高等数学(二)(线性代数)一 第二三章 习题集(部分)
线性代数(同济大学第五版)课后习题答案 (大二所学)
![线性代数(同济大学第五版)课后习题答案 (大二所学)](https://img.taocdn.com/s3/m/32afefc659f5f61fb7360b4c2e3f5727a5e92417.png)
第一百二十一页,共222页。
第一百二十二页,共222页。
第一百二十三页,共222页。
第一百二十四页,共222页。
第四章
第一百二十五页,共222页。
第一百二十六页,共222页。
第一百二十七页,共222页。
第一百二十八页,共222页。
第一百二十九页,共222页。
第一百三十页,共222页。
第一百六十四页,共222页。
第一百六十五页,共222页。
第五章
第一百六十六页,共222页。
第一百六十七页,共222页。
第一百六十八页,共222页。
第一百六十九页,共222页。
第一百七十页,共222页。
第一百七十一页,共222页。
第一百七十二页,共222页。
第一百七十三页,共222页。
第一百一十页,共222页。
第一百一十一页,共222页。
第一百一十二页,共222页。
第一百一十三页,共222页。
第一百一十四页,共222页。
第一百一十五页,共222页。
第一百一十六页,共222页。
第一百一十七页,共222页。
第一百一十八页,共222页。
第一百一十九页,共222页。
第一百二十页,共222页。
第十四页,共222页。
第十五页,共222页。
第十六页,共222页。
第十七页,共222页。
第十八页,共222页。
第十九页,共222页。
第二十页,共222页。
第二十一页,共222页。
第二十二页,共222页。
第二十三页,共222页。
第二十四页,共222页。
第二十五页,共222页。
第二十六页,共222页。
第一百四十二页,共222页。
线性代数-章节知识点及习题
![线性代数-章节知识点及习题](https://img.taocdn.com/s3/m/771614ae03d276a20029bd64783e0912a2167c05.png)
第一章 行列式一、教学要求1、了解行列式定义;2、掌握行列式的性质和展开法则;3、会利用化三角法和行列式展开法则计算低阶行列式以及简单n 阶行列式;4、了解克莱姆法则;重点、难点:熟练运用行列式性质,掌握行列式计算方法二、主要知识点及练习 1、 行列式性111213111112132122232121222331323331313233223=1223=223a a a a a a a a a a a a a a a a a a a a a ,则。
练习:若行列式---311234=1303=101313a b c a b c ,则。
练习:若行列式+++2、 代数余子式13122,112D x x D=则中的系数为。
练习:设行列式11111111x x 是关于的一次多项式,该式中的一次项系数是。
练习:--- 3、 行列式计算1) 对角线法------计算二阶、三阶行列式212103214111213212223313233--、a a a a a a a a a 练习:计算三阶行列式2) 利用行列式性质计算行列式------将行列式化为上三角、下三角、对角行列式222222222(1)(2)(1)(2)(2)(1)(2)11231123(3)(4)11131121(1)ab b b x x x ba b b y y y bb a b z z z b b b ax ab ac aex bd cdde x bf cfefx 练习:计算下列行列、式、、的值+++++++-+-+-+3) 利用行列式展开法计算行列式------将行列式降阶0110100111011110练习:四阶行列式。
=11121314313233441111123456224816123434D A A A A A A A A 练习:已知行列式,则,。
==+++=++--+=123,1,3D A A 练习:设三阶行列式的第二行元素分别为,,第一行元素的代数余子式的值分别为,,则。
线性代数章节练习题
![线性代数章节练习题](https://img.taocdn.com/s3/m/637f316033d4b14e842468af.png)
b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵
高等数学线性代数教材目录
![高等数学线性代数教材目录](https://img.taocdn.com/s3/m/635c426159fb770bf78a6529647d27284b733709.png)
高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。
这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。
希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。
线性代数练习册附答案
![线性代数练习册附答案](https://img.taocdn.com/s3/m/a1cfe7838e9951e79a8927b7.png)
第1章 矩阵 习 题1. 写出下列从变量x ,y 到变量x 1, y 1的线性变换的系数矩阵:(1)⎩⎨⎧==011y x x ; (2)⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A T B .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E .当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的.(1) 若A2= O,则A= O.(2) 若A2= A,则A= O或A= E..7. 设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫ ⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A --⎛⎫ ⎪=- ⎪⎪-⎝⎭,利用初等行变换求A -1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B)P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆.5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A T B ,求.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1. 第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4.证明:3232a cb a b a ac b a ba acb a=++++++.. .5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------(2)yx y x x y x y yx y x +++(3) 0111101111011110(4)1222123312111x x x x x x(5)nn a a a D +++=11111111121,其中021≠n a a a .7.设n 阶矩阵A 的伴随矩阵为A *,证明: |A *|=|A |n-1,(n ≥2)...8. 设A ,B 都是三阶矩阵,A *为A 的伴随矩阵,且|A |=2,|B |=1,计算 |-2A *B -1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1. 复习题二1.设A ,B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*=B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |...4.设A ,B 都是n 阶方阵,试证:AB E E A BE -=.第3章 向量空间习 题1.设α1=(1,-1,1)T , α2=(0,1,2)T , α3=(2,1,3)T ,计算3α1-2α2+α3.2.设α1=(2,5,1,3)T , α2=(10,1,5,10)T , α3=(4,1,-1,1)T ,且3(α1- x )+2(α2+x )=5(α3+x ) ,求向量x .3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T , α2=(2,-6,-2)T , α3=(5,4,1)T ;(2) β1=(2,3,0)T , β2=(-1,4,0)T ,β3=(0,0,2)T .4.设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5.