抗原、抗体、免疫标记介绍

合集下载

免疫学研究相关技术

免疫学研究相关技术

免疫学研究相关技术免疫学是研究机体对抗外界微生物、肿瘤以及其他异常物质的一门学科。

在免疫学研究中,涉及到的技术非常丰富多样,包括细胞培养、免疫标记、免疫沉淀、免疫印迹等等。

下面将详细介绍一些免疫学研究中常用的技术。

1.细胞培养技术:细胞培养技术是实验室进行细胞免疫学研究的基础。

通过细胞培养技术可以获得大量的细胞,方便进行后续的实验操作。

细胞培养技术主要包括培养基的配制、细胞的传代、细胞的分离和培养条件的控制等。

2.免疫标记技术:免疫标记技术是免疫学研究中常用的分析技术,通过标记抗原或抗体的分子探针可以定位细胞内外的抗原或抗体。

常用的免疫标记技术包括免疫荧光染色、酶免疫组化、放射免疫分析等。

特别值得一提的是流式细胞术,它是一种利用免疫标记技术结合流式细胞仪进行单个细胞分析的方法,可以快速准确地分析细胞表面和胞内分子的表达。

3. 免疫沉淀技术:免疫沉淀技术主要用于分离和富集抗原-抗体复合物。

常用的免疫沉淀技术有牛血清白蛋白(BSA)免疫沉淀法、ProteinA/G免疫沉淀法等。

免疫沉淀技术可用来鉴定蛋白质相互作用、研究蛋白质的修饰以及检测抗原-抗体的结合等。

4. 免疫印迹技术:免疫印迹技术(Western blotting)是一种通过探针抗体检测特定蛋白质的方法。

它首先通过SDS-将样品中的蛋白质进行分离,然后将蛋白质迁移到膜上,接着进行对抗原和抗体的结合,最后通过显色或荧光等方式进行检测。

免疫印迹技术广泛应用于蛋白质表达和鉴定、蛋白质定量、蛋白质修饰及磷酸化等方面的研究。

5. 免疫组化技术:免疫组化技术(Immunohistochemistry)是一种将免疫标记技术应用于组织切片的方法。

通过将切片中的抗原与标记抗体结合,可以准确地定位抗原在组织中的位置。

免疫组化技术可用于研究组织中特定蛋白质的表达和定位,从而对疾病的发生机制和治疗方法进行探索。

除了以上提到的技术,免疫学研究还应用了许多其他的技术,如ELISA(酶联免疫吸附试验)、免疫荧光共聚焦显微镜、流式细胞术等。

抗原和抗体的概念

抗原和抗体的概念

抗原和抗体的概念抗原和抗体是生物体中重要的概念,它们在免疫系统中扮演着重要的角色。

抗原是一种物质,它可以被免疫系统所识别,从而引起免疫反应;抗体则是生物体内产生的一种蛋白质,它可以与特定的抗原结合,从而帮助身体消灭病原体。

抗原是指那些能够引起机体免疫反应的物质,它们存在于病原体、细胞、分子等不同的层次中。

抗原可分为自身抗原和异体抗原,其中自身抗原是存在于机体自身细胞表面的成分,它们是机体免疫反应系统正常运作的必须物质,但是在某些情况下也会成为致病原因,如自身免疫性疾病。

而异体抗原则是指与机体自身不同的生物体、组织、种类等,如病原菌的细胞壁、细胞质、内毒素等,它们可以被免疫系统所识别,从而引起免疫反应。

抗体是人体免疫系统中一种能够特异性结合抗原的分子。

它们是由B淋巴细胞在抗原的刺激下产生的,主要分布在血液中以及淋巴组织、骨髓等部位。

抗体的结构与功能十分复杂,最简单的抗体分子由两条轻链和两条重链组成,其中轻链和重链之间通过二硫键连接。

抗体可以与抗原选择性地结合,并将其标记出来,从而引起机体免疫反应,消灭病原体。

抗原-抗体反应是免疫系统中的重要反应。

当体内存在抗原时,抗体会特异性地结合抗原,从而识别标记出病原体,促使免疫系统消灭病原体。

抗原-抗体反应具有多种功能,如中和、沉淀、凝集、补体活化等,它们可以帮助免疫系统对抗各种感染,并保护机体正常功能。

需要指出的是,抗原和抗体是一对互相关联的概念,它们常常出现在一起。

在识别病原体、引发免疫反应的过程中,抗原和抗体相互作用,从而促进免疫系统的正常功能。

因此,对于抗原和抗体的理解,在免疫学和临床医学中都具有重要意义,也是学习生物学、医学等领域的基础。

荧光免疫标记技术

荧光免疫标记技术
透析法:
适用于标记样品量少、蛋白含量低的抗体溶液,此法标记抗体比较 均匀,非特异性染色也比较少。
【主要试剂与器材】 1.器材 (1)铁立架、蝴蝶夹、层析柱、洗脱瓶、搅拌器、磁棒、
紫外分光光度计 (2)烧杯、试管、滴管、吸管、洗耳球、pH试纸、黑纸 2.试剂 (1)抗体 (2)异硫氰基荧光黄(FITC) (3)葡聚糖凝胶(Sephadex G-25) (4)pH9.5,0. 5M 碳酸缓冲液 (5)pH7.0,0.005M 磷酸缓冲液
免疫标记技术的应用 标记物与抗原、抗体的连接技术; 标记后的抗原、抗体进行特异性检测的实验设计原理 以及相应的检测仪器的使用方法。
免疫荧光标记技术(immunofluorescence technique)
是将已知的抗体或抗原分子标记上荧光素,当与其相对应 的抗原或抗体起反应时,在形成的复合物上就带有一定量 的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗 体结合部位,检测出抗原或抗体。
荧光免疫标记技术
免疫标记(immunolabelling technic)
是指用一些易测定的、具有高度敏感性的标记物质:荧光素、放射 性核素、酶、胶体金、生物素、铁蛋白及化学(或生物)发光剂等作为 追踪物,标记特异性的抗原、抗体分子进行的抗原、抗体反应。
通过这些标记物的增强放大效应来显示反应系统中抗原、抗体的性 质与含量。并借助于荧光显微镜、射线测量仪、酶标检测仪、电子显微 镜和发光免疫测定仪等精密仪器对试验结果直接镜检观察或进行自动化 测定。
免疫荧光技术- 基本原理
免疫荧光技术是将抗原抗体反应的特异性和敏感性与显微 示踪的精确性相结合。
以荧光素作为标记物,与已知的抗体(或抗原)结合、但不 影响其免疫学特性。然后将荧光素标记的抗体作为标准试 剂,用于检测和鉴定未知的抗原。

