3f90f728e.png)
化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
化工原理课程设计模板-换热器
![化工原理课程设计模板-换热器](https://img.taocdn.com/s3/m/c6c40a54974bcf84b9d528ea81c758f5f61f2987.png)
化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。
本文将介绍化工原理课程设计中换热器的设计过程和要点。
2. 设计目标在进行换热器设计之前,首先要确定设计的目标。
设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。
3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。
这些参数可以通过实验测定或者查阅相关文献获得。
3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。
传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。
3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。
传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。
3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。
常见的换热器类型包括管壳式换热器、板式换热器等。
3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。
3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。
性能评价主要包括换热器的传热效率、压降以及经济性等方面。
4. 实例分析下面通过一个实例来说明换热器的设计过程。
实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。
根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。
1化工原理课程设计(换热器)解析
![1化工原理课程设计(换热器)解析](https://img.taocdn.com/s3/m/a8e8e970b84ae45c3a358c1b.png)
一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
化工原理管壳式课程设计
![化工原理管壳式课程设计](https://img.taocdn.com/s3/m/6f14fef3dc3383c4bb4cf7ec4afe04a1b071b085.png)
化工原理管壳式课程设计一、课程目标知识目标:1. 掌握管壳式换热器的基本结构、工作原理及在化工过程中的应用;2. 了解换热器类型选择、换热面积计算、流体流动与传热过程的相关理论知识;3. 掌握管壳式换热器设计中涉及的主要参数及其对换热效果的影响。
技能目标:1. 能够运用所学理论知识,进行管壳式换热器的选型、设计和校核;2. 学会运用相关软件或工具,对换热器进行模拟和优化;3. 培养解决实际工程问题中换热器相关问题的能力。
情感态度价值观目标:1. 培养学生对化工原理课程的学习兴趣,激发求知欲和探索精神;2. 培养学生的团队合作意识和沟通能力,学会在团队中分工合作、共同解决问题;3. 增强学生的环保意识,认识到化工设备在节能减排方面的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握管壳式换热器基本知识和技能的基础上,提高解决实际工程问题的能力。
通过课程学习,使学生能够将理论知识与实际应用相结合,为未来从事化工领域工作奠定基础。
同时,注重培养学生的情感态度价值观,使其成为具有责任感、创新精神和实践能力的化工专业人才。
二、教学内容1. 管壳式换热器的基本概念与结构:包括换热器类型、基本结构、工作原理等,对应教材第3章第1节;2. 换热器选型与设计计算:涵盖换热器类型选择、换热面积计算、流体流动与传热过程相关理论知识,对应教材第3章第2节;3. 管壳式换热器的主要参数及其影响:分析壳程、管程流体流动与传热特性,探讨主要参数对换热效果的影响,对应教材第3章第3节;4. 换热器设计实例与校核:结合实际案例,运用所学知识进行换热器选型、设计与校核,对应教材第3章第4节;5. 换热器模拟与优化:介绍相关软件或工具的使用方法,对换热器进行模拟和优化,对应教材第3章第5节。
教学内容安排与进度:1. 第1周:管壳式换热器基本概念与结构;2. 第2周:换热器选型与设计计算;3. 第3周:管壳式换热器的主要参数及其影响;4. 第4周:换热器设计实例与校核;5. 第5周:换热器模拟与优化。
制药工程课程设计
![制药工程课程设计](https://img.taocdn.com/s3/m/c6e5a2e8f705cc175527094e.png)