设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6.求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示...7.设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8.设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9.设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11.已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值...12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14.已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2,β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B :β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r ...3.设有三个n 维向量组A :α1, α2, α3;B :α1, α2, α3, α4;C :α1, α2, α3, α5.若A 组和C 组都线性无关,而B 组线性相关,证明向量组α1, α2, α3, α4-α5线性无关.4.设向量组A : α1=(1,1,0)T ,α2=(1,0,1)T ,α3=(0,1,1)T 和B : β1=(-1,1,0)T ,β2=(1,1,1)T ,β3=(0,1,-1)T(1) 证明:A 组和B 组都是三维向量空间3R 的基;(2) 求由A 组基到B 组基的过渡矩阵;(3) 已知向量α在B 组基下的坐标为(1,2,-1)T ,求α在A 组基下的坐标.第4章 线性方程组习 题 1.写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 4 3212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-0 26 83054202108432143214321x x x x x x x x x x x x 的一个基础解系...6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8.设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?. .9. 设η*是非齐次线性方程组AX =b 的一个解,ξ1, ξ2,…, ξn -r 是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn -r 线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn -r 线性无关.复习题四 1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a =.2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为.3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a , b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x 求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax=β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章 矩阵的特征值和特征向量习 题1.已知向量α1=(1,-1,1)T ,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A , B 都是n 阶正交矩阵,证明AB 也是正交矩阵...3. 设A 是n 阶正交矩阵,且|A |=-1,证明:-1是A 的一个特征值.4.求矩阵⎪⎪⎪⎭⎫⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022..(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)λA是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A 的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p 1=(1,1,1)T ,求矩阵A .复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是.2.已知3阶矩阵A , A -E ,E +2A 都不可逆,则行列式|A +E |=.3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足. 4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为.5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9. 第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3.已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值X 围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A T A ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n .2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3.3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式*2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题: 6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1. 三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵. 测试题二一、填空题:1、若规定自然数从小到大的次序为标准次序,则排列134782695的逆序数为;2、已知A 为三阶正交矩阵,且A <0,则*AA =;3、设方阵A =⎪⎪⎪⎭⎫ ⎝⎛--24523121x ,若A 不可逆,则=x ; 4、设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛=5432P ,⎪⎪⎭⎫ ⎝⎛-=Λ1001,则6A =; 5、“若向量组321,,ααα线性无关,向量组432,,ααα线性相关,则4α一定能由32,αα线性表示”.该命题正确吗? 。
线性代数课后习题答案全习题详解
![线性代数课后习题答案全习题详解](https://img.taocdn.com/s3/m/911a9c18aef8941ea76e05f8.png)
线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
(完整版)线性代数习题集(带答案)
![(完整版)线性代数习题集(带答案)](https://img.taocdn.com/s3/m/ec3e1f0daef8941ea66e0529.png)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
线性代数习题册(答案)2022
![线性代数习题册(答案)2022](https://img.taocdn.com/s3/m/ad90232f6f1aff00bfd51e73.png)
线性代数习题册答案第一章行列式练习一班级学号姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)τ(3421)= 5 ;(2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i=8 、j= 3 .3.在四阶行列式中,项12233441a a a a的符号为负.4.003042215=-24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ)= -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3) 1306 0212 1476----(4) 1214 0121 1013 0131-5.计算下列n阶行列式:(1)n x a a a x aDa a x=(每行都加到第一行,并提公因式。