常用的免疫标记技术

常用的免疫标记技术

常用的免疫标记技术免疫标记技术是一种用于检测和分析生物分子的方法,其中利用特定的抗体或其他免疫物质标记目标分子,从而使这些分子能够被观察和测量。

以下是一些常用的免疫标记技术:1.免疫荧光技术(Immunofluorescence):在这种技术中,用于检测目标分子的抗体被标记上荧光染料。

通过荧光显微镜观察样本,可以定位和定量目标分子的位置和数量。

2.免疫酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay,ELISA):这是一种广泛用于检测抗体或抗原的技术。

ELISA 利用酶标记的抗体或抗原与目标分子结合,然后通过酶的底物反应来产生可测量的信号。

3.免疫印迹技术(Western Blot):Western Blot用于检测蛋白质。

蛋白质被电泳分离,然后通过免疫印迹将其转移到膜上。

接着使用特定抗体标记的酶或荧光物质来检测目标蛋白质。

4.免疫组织化学(Immunohistochemistry,IHC):IHC用于在组织切片中检测特定抗原的存在。

切片上的抗原与标记有酶、荧光染料或其他标记的抗体结合,通过显微镜观察抗原的分布。

5.流式细胞仪技术(Flow Cytometry):该技术通过激光照射细胞,测量细胞表面或内部的荧光标记物,以分析细胞的类型、状态和功能。

6.蛋白质质谱法(Mass Spectrometry):将样品中的蛋白质离子化,并通过质谱仪测量质量。

免疫质谱结合了免疫标记和质谱技术,可用于检测和鉴定蛋白质。

7.免疫电镜技术(Immunoelectron Microscopy):在电子显微镜下观察样本,通过标记的抗体来可视化细胞或亚细胞结构中的特定蛋白质。

8.免疫磁珠技术(Immunomagnetic Bead Assay):使用带有磁珠的抗体,通过磁场将目标分子分离出来。

常用于细胞分离和分析。

这些免疫标记技术在生物医学研究、临床诊断和药物开发等领域发挥着关键作用,可以用于检测和定量各种生物分子,如蛋白质、抗体、核酸等。

化学发光免疫标记分析技术(基本原理)

化学发光免疫标记分析技术(基本原理)

吖啶酯化学发光系统-CH3-HOO-C=0-OH-光子+C02+-R
碱性磷酸酶化学发光系统-金钢烷(发光底物)及其衍生物的增敏化学发光系统-OCH3-AP-0P032-碱性磷 酶及其衍生物的化-·光子477nm
化学发光的检测类型-化学发光按化学反应类型分为:-◆直接化学发光(非酶促化学发光-吖啶酯系统-●-异鲁米诺 统-◆间接化学发光(酶促化学发光-·辣根过氧化物酶一鲁米诺系统(HRP系统-碱性磷酸酶一金刚烷系统AP系统 其它-电化学发光
板式化学发光-,适合流行病调查、疾病预防与控制、-体检中心,以及医院血站等大样本检-测项目的使用(比如HI 、TP、HCV和-乙肝两对半等。-通常采用96孔白色不透明微孔板进行包-被,不方便随到随测和医院急诊;-对 定量检测需要做标准曲线。-◆-国内厂家主要是板式化学发光系统
管式化学发光-采用管式或微粒子发光,测定快速、准确;-可以随到随测,适用于医院急诊;-定量检测的标准曲线存 在试剂条形码中,-可在2-4周内直接使用。-国外厂家全部是管式化学发光系统
间接化学发光-以碱性磷酸酶系统为例-洗涤清除团-间接化学发光:用参与发-◆》回+-光反应的酶来标记抗原或体,免疫反应后,加入-抗体包被-的磁珠-标记抗体-双抗体夹心复合物-发光底物,测定发光体系-的发光强度来进 抗原或-◆可茶-抗体的检测。-AMPPD-AMPD发光-两大反应体系:-辣根过氧化物酶-HRP系统:氧化还 反应,稳定性差-·源德、科美、安图-碱性磷酸酶(AP系统:水解反应,灵敏度较高-●-贝克曼:Access1 Access2,DXI600、DXI800-西门子:mmulite:1000,Immulite2000-达 生物:AULIN200
免疫学检测-◆-免疫学检测是应用免疫学理论设计的一系列测定抗原、-抗体、免疫细胞及其分泌的细胞因子的实验手 及分子-生物学技术在免疫学研究中的应用。它包括:-抗原抗体的检测技术-免疫细胞的检测-细胞因子的检测-免疫 关基因分析-免疫标记技术-免疫PCRIM-PCR技术-杂交瘤技术与T细胞克隆技术

病原与免疫重点名词解释

病原与免疫重点名词解释

病原微生物与医学免疫学名词解释1、Ag(抗原):是一类刺激机体免疫系统发生特异性免疫应答,并且与免疫应答产物在体内或体外发生特异性结合的物质。

2、Ig(免疫球蛋白):具有抗体活性或化学结构与抗体相似的球蛋白。

3、异嗜性抗原:存在于不同种属个体间的共同抗原。

4、抗原决定簇(表位):存在于抗原分子中决定抗原特异性的特殊化学基团。

5、ADCC:抗体依赖性细胞介导的细胞毒作用。

即表达IgGFc受体的NK细胞、巨噬细胞和中性粒细胞等,通过与已结合在病毒感染细胞和肿瘤细胞等靶细胞表面的IgG抗体的Fc 段结合,而杀伤这些靶细胞的作用6、单克隆抗体(McAb):由识别一个抗原表位的B细胞克隆产生的均一的抗体。