《化工原理》课程设计管壳式换热器设计学生姓名孙国良学生学号*******学科专业制药工程院部名称工学院设计时间2016.05.15至2016.06.14二零一六年六月目录引言 (3)一、传热原理及用途 (3)二、换热器的分类与特点 (3)三、结构设计的重要性 (3)四、设计的普遍标准与要求 (4)设计任务 (4)设计步骤与基本原则 (5)一、设计步骤 (5)二、列管式换热器种类选取 (5)三、管程与壳程的选取 (5)三、流体流速的选择 (5)四、管程结构的选择 (6)五、管程和管壳数的确定 (7)六、折流挡板 (7)七、其他主要部件 (7)设计方案的确定 (8)一、设计方案的确定 (8)1.选择换热器类型 (8)2.选定流体流动空间及流速 (8)流程草图及说明 (8)设计计算 (8)一、物性数据的确定 (8)二、计算逆流的平均温度差 (9)三、初选总传热系数K (9)标准化的管壳式换热器设计方案 (10)一、换热器初步选型 (10)二、换热器核算 (10) (14)非标准化管壳式换热器的设计方案一、工艺结构尺寸 (14)二、换热器核算 (16)其他零部件的设计 (20)一、壁厚的确定 (20)二、封头的确定 (21)换热器装配图 (21)设计评述 (21)一、设计总结 (21)二、设计感想 (21)参考资料 (22)致谢 (22)引言一、传热原理及用途换热器是一种在两种或两种以上不同温度的流体间实现物料之间热量传递的设备,其功能是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也是提高能源利用率的主要设备之一。
在换热器中要实现热交换至少要有两种不同温度的流体,一种流体温度高,放热;另一种流体温度低,吸热。
根据具体的换热要求,换热器中有时也会有两种以上流体参与换热,但其基本原理与两种流体是一致的。
自然界存在三种基本传热方式,即热传导、对流传热、及热辐射。
化工原理课程设计列管式换热器
![化工原理课程设计列管式换热器](https://img.taocdn.com/s3/m/2513957868eae009581b6bd97f1922791688be0f.png)
化工原理课程设计列管式换热器化工原理课程设计是化学工程学科的重要环节,其设计的目的是让学生在理论基础知识的基础上,能够熟练掌握工业化学反应装置和过程的设计方法,并能灵活运用各种装置和工艺条件来实现设备的最优化。
其中列管式换热器是常用于化工生产过程中的一种重要装置,本文将对其进行详细介绍。
一、列管式换热器的结构与原理列管式换热器是通过管壳型构造,由许多纵向的管子构成,管子两侧通过流体工质进行换热。
其主要结构包括壳体、管板、管束、进出口法兰等部分。
换热原理是将热量从高温的流体传给低温的流体,实现两种流体之间的热量交换。
二、列管式换热器的特点和应用列管式换热器具有结构简单、换热效率高、应用范围广、容易清洗维修等特点。
其在化工生产中广泛应用于热回收、冷却、加热等方面,如在石油、化工、冶金、食品、制药、造纸等行业的反应过程中都有重要的应用。
三、列管式换热器的设计方法在设计列管式换热器时,主要需考虑的参数有流体介质、流量、温度、压力等等,其中最核心的是确定热量传递系数与压降。
常用的设计方法有总热传系数法、等效径法、NTU法等。
其中总热传系数法是最常用的方法,其计算的公式为:1/U = 1/hi + Δx/k + Δy/ho其中U为总热传系数,hi、ho分别为热传分界面内的内、外热传系数,k为扩散系数(介质传热系数),Δx、Δy为介质的平均厚度与壁层厚度。
在设计时应根据具体情况选用合适的计算方法。
四、列管式换热器的操作和维护在使用列管式换热器时,应注意清洗维护工作。
由于该装置的结构特殊,应定期进行化学清洗,以避免沉积物和腐蚀物堵塞换热器内壁。
同时还应注意防止介质的过于浓缩,以免产生结晶、沉积、腐蚀等情况。
综上所述,列管式换热器是化工生产中不可缺少的一种装置,其结构特殊、应用范围广泛、换热效率高,并且容易维护操作,是值得研究和推广的一种装置。
在化工原理的课程设计中,学生能够通过对列管式换热器的深入理解和设计方案的完善,培养出创新思维和实际操作能力,为将来化工行业的发展奠定坚实的基础。
化工原理课程设计换热器设计
![化工原理课程设计换热器设计](https://img.taocdn.com/s3/m/e9618cffb0717fd5360cdcfb.png)
化工原理课程设计换热器设计集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1. 流体流动途径的确定 (6)2. 物性参数及其选型 (6)3. 计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5. 初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献······························ (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件:1、苯:入口温度80℃,出口温度40℃。
2、冷却介质:循环水,入口温度32.5℃。
3、允许压强降:不大于50kPa。
4、每年按300天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。
3、设计结果概要或设计结果一览表。
4、设备简图。
(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。
六、附表:1.设计概述1.1热量传递的概念与意义热量传递是指由于温度差引起的能量转移,简称传热。
由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。
管壳式换热器的设计(化工机械课程设计)资料