)(2)131111n +(3)123123123nn n a b a a a a a b a a a a a a b+++练习 三班级 学号 姓名1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。
线性代数课后答案(高等教育出版社)
![线性代数课后答案(高等教育出版社)](https://img.taocdn.com/s3/m/2d9158ce9ec3d5bbfd0a7498.png)
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)38114112---;解38114112---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(3)222111cbacba;解222111cbacba=bc2+ca2+ab2-ac2-ba2-cb2=(a-b)(b-c)(c-a).4.计算下列各行列式:(1)71125102214214;解7112510221421411423102211021473234-----======cccc34)1(143102211014+-⨯---=143102211014--=014171721099323211=-++======cccc.(2)265232112131412-;解265232112131412-265321221341224--=====cc412321221341224--=====rr321221341214=--=====rr.(3)efcfbfdecdbdaeacab---;解efcfbfdecdbdaeacab---ecbecbecba d f---=a b c d e fa d fbc e4111111111=---=.(4)dcba111111---.解dcba111111---dcbaabarr11111121---++=====dcaab1111)1)(1(12--+--=+111123-+-++=====cdcadaabdcccdadab+-+--=+111)1)(1(23=abcd+ab+cd+ad+1.6. 证明:(1)1112222bbaababa+=(a-b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--==(a -b)3 .(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x byax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x byax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22z y x yx z x z y b y x z x z y z y x a 33+=y x z xz y z y x b y x z x z y z y x a 33+=y x z xz y z y x b a )(33+=.8. 计算下列各行列式(Dk 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a ann n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=an -an -2=an -2(a2-1).(2)x a a a x aa ax D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a](x -a)n第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3)⎪⎪⎭⎫⎝⎛321xx x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B , 求3AB -2A 及A TB . 解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x . 4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B)(A -B)=A2-B2吗? 解 (A +B)(A -B)≠A2-B2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A2-B2.5. 举反列说明下列命题是错误的:(1)若A2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A2=0, 但A ≠0. (2)若A2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求Ak .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A kk k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明:当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明BTAB 也是对称矩阵. 证明 因为A T =A , 所以 (BTAB)T =BT(BTA)T =BTA TB =BTAB , 从而BTAB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫⎝⎛--=1225.(3)⎪⎪⎭⎫⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a1a2⋅ ⋅ ⋅an ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A8(5E -6A +A2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114. 21. 设Ak =O (k 为正整数), 证明(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 因为Ak =O , 所以E -Ak =E . 又因为 E -Ak =(E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1), 所以 (E -A)(E +A +A2+⋅ ⋅ ⋅+Ak -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A2+⋅ ⋅ ⋅+Ak -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由Ak =O , 有E =(E -A)+(A -A2)+A2-⋅ ⋅ ⋅-Ak -1+(Ak -1-Ak) =(E +A +A2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A2+⋅ ⋅ ⋅+Ak -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A2+⋅ ⋅ ⋅+Ak -1.22. 设方阵A 满足A2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A2-A -2E =O 得 A2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A2-A -2E =O 得A2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 EA E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A2-A -2E =O 得A2-A =2E , 两端同时取行列式得 |A2-A|=2, 即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A2, |A +2E|=|A2|=|A|2≠0, 故A +2E 也可逆. 由 A2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E ⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r2+(-2)r1, r3+(-3)r1. )~⎪⎪⎭⎝--231(下一步: r2÷(-1), r3÷(-2). )~⎪⎪⎭⎫⎝⎛--131121(下一步: r3-r2. )~⎪⎪⎭⎫⎝⎛--331121(下一步: r3÷3. )~⎪⎪⎭⎫⎝⎛--131121(下一步: r2+3r3. )~⎪⎪⎭⎫⎝⎛-11121(下一步: r1+(-2)r2, r1+r3. )~⎪⎪⎭⎫⎝⎛111.