7、MHC:存在于脊椎动物某一染色体上编码主要组织相容性抗原的基因群。

8、CD分子:将来自不同实验室的McAb所识别的同一分化抗原归为一个分化群(CD),并以此代替分化抗原以往的命名。

CD分子指的是与人类细胞发育、分化、活化有关的膜抗原。

9、APC:能表达被T细胞所识别的MHC-抗原肽复合物的任何细胞。

10、BCR复合体:由BCR和Igα、Igβ组成。

BCR特异性结合抗原,Igα、Igβ将抗原结合信号传至B细胞核内。

11、TCR复合体:由TCR和CD3 组成。

TCR特异性结合抗原,CD3将抗原结合信号传至T细胞核内。

12、细胞因子:免疫细胞或免疫相关细胞产生的高活性、多功能的小分子蛋白或多肽。

13、干扰素:由病毒或干扰素诱生剂刺激人和动物的组织细胞产生的一种具有抗病毒、抗肿瘤和免疫调节作用的糖蛋白。

14、Th1与Th2细胞:TH1细胞:分泌IL-2、IFN-γ、TNF等,主要参与细胞免疫和迟发型超敏反应的T细胞。

Th2细胞:分泌IL-4、IL-5、IL-6、IL-10、IL-13等,主要参与体液免疫的T细胞。

15、免疫应答:指机体免疫系统接受抗原刺激后,免疫细胞对抗原的识别、自身活化、增殖、分化及产生特异性免疫效应的全过程。

(完整版)医学免疫学名词解释

(完整版)医学免疫学名词解释

医学免疫学名词解释1.免疫(immunity):机体能够识别“自己”和“异己”,并最终排除“异己”,保护“自己”,维持机体生理功能的稳定。

2.淋巴细胞归巢(lymphocyte homing):成熟淋巴细胞离开中枢免疫器官后,在循环过程中趋向性迁移并定居于外周免疫器官或不同组织的特定区域。

3.淋巴细胞再循环(lymphocyte recirculation):淋巴细胞在血液、淋巴液、淋巴器官或组织间反复循环的过程。

5.抗原(antigen,Ag):是指能与T淋巴细胞、B淋巴细胞的TCR或BCR结合,促使其增殖、分化,产生抗体或致敏淋巴细胞,并与之结合,进而发挥免疫效应的物质。

6.抗原表位(epitope):抗原分子中决定抗原的特异性的特殊化学基团,又称抗原决定簇(antigenic determinant)。

7.交叉反应(cross-reaction):抗体或致敏淋巴细胞结合具有相同和相似抗原表位的不同抗原分子所产生的免疫反应。

8.胸腺依赖性抗原(thymus dependent antigen,TD-Ag):此类抗原刺激B细胞产生抗体时依赖T细胞的辅助,故又称T细胞依赖性抗原。

【示例】TD-Ag:即胸腺依赖性抗原(1分)。

此类抗原刺激B细胞产生抗体时依赖于T 细胞辅助(1分)。

绝大多数蛋白质抗原均属此类抗原(1分)。

9.胸腺非依赖性抗原(thymus independent antigen,TI-Ag):该类抗原刺激机体时产生抗体时无需T细胞的辅助,又称T细胞非依赖性抗原。

10.异嗜性抗原(heterophile antigen):是一类与抗原种属性无关,存在于不同种属动物、植物、微生物之间的共同抗原。

11.超抗原(superantigen,SAg):只需要极低浓度(1~10ng/ml)即可激活2%~20%T细胞克隆,产生极强的免疫应答,这类抗原被称为超抗原。

(SAg不涉及TCR的识别,也不受MHC 分子的限制)12.佐剂(adjuvant):预先或与抗原同时注入体内,可增强机体对该抗原的免疫应答或改变免疫应答类型的非特异性免疫增强剂。

免疫标记技术的基本原理

免疫标记技术的基本原理

免疫标记技术的基本原理
免疫标记技术是一种常用的细胞分子生物学技术,它是通过利用免疫原/抗原反应,将抗体与抗原或细胞内的标记物质结合在一起,以便识别、追踪、回收、测量和检测标记物质的手段。