![管壳式换热器的设计(化工机械课程设计)资料](https://img.taocdn.com/s3/m/fe5f237e77232f60ddcca163.png)
北京理工大学珠海学院课程设计任务书2011~2012学年第2 学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。
2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。
3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。
6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。
三、设计条件(1)气体工作压力管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s壳程介质温度为320-450℃,管程介质温度为280-420℃。
(3)由工艺计算求得换热面积为120m2,每组增加10 m2。
(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。
(5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9(6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。
四、进度安排制图地点:暂定CC405时间安排:从第7周(2012年3月31日)至第10 周(2012年4月20日)序号内容主讲人时间听课班级1 化工设备设计的基本知识唐小勇4月9 日星期一、三、五上午09化工1,24月11日09化工1,24 月13日09化工1,22 管壳式换热器的设计计算唐小勇4月9 日-13日上午:8:30-11:30下午14:00-17:3009化工1,23 管壳式换热器结构设计唐小勇4 月16 日上午:8:30-11:30下午14:00-17:3009化工1,24月17 日09化工1,24 管壳式换热器设计制图唐小勇4 月17 日上午:8:30-11:30下午14:00-17:3009化工1,24 月18 日09化工1,24月19 日09化工1,25 设计说明书的撰写唐小勇4月9日-18日上午:8:30-11:3009化工1,209化工1,209化工1,26 答辩唐小勇4月20日上午:8:30 09化工1 下午14:30 09化工2五、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。
化工原理课程设计列管式换热器设计
![化工原理课程设计列管式换热器设计](https://img.taocdn.com/s3/m/39ef83f92dc58bd63186bceb19e8b8f67c1cef92.png)
化工原理课程设计列管式换热器设计化工原理课程设计是化学专业的重要课程,课程的主要目的是让学生深入了解化学工程的原理和实践,为未来的工作打下坚实的基础。
化工原理课程设计包括很多内容,其中列管式换热器设计是一个重要的环节。
本文将围绕这个话题展开讨论。
列管式换热器是化学工程中常用的一种设备,它主要是用来进行温度控制和物质传热。
在化工流程中,温度的控制非常关键,可以有效地控制化学反应的速率和反应体系的稳定性。
换热器则可以将热量从一个物质传递到另一个物质中,从而实现温度的调节。
因此,列管式换热器在化工工程中非常重要。
列管式换热器的设计中有几个主要的环节,分别是热传递面积、传热系数、管子数量、管子长度和热传递系数。
下面我们将分析这些方面的设计。
首先是热传递面积。
热传递面积越大,传热效率就越高。
因此,在设计中应该尽量增加热传递面积。
一般来说,在热交换器中管子的数量和长度是确定的,而直径可以调整。
因此,如果要增加热传递面积,就要增加管子的数量或长度,或通过增加多级或换热器面积。
接下来是传热系数。
传热系数决定了传热的效率,对于流体的传热系数和热传递系数是在化工原理课程中讲解的,这里就不赘述了。
在列管式换热器中,传热系数主要决定于流体的粘性、密度和流量,以及管子的尺寸和布局。
在设计中应该优化这些参数,以获得尽可能高的传热系数。
然后是管子数量和长度。
管子数量和长度也是影响热传递的重要参数。
一般来说,更多的管子和更长的管子可以提高热传递面积和传热系数,从而提高热传递效率。
但是,管子数量和长度也会影响流体的流动性能和系统的压降,因此在确定这些参数时也要考虑到这些因素。
最后是热传递系数。
热传递系数是指单位时间内热量从一个管子通过换热器传递到另一个管子的能力。
热传递系数的大小受到流体、管子材料和流量等因素的影响。
在设计中应该根据实际情况选择合适的管子材料和流量,以获得最佳的热传递效果。
在列管式换热器的设计中,还要考虑到安装和维护的便捷性。
化工原理课程设计列管式换热器
![化工原理课程设计列管式换热器](https://img.taocdn.com/s3/m/7827a7adf80f76c66137ee06eff9aef8951e4801.png)
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6
化工原理课程之管壳式换热器课程设计
![化工原理课程之管壳式换热器课程设计](https://img.taocdn.com/s3/m/4ab3ce4be87101f69f319546.png)