(3)⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311;解⎪⎪⎪⎭⎫⎝⎛---------1243323221453334311(下一步: r2-3r1, r3-2r1, r4-3r1. )~⎪⎪⎪⎭⎫⎝⎛--------1010566388434311(下一步: r2÷(-4), r3÷(-3) , r4÷(-5). )~⎪⎪⎪⎭ ⎝---2210022********(下一步: r1-3r2, r3-r2, r4-r2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z1, z2, z3到x1, x2, x3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/12/1121112/33/26/71故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----2121211233267.(2)⎪⎪⎪⎭⎫⎝⎛-----1212321122123.解⎪⎪⎪⎭⎫⎝⎛-----11111212321122123~⎪⎪⎪⎭⎫⎝⎛----131111225941212321~⎪⎪⎪⎭⎫⎝⎛--------214311112111212321~⎪⎪⎪⎭⎫⎝⎛-------10612431111111212321~⎪⎪⎪⎭⎫⎝⎛----------1061263111`1221111121~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B . 解 考虑A TXT =BT . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r , 所以⎪⎪⎭⎫⎝⎛---==-417142)(1TTTB A X , 从而⎪⎭⎫⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001,此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R(A)=1; (2)当k =-2且k ≠1时, R(A)=2;(3)当k ≠1且k ≠-2时, R(A)=3. P106/1.已知向量组A : a1=(0, 1, 2, 3)T , a2=(3, 0, 1, 2)T , a3=(2, 3, 0, 1)T ;B : b1=(2, 1, 1, 2)T , b2=(0, -2, 1, 1)T , b3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r知R(A)=R(A , B)=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B知R(B)=2. 因为R(B)≠R(B , A), 所以A 组不能由B 组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ;(2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A , 所以R(A)=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为22200043012||≠=-=B ,所以R(B)=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关?a1=(a , 1, 1)T , a2=(1, a , -1)T , a3=(1, -1, a)T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R(A)<3, 此时向量组线性相关.9.设b1=a1+a2, b2=a2+a3, b3=a3+a4, b4=a4+a1, 证明向量组b1, b2, b3, b4线性相关. 证明 由已知条件得a1=b1-a2, a2=b2-a3, a3=b3-a4, a4=b4-a1, 于是 a1 =b1-b2+a3=b1-b2+b3-a4 =b1-b2+b3-b4+a1, 从而 b1-b2+b3-b4=0,这说明向量组b1, b2, b3, b4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a1=(1, 2, -1, 4)T , a2=(9, 100, 10, 4)T , a3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R(a1, a2, a3)=2. 因为向量a1与a2的分量不成比例, 故a1, a2线性无关, 所以a1, a2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125,所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫ ⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---141131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211,所以第1、2、3列构成一个最大无关组.13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a , b .解 设a1=(a , 3, 1)T , a2=(2, b , 3)T , a3=(1, 2, 1)T , a4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R(a1, a2, a3, a4)=2, 所以a =2, b =5.20.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4xx x x x . 取(x3, x4)T =(4, 0)T , 得(x1, x2)T =(-16, 3)T ; 取(x3, x4)T =(0, 4)T , 得(x1, x2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(xx x x x x . 取(x3, x4)T =(19, 0)T , 得(x1, x2)T =(-2, 14)T ; 取(x3, x4)T =(0, 19)T , 得(x1, x2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B .与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=2 13 843231x x x x x .当x3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=0 43231x x x x x .当x3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x .当x3=x4=0时, 得所给方程组的一个解 η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x .分别取(x3, x4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系 ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。
高等数学 线性代数 习题答案第二章
![高等数学 线性代数 习题答案第二章](https://img.taocdn.com/s3/m/75d5ec0d844769eae009ed0d.png)
第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
《线性代数》习题集(含答案)
![《线性代数》习题集(含答案)](https://img.taocdn.com/s3/m/799025a7f121dd36a32d82c8.png)
《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-•。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
高等数学2-习题集(含答案)
![高等数学2-习题集(含答案)](https://img.taocdn.com/s3/m/054a35730242a8956bece4f7.png)
2
1
39. 把向量 用1 , 2 , 3 表出.
其中1 (1, 3, 2) ,2 (3, 2,1) ,3 (2, 5,1) , (4,11, 3)
40.
已知
a c
b d
2 b
1 c
10
1 0
,求
a,
b,
c,
d
的值。
41. 设向量组 1 , 2 , 3 可由向量组1 , 2 , 3 线性表示。
a31
a32
a33
5.