免疫标记技术的基本原理相当简单,即在微小样品中检测特定抗原的方法。

它充分利用免疫系统的特性:抗体可以与外来的受体(抗原)结合,而不对正常细胞发生反应。

抗体与抗原结合时,会产生一种特殊的生物反应,该反应可以把抗体和抗原标记的某一特定的抗原分子联系起来,从而实现抗体和抗原之间的标记化效果。

免疫标记技术中首先要选择合适的抗体,并将其做好标记,然后将抗体接种到实验动物(如小鼠、大鼠)中,令其产生一种针对抗原特异性的免疫应答。

当抗体与抗原结合时,均会由于表位的分子吸引力而结合在一起,并且都会引发一系列的生物化学反应。

抗体标记物中的抗原与受体结合时,抗体也会受到外部影响而引发生物学改变,从而使其达到对目标抗原的特异性结合,从而提高标记物的特异性。

最后,在细胞或组织内观察抗体标记物所标记后的抗原或受体,以获得免疫标记技术的结果,从而实现抗原的高度特异性鉴定。

免疫标记技术的优势在于可以在细胞或组织的微小样品中检测出特定的抗原,而不需要大量的样品研究。

免疫标记技术

免疫标记技术

常用的酶及其底物 酶 辣根过 氧化物 酶 (HRP) 底物
邻苯二胺 (OPD) 四甲替联苯胺 (TMB) 5氨基水杨酸 (5AS) 邻联苯甲胺 (OT) 2,2‘-连胺基-2(3-乙基-并噻 唑啉磺酸-6)铵盐 (ABTS )
显色反应 测定波长
橙红色 蓝绿色 棕色 蓝绿色
蓝绿色
492 450 449 425 642
酶是一种有机催化剂,很少量的酶即可导致大 量的催化过程,所以极为敏感。它的催化过程 有两种基本形式: (1)E十S →(ES)→E十P (2)E十S →=(ES) (ES)十D1 →E十P十D2 E为酶,S为酶作用的底物,P为底物分解 后的产物,D,为供氢体,D:为D1的氧化型。 如P或D:为有色化合物,即可用呈色反应显示 酶的存在。
HRP的催化反应需要底物过氧化氢(H2O2) 和供氢体(DH2)。供氢体多为无色的还原型 染料,通过反应可生成有色的氧化型染料 (D)。酶促反应的过程如下: HRP DH2+H2O2────→D+2H2O
供氢体的种类很多,形成的产物特点不一。如 DAB(3.3-二氨基联苯胺)的反应产物为不溶性沉 淀物,并有电子密度,故适宜于做免疫酶染色或 电镜观察。5AS(5-氨基水杨酸)早期曾用于ELISA, 但其溶解度不够大,且空白孔不易控制到无色, 现已很少应用。OT(邻联甲苯胺)的特点是能产生 鲜艳的蓝绿色产物且灵敏度较高,但反应中受温 度影响较大,而且由于产物不稳定,需要在短时 间内进行测定。
荧光是指一个分子或原子吸收了给 予的能量后,即刻引起发光;停 止能量供给,发光亦瞬即停止。 荧光素是一种能吸收激发光的光能 产生荧光,并能作为染料使用的 有机化合物。目前用于标记抗体 的荧光素主要有异硫氰酸荧光黄 (FITC)、四乙基罗丹明及四甲基 异硫氰酸罗丹明。