目录化工原理课程设计任务书设计概述试算并初选换热器规格1. 流体流动途径的确定2. 物性参数及其选型3. 计算热负荷及冷却水流量4. 计算两流体的平均温度差5. 初选换热器的规格工艺计算1. 核算总传热系数2. 核算压强降经验公式设备及工艺流程图设计结果一览表设计评述参考文献化工原理课程设计任务书化工原理课程设计任务书一.设计任务用初温为20℃的冷却水,将流量为(4000+200×学号)kg/h的95%(体积分率)的乙醇水溶液从70℃冷却到35℃;设计压力为1.6MPa,要求管程和壳程的压降不大于30kPa,试选用适当的管壳式换热器。
二.设计要求每个设计者必须提交设计说明书和装配图(A2或A3)。
1.设计说明书必须包括下述内容:封面、目录、设计任务书、设计计算书、设计结果汇总表、符号说明、参考文献以及设计自评等。
2.设计计算书的主要内容应包括的步骤:1) 计算热负荷、收集物性常数。
根据设计任务求出热流体放热速率或冷流体吸热速率,考虑了热损失后即可确定换热器应达到的传热能力Q;按定性温度确定已知条件中未给出的物性常数。
2) 根据换热流体的特性和操作参数决定流体走向(哪个走管程、哪个走壳程);计算平均温差。
3) 初步估计一个总传热速率常数K估,计算传热面积A估。
4) 根据A估初选标准换热器;5) 换热面积的核算。
分别按关联式求出管内、外传热膜系数,估计污垢热阻,求出总传热速率常数K 核,得出所需传热面积A需,将A需与A实际进行比较,若A实际比A需大15%-25%,则设计成功;否则重新计算。
6) 管程和壳程压力降的核算。
7)接管尺寸的计算。
3.符号说明的格式:分为英文字母、希腊字母,要按字母排序,要写出中文名称和单位;4.参考文献的格式:按GB7714-87的要求。
一、设计题目:设计一台换热器二、操作条件:1、乙醇水溶液:入口温度70℃,出口温度35℃。
2、冷却介质:循环水,入口温度20℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。
柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。
换热器的热损失可忽略。
管、壳程阻力压降不大于100kPa。
试设计能完成上述任务的列管式换换热器。
二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。
二.设计方案:1. 确定换热器类型:两流体温度变化情况:热流体230℃—120℃;冷流体22℃—46℃.估计该换热器管壁温和壳壁温相差较大,因此初步确定选定浮头管板式换热器。
2. 流程安排:河水容易结垢,应走管程,煤油为被冷却介质,为便于散热应走壳程。
3. 流向选择:一次交叉流,即管程流体横向流动,壳程流体垂直管子流动。
三.确定物性数据:定性温度:壳程流体定性温度为2301201752+=℃; 管程流体定性温度:2246342+=℃ 壳程流体在定性温度下数据:密度:o ρ= 710Kg/3m定压比热容:O P C =2.60Kj/(Kg.℃)热导率: o λ=0.13w/(m.k )黏度:o μ=0.32m a p .s管程流体在定性温度下数据:密度:i ρ=994.3 Kg/3m定压比热容:i P C =4.174 Kj/(Kg.℃)热导率: i λ=0.624 w/(m.k )黏度:i μ=0.742 m a p .s 四.估算传热面积热流量Q= mo po o q c t ∆=28700X2.60X (230-120)=2280.1Kw 平均传热温差(23046)(12022)23046ln 12022m t ---∆=--=136.5K 假设K 取2480()w k m •则估算的传热面积为Ap= 22280.1100034.8480136.5m Q m K t ⨯==∆⨯总传热系数的经验值见表3-4,有关手册中也列有其他情况下的总传热系数经验值,可供设计时参考。
选择时,除要考虑流体的物性和操作条件外,还应考虑换热器的类型。
冷却水用量:312280.110.0234.174(4622)994.3miv i pi i i q Q q s m c t ρρ==•=•=∆⨯- 五.工艺结构尺寸1.管径及管内流速:选取Φ=25X2.5mm 碳钢管;管内水流速u=2m/S;2.传热管数和传热管程数:220.02336.6373.14/4 3.14420.02i v q n d u ===≈⨯÷⨯⨯根 按单管程计算管长34.811.983.14 3.140.02537o Ap L m d n ===⨯⨯ 按单程管设计,传热管过长,宜采用多管程结构,根据本设计实际情况,现取传热管管长l=6m,则该换热器的管程数11.9826Np =≈(管程);传热管总管数37274T N =⨯=(根)3.平均传热温差校正及壳程数1221230120 4.64622T T R t t --===-- 211146220.11523022t t P T t ---===-按双管程,单壳程结构查得0.98ψ=平均传热温差0.98136.5133.77m t K ∆=⨯= 由于平均传热温差较大,故采用单壳程合适4.传热管排列和分程方法:采用组合排列法,即每程内按正三角形排列,隔板两侧采用矩形排列。
取管心距t=1.25do=1.25X2.5 ≈32mm ;隔板中心到离其最近一排管中心距离按式62t s =+计算 32662222t s mm =+=+= 各管程相邻管管心距为44mm5.壳体内径采用多管程结构,壳体内径可按式 1.05D =η=0.75则壳体内径为 1.05 1.0532333.75()D mm ==⨯=按卷制壳体的进档级,圆整取400mm6.折流板采用弓形折流板,取弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为h=0.25X400mm=100mm 折流板间距按我国系列标准取B=300mm折流板数B N =传热管长/折流板间距=6000/300-1=19块常见折流板示意图折流板厚度与壳体内径及折流板间距有关见表5.5.1所列数据。