0111
计算行列式
1 D
0
1
1 的值。
1101
1110
1991 1992 1993 6. 计算行列式 1994 1995 1996 的值.
1997 1998 1998
7.
3 208
4 9 2 10
计算行列式 D
的值.
1 6 0 7
0 005
1234 8. 计算行列式 D 2 3 4 1 的值。
。
12.
求
A
1 1
1 2
1 1
的逆.
1 1 3
13.
设 n 阶方阵 A 可逆,试证明 A 的伴随矩阵 A*可逆,并求 ( A* )1 。
5 2 0 0
14.
求矩阵
A
2 0 0
1 0 0
0 1 1
0 2 1
的逆。
15.
求A
1 1
4 3 5 3 的逆矩阵。
1 6 4
4 1 0 0
《高等数学 2》课程习题集
【说明】:本课程《高等数学 2》(编号为 01011)共有计算题 1,计算题 2 等多 种试题类型,其中,本习题集中有[]等试题类型未进入。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
![线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx](https://img.taocdn.com/s3/m/9237d49827284b73f3425001.png)
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数试题和答案(精选版)
![线性代数试题和答案(精选版)](https://img.taocdn.com/s3/m/cb4458d6f605cc1755270722192e453610665bef.png)
线性代数试题和答案(精选版)线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.1002 00 1 3C. 1 3 00 010 00 1 21200130013.设矩阵A= 312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< p="">B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334B.3426C.023035--D.111120102第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数同步习题及答案
![线性代数同步习题及答案](https://img.taocdn.com/s3/m/e824d1d328ea81c758f578a3.png)
c21 c c2源自1 d d2 d4a4
b4
c4
= (a − b)(a − c)(a − d )(b − c)(b − d )(c − d )(a + b + c + d )
5.试求一个 2 次多项式 f ( x ) ,满足 f (1) = 0, f ( −1) = 1, f ( 2) = −1 .
a 0 0 b
b a 0 0
0 ⋯ b ⋯ 0 ⋯ 0 ⋯
0 0 a 0
0 0 b a
a a
(6) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
习 题 1.3
1. 解下列方程组
x1 + x 2 + x3 + x 4 = 5 5 x1 + 2 x 2 + 3x3 = −2 x + 2 x − x + 4 x = −2 1 2 3 4 (1) 2 x1 − 2 x 2 + 5 x3 = 0 (2) 2 x − 3 x − x − 5 x 2 3 4 = −2 3x + 4 x + 2 x = −10 1 2 3 1 3 x1 + x 2 + 2 x3 + 11x 4 = 0 2. k 取何值时,下列齐次线性方程组可能有非零:
3 2 − 1 − 3 − 2 (2) 2 − 1 3 1 − 3 7 0 5 − 1 8
1 1 (4) 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
2.问能否适当选取矩阵
1 − 2 − 1 3 A= 3 − 6 − 3 9 4 2 k − 2
重大社2024教材样章-线性代数习题集(第二版)
![重大社2024教材样章-线性代数习题集(第二版)](https://img.taocdn.com/s3/m/e9b1234edf80d4d8d15abe23482fb4daa48d1d7c.png)