化学发光免疫技术名词解释

化学发光免疫技术名词解释

化学发光免疫技术名词解释化学发光免疫技术是一种基于免疫学原理和化学发光原理的生物分析技术,常用于生物医学研究、临床诊断和药物研发等领域。

以下是一些相关名词的解释:1.化学发光:化学发光是指通过化学反应产生的可见光或荧光现象。

在化学发光免疫技术中,特定的化学反应被用来产生发光信号,用于检测目标分子的存在或浓度。

2.免疫技术:免疫技术是指利用免疫反应原理来检测、测定和分析生物分子的技术。

免疫技术可以通过抗原与抗体的特异性结合来识别目标分子,并产生特定的信号。

3.抗原:抗原是指能够引起免疫系统产生抗体反应的分子。

在化学发光免疫技术中,抗原通常是需要检测的目标分子,如病原体、肿瘤标记物等。

4.抗体:抗体是免疫系统产生的特异性蛋白质,能够与特定的抗原结合形成抗原-抗体复合物。

在化学发光免疫技术中,抗体通常与特定的标记物结合,用于识别和检测目标分子。

5.标记物:标记物是指与抗体结合的特定分子或物质,常用于标记抗体,并通过与抗原结合形成信号产生体系。

在化学发光免疫技术中,常用的标记物包括荧光染料、酶、金颗粒等,用于产生发光信号或可视化信号。

6.检测系统:检测系统是指将化学发光反应、抗原-抗体反应和标记物等组合在一起的体系。

检测系统用于检测目标分子的存在或浓度,并通过测量发光信号的强度来定量分析目标分子。

化学发光免疫技术的原理复杂而多样,具体的方法和实验步骤会因不同的应用和研究目的而有所差异。

它在医学诊断、生命科学研究和药物开发等领域发挥着重要作用,可以高灵敏度、高特异性地检测。

免疫学抗体名词解释

免疫学抗体名词解释

免疫学抗体名词解释1.引言1.1 概述[概述]免疫学是研究机体免疫系统的一门学科,涉及到抗体、抗原及其相互作用等内容。

抗体是一种重要的免疫分子,它能够通过与抗原结合来识别和清除病原体,起到保护机体免受感染的作用。

本篇文章旨在对抗体的相关名词进行解释和探讨。

我们将首先介绍抗体的定义和功能,包括其作为免疫分子的重要性及其在免疫应答中的作用。

接着,我们将详细讨论抗体的结构和分类,以及它们在免疫系统中的不同功能和应用。

最后,我们将总结抗体在免疫学中的重要性,并展望抗体研究的未来发展前景。

通过本文的阐述,读者将能够深入了解抗体这一重要的免疫分子,以及它在免疫系统中的作用和应用。

我们希望本文能够给读者带来启发和帮助,促进对免疫学及其相关领域的进一步研究和发展。

接下来,我们将详细介绍本文的结构和内容安排。

1.2 文章结构文章结构部分的内容如下:本文将包括以下几个主要部分来解释免疫学中的抗体名词。

首先,在引言部分,我们将简要介绍整篇文章的概述,给读者一个对主题的整体了解。

其次,会详细说明文章的结构,即每个部分的主要内容和目标。

最后,我们将在结论部分总结抗体在免疫学中的重要性,并展望抗体研究的应用前景。

在引言的概述部分,我们将简要解释什么是免疫学以及抗体在免疫学中的重要性。

我们将强调抗体在身体中的作用,以及对抗外来病原体和保护身体免受感染的重要性。

接下来,在文章结构部分,我们将详细介绍每个章节的内容和目标。

首先,我们会在第二部分探讨抗体的定义和功能。

我们将解释抗体的定义,即它们是免疫系统产生的一种蛋白质分子,可以识别并结合特定的抗原物质。

我们还将讨论抗体的功能,包括中和病原体、激活免疫细胞和介导免疫应答等。

然后,在第二部分的第二个章节,我们将深入探讨抗体的结构和分类。

我们将详细介绍抗体分子的组成,包括重链和轻链,以及它们之间的连接方式。

我们还将解释抗体的不同类别,如IgG、IgM、IgA等,以及它们在免疫应答中的不同作用和特点。

免疫标记技术的原理及应用

免疫标记技术的原理及应用

免疫标记技术的原理及应用1. 引言免疫标记技术是一种通过添加荧光染料或酶等标记物,使得目标分子可以被直接观察、定量或检测的技术。

它在生物学、医学、生物工程等领域具有广泛的应用。

本文将介绍免疫标记技术的原理和常见的应用案例。

2. 免疫标记技术的原理免疫标记技术主要依赖于抗体的高度特异性和结合能力。

它通过标记抗体或抗原来实现目标分子的可视化或检测。

其中最常见的免疫标记技术包括:免疫荧光染色、酶联免疫吸附实验(ELISA)和免疫组织化学。

2.1 免疫荧光染色免疫荧光染色是利用荧光染料标记抗体或抗原,并通过特定的荧光显微镜观察目标分子的分布。

这种技术能够在细胞水平上观察目标分子的定位和表达水平。

免疫荧光染色常用在免疫细胞化学、蛋白质定位和细胞信号转导的研究中。

2.2 酶联免疫吸附实验(ELISA)酶联免疫吸附实验是一种常见且灵敏的定量检测方法。

它通过将酶标记的抗体或抗原与待检测分子结合,再用底物与酶作用生成可测量的产物。

这种技术广泛应用于血液学、临床诊断和药物研发等领域。

2.3 免疫组织化学免疫组织化学是通过在组织切片上标记抗体或抗原,利用显微镜观察目标分子在组织中的位置和表达情况。

它在研究肿瘤、组织发育和疾病等方面有重要应用。

3. 免疫标记技术的应用免疫标记技术在许多领域都有广泛的应用,下面介绍一些常见的应用案例。

3.1 免疫组织化学在癌症诊断中的应用免疫组织化学可以通过标记抗体来检测肿瘤标志物,从而帮助医生诊断和治疗癌症。

例如,可以利用针对特定抗原的抗体来检测肿瘤细胞在组织中的分布和表达水平,以辅助早期的癌症诊断和预后评估。

3.2 免疫荧光染色在细胞生物学研究中的应用免疫荧光染色可以在细胞水平上观察某个特定蛋白质的定位和表达情况。

这种技术广泛应用于细胞生物学研究中,例如研究细胞器的分布和功能、蛋白质互作和信号通路等。

3.3 ELISA在生物药物研发中的应用ELISA是一种常用的生物药物研发工具,可以用于检测和定量药物分子、抗体和蛋白质的浓度。

免疫标记:四大免疫标记原理介绍

免疫标记:四大免疫标记原理介绍

免疫标记:四大免疫标记原理介绍!为提高抗原和抗体检测的敏感性,将已知抗体或抗原标记上易显示的物质,通过检测标记物,反映有无抗原抗体反应,从而间接测出微量的抗原或抗体。

常用的标记物有酶、荧光素、放射性同位素、胶体金及电子致密物质等。

这种抗原或抗体标记上显示物所进行的特异性反应称为免疫标记技术(immunolabelling technique)。

免疫标记不仅大大提高了试验敏感性,若与光镜或电镜技术相结合,能对组织或细胞内的待测物质作精确定位,从而为基础与临床医学研究及诊断提供方便。

免疫标记技术大致分为两大类:一类属于免疫组织化学技术(immunohistochemical technique),用于组织切片或其他标本中抗原的定位。

另一类称为免疫测定(immunoassay),用于液体标本中抗原或抗体的测定。

一,免疫酶技术(immunoenzymatic technique)最早应用的免疫酶技术是免疫酶组织化学染色,即用标记的抗体与标本中的抗原发生特异性结合,当加入酶的底物时,在酶的作用下经一系列生化反应产生有色物质,借助光镜作出定位判断。

目前,应用最广泛的是酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)。

该法特异性强,敏感性高,既可检测抗体,又能测定可溶性抗原。

主要方法及操作要领见图18.5,除了图示的两种方法外,还有抗原竞争法,现较少应用。

ELISA常采用的酶为辣根过氧化物酶(hosradish peroxidase,HRP),其底物是二氨基苯胺(DAB),底物被分解则呈棕褐色,可目测或借助酶标仪比色。

ELISA为非均相免疫测定,另外还有均相法,在此不作介绍。

由于酶免疫测定无需特殊仪器和试剂,且操作简便,利于普及。

因此,在免疫标记技术中,该法应用最为广泛,并在原有方法基础上加以改良,使得众多新的,更敏感的方法应运而生。

①生物素-亲和素放大系统(biotin-avidin system,BAS),建立于70年代后期,通过将酶标记在生物素或亲和素上,借助生物素与亲和素的高度亲力和生物素能与抗体结合的特点应用于ELISA,显著提高了检测的敏感性。