壳体公称内径 /mm相邻两折流板间距/mm≤300 300~450 450~600 600~750 >750 200~250 3 5 6 10 10 400~700 5 6 10 10 12 700~1000 6 8 10 12 16 >1000 6 10 12 16 16 7.其他主要附件在壳程入口处设置防冲挡板,本换热器换热管外径为25mm ,拉杆直径16mm ,共4根拉杆分程隔板公称直径 DN/mm隔板最小厚度δ/mm 碳素钢4008 8.接管管程流体出口接管:取接管内流速u1=2 m/s 则接管内径为40.02310.1211213.142D m mm ⨯===⨯圆整取130mm 壳程流体出口接管:取接管内流速u2=1.8 m/s 则接管内径为2428700/(3600710)0.089893.14 1.8D m mm ⨯⨯===⨯圆整取90mm 9.壁厚的确定、封头查GB151-99P21表8得圆筒厚度为:6 mm查JB/T4737-95,椭圆形封头与圆筒厚度相等,即6mm椭圆形封头示意图如下:公称直径DN (mm ) 曲面高度1h (mm ) 直边高度 2h (mm ) 碳钢厚度 δ(mm ) 内表面积 A 2m 容积V 2m质量 m kg 400 100 25 6 0.2049 0.0115 9.69 六.换热器核算(一).热流量核算1.壳程表面传热系数采用弓形折流板时壳程表面传热系数的计算式e 0.141/30.550.36R (/)o o o o w e pr d λαμμ=0 2.600.3210001000Pr 6.40.13po C o o μλ⨯÷⨯===当量直径22223 3.144()4(3/2 3.14/4)32252420.23.14o o d de mm d -⨯⨯-⨯=== 20.025(1)0.30.4(1)0.026250.032do So BD m t =-=⨯⨯-=328700/36000.01123/710moo q Vo s m ρ===则 0.011230.428/0.02625Vo Uo m s So === e 7100.42820.21000R 19173.890.321000o o e o o U d ρμ⨯⨯÷===÷ 0.14()1o wμμ≈ 则0.551/320.130.36975.24/()19173.89 6.40.0202o w k m α•=⨯⨯⨯= 2.管程表面传热系数0.80.40.023Re Pr i i i d λα= 管内实际流速220.023 1.983.14 3.14370.0244v i i q u m s n d ===⨯⨯ 994.30.02 1.98Re 53605.070.7421000i i i i d u ρμ⨯⨯===÷ 4.1740.742Pr 4.960.624pi i i C μλ⨯=== 0.80.420.6240.0238268.75/()53605.07 4.960.02i w k m α•=⨯⨯⨯= 3.污垢热阻Ri=0.00021 2()/k w m •;Ro=0.000176 2()/k w m •Rw =362.510 5.661044.19w δλ--⨯==⨯2()/k w m • 则:传热系数Kc 2111ln 21125250.0252510.00021ln 0.0001768268.75202044.19220975.24574.28/()o o o i i i i w i oKc do d d d R Ro d d d w k m αλα•=++++=⨯+⨯+++⨯=4. 传热面裕度 计算传热面积22280.1100029.68574.28133.77m Q Ac m Kc t ⨯===∆⨯实际传热面积23.1474 3.140.025634.854T o A lN d m ==⨯⨯⨯=该换热器面积裕度计算式为34.84529.68100%100%17.4%29.68A Ac H Ac --=⨯=⨯= 传热面积裕度合适,该换热器能够完成生产任务。
(二)传热管和壳体壁温计算因为管壁很薄,管壁热阻很小,可以忽略,管内外侧温差很小。
管内侧污垢热阻比管外侧污垢热阻大,会使传热管壁温升高,降低了壳体和传热管壁温之差,但在操作初期,污垢热阻较小,壳体和传热管壁温之差可能相差较大,计算中应按最不利操作条件考虑,因此取两侧污垢热阻为零计算传热管壁温。
又考虑到冬季操作时,循环水进口温度会降低,为确保可靠,取循环水进口温度为17℃,出口温度为46℃计算传热管壁温。
传热管壁温平均温差计算式11m m i o o iT t t αααα+=+ 120.40.60.42300.6120164m T T T =+=⨯+⨯=℃210.40.60.4460.61728.6m t t t =+=⨯+⨯=℃2975.24/()o w k m α•=,28268.75/()i w k m α•= 则16428.68268.75975.2442.8811975.248268.75t +==+℃ 壳体内壁温近似取壳体流体平均温度T=Tm=164℃则壳体内壁温与传热管平均壁温之差为t ∆=164-42.88=121.12℃该温差很大,需加温度补偿装置,选浮头式换热器为宜。