抗原抗体知识点总结

抗原抗体知识点总结

抗原抗体知识点总结一、概念抗原(antigen)是指能够诱导机体产生免疫应答的分子,可以是蛋白质、多糖、核酸等生物大分子或者低分子化合物。

抗原与机体内的抗体(antibody)结合,形成抗原-抗体复合物,从而引发免疫应答。

抗体是机体对抗原进行特异性识别和结合的免疫球蛋白分子,由B细胞产生。

抗体与抗原结合后,可以引起免疫细胞介导的溶解作用、吞噬作用或者直接中和抗原。

二、抗原和抗体的结构与特点1. 抗原的结构与特点(1)抗原可以是多种类型的生物分子,如蛋白质、多糖、脂质、核酸等。

(2)抗原具有特异性,即每种抗原都有其特定的免疫原性,并能够引起免疫应答。

(3)抗原往往具有免疫原性表位,这些表位是抗体结合的部位。

2. 抗体的结构与特点(1)抗体是一种由免疫球蛋白构成的蛋白质,共有五种类型,包括IgM、IgG、IgA、IgD 和IgE。

(2)抗体的结构包括两个轻链和两个重链,轻链和重链通过二硫键连接成Y型结构。

(3)抗体有特异性与抗原结合,通常在变可区域与抗原表位结合。

(4)抗体可以激活免疫系统,参与免疫反应。

三、抗原与抗体的相互作用1. 抗原-抗体的结合抗原与抗体结合是一个高度特异性的相互作用。

抗体可以识别和结合特定的抗原表位,形成抗原-抗体复合物。

这种结合可以触发多种生物学效应,包括中和、沉淀、凝集、激活补体系统等。

2. 抗原-抗体的亲和力抗原-抗体的结合是由于抗原表位与抗体结构的亲和力。

这种亲和力依赖于抗体的多种非共价相互作用,包括静电相互作用、范德华力、氢键和疏水作用等。

3. 抗原-抗体的特异性抗原-抗体结合具有高度特异性,即抗体只能结合特定的抗原表位。

这种特异性决定了免疫系统对抗原的识别和清除是高度特异的,并确保了机体对不同抗原的应答是具有辨识度的。

四、免疫应答的类型机体的免疫应答主要分为天然免疫和适应免疫两种类型。

1. 天然免疫天然免疫是机体最早接触到抗原时形成的非特异性免疫应答。

天然免疫包括炎症反应、宿主细胞的吞噬作用和自然杀伤细胞的杀伤作用等。

免疫标记技术

免疫标记技术

• 1、酶标记抗体免疫组化技术类型: • (1)直接法:■-Ag + Ab*E → ■-Ag-Ab*E
优点:简单、快速、特异 缺点:一种酶标抗体只能测一种抗原,敏感性较差
• (2)间接法:■-Ag + Ab1 + Ab2*E → ■-Ag-Ab1-Ab2*E
优点:一种酶标抗体能测多种抗原,实用性敏感性 较直接法好 缺点:敏感性低于非标记抗体酶法与三步法
酶免疫技术 Enzyme Immunoassay(EIA)
一、概述
• 抗原抗体反应+酶催化反应 • 肉眼、光学显微镜、电子显微镜、分光 光度计 • 特异、敏感 • 可以在细胞或亚细胞水平上示踪抗原或 抗体的所在部位,或在微克、甚至纳克 水平上对其进行定量。
酶免疫标记用于抗原检测
(一)基本原理
• 酶标记抗体或抗原: • 抗体或抗原的免疫学反应特异性 + 酶活性 • 酶是一种有机催化剂: • 使底物基质水解而呈色 • 使供氢体由无色还原型变为有色氧化型 • ∴ 可用呈色反应显示酶的存在。 • 很少量的酶即可导致大量的催化过程, 所以极为敏感。
• • • • • • •
步骤: 抗原的提取与纯化 免疫动物或细胞融合,制备特异性抗体及纯化 标记抗体 标本处理 抗原抗体反应和呈色反应 显微镜观察
• 标本 • 取材新鲜、固定及时、形态保存良好、 抗原性不被破坏 • 活体组织切片或印片 • 各种体液、穿刺液(细胞沉淀涂片) • 培养细胞
• 1 标本的固定与保存: • 固定使细胞内蛋白凝固,终止胞内酶活化, 防止细胞自溶,保存抗原性 • 固定剂:乙醇、丙酮、戊二醛等 • 切片:冰冻、石蜡 • 2 酶消化:打开固定过程中由于醛键形成 而被封闭的抗原决定簇(胃蛋白酶等)

免疫标记技术的原理

免疫标记技术的原理

免疫标记技术的原理
免疫标记技术是一种用于检测特定分子的方法,其原理基于免疫学和生物化学的原理。

该技术利用抗体与特定分子结合的高度特异性,通过标记抗体或抗原来检测目标分子的存在。

具体来说,免疫标记技术通常包括以下步骤,首先,通过免疫化学方法制备特异性抗体,这些抗体能够与目标分子特异性结合。

其次,抗体被标记上荧光染料、酶或放射性同位素等标记物质,这些标记物质能够在实验中被检测和定量。

接着,样品中的目标分子与标记的抗体结合形成复合物。

最后,通过荧光显微镜、酶标记物的底物转化或放射性同位素的测量等方法来检测和定量目标分子的存在和数量。

总的来说,免疫标记技术的原理在于利用抗体的高度特异性与目标分子结合,并通过标记物质来实现对目标分子的检测和定量。

这种技术在生物医学研究、临床诊断和生物技术领域有着广泛的应用。

抗原与抗体的相互作用

抗原与抗体的相互作用

抗原与抗体的相互作用大家好,今天我们要聊一聊医学领域中一个十分重要且丰富多彩的话题——抗原与抗体的相互作用。

这个话题不仅在医学研究中扮演着关键角色,也成为生物学爱好者和科普爱好者们津津乐道的话题之一。

什么是抗原和抗体?让我们来了解一下什么是抗原和抗体。

抗原,顾名思义,是指能够诱导机体产生免疫应答的物质。

它们可以是细菌、病毒、真菌、寄生虫等微生物,也可以是异物蛋白、多糖、甚至是肿瘤细胞等。

而抗体,则是机体免疫系统特异性产生的一类蛋白质,用于识别、结合和清除抗原,从而发挥免疫防御的作用。

抗原与抗体的相互作用过程当抗原进入机体后,抗原将会与机体内特定的B细胞结合,激发B细胞产生相应的抗体。

抗体的结构与抗原高度匹配,通过非常精确的空间结构,实现抗原与抗体的相互作用。

这种相互作用是通过抗原的表位(抗原特异性决定簇)与抗体的抗原识别结构域进行的。

抗体的多样性与标记性正是由于人体免疫系统的出色工作,所以我们可以生存于这个充满各种微生物的世界。

抗体的多样性是由我们独具特色的DNA重组技术及免疫系统的遗传机制所铸就。

每个抗体都带有一段独一无二的DNA序列,并且具有高度特异性,能够精准地与抗原结合,并标记出需要被清除的敌方。

抗体的应用及未来展望值得一提的是,除了在免疫防御中的应用外,抗体在药物研发、疾病诊断、免疫治疗等领域也有着广泛的应用。

随着科学技术的发展,我们不仅可以设计出越来越特异、高效的抗体药物,还可以通过基因编辑等手段使抗体具有特定的功能和性质。

未来,抗原与抗体的相互作用将在医学领域展现出更加广阔的前景和应用空间。

通过对抗原与抗体的相互作用的深入了解,我们可以更好地认识免疫系统的运作机制,为疾病的防治提供更为有效的方法和途径,促进医学领域的发展和进步。

希望通过本文的分享,让大家对抗原与抗体的相互作用有了更深入的了解。

让我们珍爱并保护好我们的免疫系统,共同维护健康的生活!抗原与抗体的相互作用是免疫系统中至关重要的一环,通过这种相互作用,维护着我们健康的生命。

免疫标记的种类

免疫标记的种类

免疫标记的种类免疫标记是指在人体免疫系统中起到标记作用的分子,它们能够被免疫系统识别并激活免疫反应。

在免疫学领域,免疫标记被广泛应用于研究和治疗各种免疫相关疾病。

根据其性质和功能,免疫标记可以分为多种类型。

1. 抗原抗原是一种能够引起免疫反应的物质,包括细菌、病毒、真菌、寄生虫、肿瘤细胞等。

抗原可以被免疫系统中的抗体或T细胞受体识别,并引发相应的免疫反应。

在免疫治疗中,抗原可以被用作疫苗或免疫细胞治疗的靶点。

2. 抗体抗体是一种由B淋巴细胞分泌的蛋白质,能够与抗原特异性结合并中和或清除其作用。

抗体可以被用于诊断、治疗和预防多种免疫相关疾病。

例如,抗体可以被用于检测某些感染或肿瘤标志物,或者被用于治疗自身免疫性疾病、癌症等。

3. 细胞表面标记物细胞表面标记物是指存在于细胞表面的蛋白质或糖类分子,它们能够识别和结合其他细胞或分子,并参与多种生理过程。

在免疫学中,细胞表面标记物可以用于鉴定不同类型的免疫细胞,例如CD4、CD8等T细胞标记物,B淋巴细胞标记物CD19、CD20等。

4. 细胞因子细胞因子是一类由免疫细胞或其他细胞分泌的蛋白质,它们能够调节和影响其他细胞的生长、分化和功能。

在免疫反应中,细胞因子可以促进或抑制免疫细胞的活性,调节免疫反应的强度和持续时间。

例如,白细胞介素-2(IL-2)可以促进T细胞增殖和活化,干扰素(IFN)可以增强巨噬细胞和NK细胞的抗肿瘤活性。

5. 核酸标记物核酸标记物包括DNA和RNA等分子,在免疫学中主要用于检测和鉴定不同类型的细胞或分子。

例如,PCR技术可以扩增某些特定的DNA序列,用于检测某些感染或遗传性疾病;RNA测序技术可以鉴定不同类型的RNA分子,并用于了解基因表达调控机制。

总之,免疫标记是免疫学中非常重要的概念,它们可以用于鉴定、治疗和预防多种免疫相关疾病。

随着科技的不断进步,我们相信将会有更多新型的免疫标记出现,并为人类健康事业做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抗原、抗体、免疫标记介绍
免疫测定(immunoassay,IA)是应用免疫学技术测定标本的方法。

在临床检验中主要通过抗原抗体反应检测体液中的抗体或抗原性物质。

1.1 抗原 抗原是能在机体中引起特异性免疫应答的物质。

抗原进入机体后,可刺激机体产生抗体和引起细胞免疫。

在免疫测定中,抗原是指能与抗体结合的物质。

能在机体中引起抗体产生的抗原多为分子量大于5000的蛋白质。

小分子化合物在与大分子蛋白质结合后能引起机体产生特异性抗体的,称为半抗原(hapten)。

例如某些激素、药物等。

抗原的反应性取决于抗原决定簇(antigenic determinant),或称为表位(epitope)。

一个抗原分子可带有不同的决定簇。

1.2 抗体
1.2.1 抗体的结构 抗体是能与抗原特异性结合的免疫球蛋白(immunoglobulin,Ig)。

Ig分五类,即IgG、IgA、IgM、IgD和IgE。

与免疫测定有关的Ig主要为IgG和IgM。

Ig由两个轻链(L)和两个重链(H)的单体组成。

Ig的轻链是相同的,有κ(kappa)和λ(Lambda)两种型别。

五类Ig的重链结构不同,这决定了它们的抗原性也不同。

IgG和IgM 的重链分别称为γ(gamma)链和μ(mu)链。

IgG的结构见图。

IgG可被木瓜蛋白酶分解为三个区段,其中两个相同的区段称抗原结合片段(Fab)。

每个Fab都保存结合抗原的能力,但只有一个抗原结合位点,是单价的,与抗原结合后不出现凝集或沉淀。

另一区段称Fc 段,无抗体活性,但具有IgG特有的抗原性。

IgG可被胃蛋白酶分解为两个片段,一个Fab双体,称F(ab'')2,能和两个相同的抗原结合;另一片段类似Fc,随后被分解成小分子多肽,无生物活性。

IgM是由五个单体组成的五聚体,含10个重链和10个轻链,具有10个抗原结合价,由于空间位置的影响,只表现为五个抗原结合价。

IgM分子量约为900000,IgG分子量约为150000。

机体被微生物感染后,先产生IgM抗体,然后产生IgG抗体。

经过一段时间,IgM抗体量逐渐减少而消失,而IgG抗体可长期存在,在疾病痊愈后可持续数年之久。

IgM抗体一般为保护性抗体,具有免疫性。

因此IgM抗体的测定,对某些传染病如甲型肝炎有较高的临床诊断价值。

1.2.2 抗体的产生 机体受抗原刺激后,B淋巴细胞产生相应的抗体。

含有抗体的血清称为抗血清(antiserum)。

每一系B细胞只产生针对某一抗原决定簇的抗体。

如将多种抗原或含有多个抗原决定簇的抗原注入机体,则将由多系的B细胞产生相应的多种抗体,这些抗体均存在于免疫血清中。

免疫测定中所用的抗血清一般用抗原免疫兔、羊或马制得。

产生抗体的B细胞可在体外与繁殖力强的肿瘤细胞融合成杂交瘤细胞。

将单个杂交瘤细胞分离,在体内或体外培养而分泌的抗体单克隆抗体(monoclonal antibody,McAb或Mab)。

单克隆抗体仅针对一种抗原决定簇,具有很高的特异性。

单克隆抗体通常用抗原免疫小鼠制备。

将免疫的脾细胞(含产生抗体的B细胞)与小鼠肿瘤细胞融合,分离杂交瘤细胞,接种于小鼠腹腔,产生的腹水中含有浓度很高的单克隆抗体。

1.3 抗原抗体反应
1.3.1 可逆性抗原与抗体结合形成抗原抗体复合物的过程是一种动态平衡,其反应式为:Ag+Ab→Ag·Ab。

.抗体的亲和力(affinity)是抗原抗体间的固有结合力,可以平衡常数K表示:K=[Ag·Ab]/[Ag][Ab]。

Ag·Ab的解离程度与K值有关。

高亲和力抗体的抗原结合点与抗原的决定簇在空间构型上非常适合,两者结合牢固,不易解离。

解离后的抗原或抗体均能保持原有的结构和活性,因此可用亲和层析法来提纯抗原或抗体。

在抗血清中,特异性的IgG抗体仅占总IgG中的极小部分。

用亲和层析法提取的特异性抗体,称为亲和层析纯抗体,应用于免疫测定中可得到更好的效果。

..2 最适比例在恒定量的抗体中加入递增量的抗原形成抗体复合物(沉淀)的量见图1-4。

曲线的高峰部分是抗原抗体比例最合适
的范围,称为等价带(zone of equivalence)。

在等价带前后分
别为抗体过剩带和抗原过剩带。

如果抗原或抗体极度过剩,则
无沉淀物形成,在免疫测定中称为带现象(zone
phenomenon)。

抗体过量称为前带(prezone),抗原地过量称
为后带(postzone)。

在用免疫学方法测定抗原时,应使反应
系统中有足够的抗体量,否则测得的量会小于实际含量,甚至
出现假阴性。

1.3.3 特异性抗原抗体的结合实质上只发生在抗原的抗原决定簇与抗体的抗原结合位点之间。

由于两者在化学结构和空间构型上呈互补关系,所以抗原抗体反应具有高度的特异性。

例如乙肝病毒中的表面抗原
(HBsAg)、e抗原(HBeAg)和核心抗体(HBcAg),虽来源于同一病毒,但仅与其相应的抗体结合,而不与另外两种抗体反应。

抗原抗体反应的这种特异性使免疫测定能在一非常复杂的蛋白质化合物(例如血清)中测定某一特定的物质,而不需先分离待检物。

但是这种特异性也不是绝对的。

假使两种化合物有着部分相同的结构,在抗原抗体反应中可出现交叉反应。

例如:绒毛膜促性腺激素(hCG)和黄体生成激素(LH)均由α和β两个亚单位组成,其结构的不同处在β亚单位,而两者的α亚单位是同类的。

用hCG免疫动物所得的抗血清中含有抗α-hCG和抗β-hCG两种抗体,抗α-hCG抗体将与LH发生交叉反应。

在临床检验中,如用抗hCG抗血清作为妊娠诊断试剂检定尿液中hCG,只能用于hCG浓度较高的试验,否则妇女生理性排泄入尿液中的微量LH将与之发生交叉反应。

因此在作为早孕诊断(敏感度应达到50mIu/mlhCG)的实际中必须应用只对hCG特异的抗β-hCG,以避免与其它激素的交叉反应的发生。

1.3.4 敏感性在测定血清中某一物质的含量时,化学比色法的敏感度为mg/ml水平,酶反应测定法的敏感度约为5~10μg/ml,免疫测定中凝胶扩散法和浊度法的敏感度与酶反应法相仿。

标记的免疫测定的敏感度可提高数千倍,达ng/ml水平。

例如,用放射免疫测定法或酶免疫测定法测定HBsAg,其敏感度可达0.1ng/ml。

1.4 免疫测定在临床检验中的应用 由于各种抗原成份,包括小分子的半抗原,均可用以制备特异性的抗血清或单克隆抗体,利用此抗体作为试剂就可检测标本中相应的抗原,因此免疫测定的应用范围极广,在临床检验中可用于测定:
1) 体液中的各种蛋白质,包括含量极少的蛋白质如甲胎蛋白等。

2) 激素,包括小分子量的甾体激素等。

3) 抗生素和药物。

4) 病原体抗原,HBsAg、HBeAg等。

5) 另外,也可利用纯化的抗原检测标本中的抗体,例如抗-HBs等。

1.5.标记的免疫测定 如上所述,免疫测定是一种很敏感的测定方法,抗原抗体反应后直接测定形成的沉淀或浊度,敏感度可达
5~10μg/ml,但在临床检验中,某些待测物在标本中的含量远低于这一水平,因此要寻找增加敏感度的方法。

标记的免疫测定是将检测试剂中的抗原或抗体用可微量测定的物质加以标记,通过测定标记物来提高敏感度。

在放射免疫测定和酶免疫测定中,标记物分别为放射性核素和
酶,最后用测定放射性和酶活力来计算待检物的量,敏感度可比直接测定沉淀物提高数百至数千倍。

在标记免疫测定中,一般加入过量的标记试剂以保证与待测物彻底反应。

以标记抗体(Ab※)检测抗原(Ag)为例,反应式如下:Ag+ Ab※→ AgAb※+ Ab※。

在反应产物中有与Ag结合的Ab※和游离和Ab※,如不将两者分离而测定标记物,测得的结果将为两者之和。

因此,游离标记物与结合标记物的分离是标记免疫测定中的重要步骤。

可采用多种手段,固相载体是其中之一。

如将抗原或抗体包被在固相载体上,然后再与标记的抗原或抗体直接反应,结合的标记物被固定在载体上,而游离的标记物留于溶液中。

这样可以通过洗涤将游离的Ab※除去,结合标记物的测定可在固相上进行。

相关文档
最新文档