目 录第一章 行列式1第一节 行列式的概念2 第二节 行列式的性质9 第三节 行列式按行(列)展开15 第四节 行列式的计算19 第五节 克莱姆法则21 历年考研真题集锦23第二章 矩阵及其运算25第一节 矩阵的概念及运算26 第二节 逆矩阵33 第三节 矩阵分块法42 历年考研真题集锦45第三章 矩阵的初等变换与线性方程组47第一节 矩阵的初等变换51 第二节 矩阵的秩57 第三节 线性方程组的解62 历年考研真题集锦69第四章 向量组的线性相关性71第一节 向量组及其线性组合73 第二节 向量组的线性相关性76 第三节 向量组的秩80㊃Ⅰ㊃P1 6 ih第四节 线性方程组的解的结构85 第五节 向量空间89 历年考研真题集锦91第五章 相似矩阵及二次型93第一节 向量的内积、长度及正交性97 第二节 方阵的特征值与特征向量101 第三节 相似矩阵107 第四节 对称矩阵的对角化111 第五节 二次型及其标准形113 第六节 用配方法化二次型成标准形115 第七节 正定二次型116 历年考研真题集锦120综合测试题一123 综合测试题二127 综合测试题三131㊃Ⅱ㊃第一章 行列式知识要点1.排列:i 1,i 2, ,i n 的逆序数N (i 1i 2 i n )=i 1后面比i 1小的个数+i 2后面比i 2小的个数+ +i n -1后面比i n -1小的个数.2.n 个元素所有排列的种数为P n =n (n -1)3㊃2㊃1=n !.3.n 阶行列式的定义:a 1a 2a n a n a 2a n ︙︙a n a n a 2a n= i 1i n(-1)N (i 1 i j )a i 1 a i n.4.对角行列式λ1λ2⋱λn=λ1λ2 λn .5.关于代数余子式的重要性质: nk =1a ki A k j =D ㊃δi j =D ,i =j ,0,i ʂj ,{nk =1a i k A j k =D δi j =D ,i =j ,0,i ʂj ,{其中δi j =1,i =j0,i ʂj{为原行列式的值.6.行列式的计算方法:(1)行列式定义法;(2)用行列式的性质将行列式化为上/下三角行列式;1P1 6 ih(3)行列式按一行㊁列展开降阶法;(4)递推公式法.7.范德蒙德行列式:111x 1x 2x nx 21x 22 x 2n ︙︙︙x n -1n x n -1nx n -1n=Π1ɤj ɤi ɤn (x i -x j ).8.克莱姆法则:n 元线性方程组a 11x 1+a 12x 2+ +a 12x n =b 1,a 21x 1+a 22x 2+ +a 2n x n =b 2, a n 1x 1+a 22x 2+ +a m x n =b n ,ìîíïïïïïï 若方程组系数行列式D ʂ0,则方程组有唯一解x 1=D 1D ,x 2=D 2D , ,x n =D n D.其中D j (j =1,2, ,n )是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 阶行列式.第一节 行列式的概念(A )基础练习一㊁选择题1.排列145362879的逆序数为().A.8B .7C .10D.922.下列排列中,()是偶排列.A.54312B .51432C .38162754 D.6543213.下列各项中,()为某4阶行列式中带正号的项. A.a 14a 23a 31a 42B .a 11a 23a 32a 44C .a 12a 23a 34a 41D.a 13a 24a 31a 424.若行列式λ2λ31的值为0,则λ=( ). A.-1或3 B .0或3 C .1或-3D.-1或-35.行列式0101101001000011的值是( ).A.-1 B .-2C .1D.26.行列式000λ100 λ20︙︙︙︙λn的值为( ).A.0B .λ1λ2 λnC .(-1)n (n -1)2λ1λ2 λnD.-λ1λ2 λn二㊁填空题1.34215352152809229092=.2.行列式1000020000300004=.3.行列式10002300456078910=.3 第一章行列式P1 6 ih4.行列式12000200120020-10200300-12004 0002005=.5.行列式0001003005007000=.三㊁计算题1.用对角线法则计算二阶行列式. (1)1314(2)21 -12(3)1l o g b al o g a b1(4)a ba2b242.用对角线法则计算三阶行列式. (1)011101110 (2)111314895(3)1233212315 第一章行列式P1 6 ih(B )提高练习一㊁填空题1.要使排列(3729m 14n 5)为偶排列,则m =,n =.2.若a 1i a 23a 35a 5ja 44是五阶行列式中带有正号的一项,则i =,j =.3.关于x 的多项式-x11x -x x 12-2x 中含x 3,x 2项的系数分别是,.4.31x 4x 010xʂ0,则x 应满足的条件是.二㊁用对角线法则计算三阶行列式1.a b c b c a c a b.62.x y x+y y x+y xx+y x y.3.111 a b ca2b2c2.三㊁利用行列式的定义计算行列式1.00 0100 20︙︙︙︙0n-1 00n0 00.7第一章行列式P1 6 ih2.010 00020︙︙︙︙000 n -1n.3.a 11a 12a 13a 14a 15a 21a 22a 23a 24a 25a 31a 32000a 41a 42000a 51a 52.4.1110010101110010.8第二节 行列式的性质(A )基础练习一㊁选择题1.行列式3a 1b 1c 1a 2b 2c 2a 3b 3c 3=().A.3a 1b 1c 1a 23b 2c 2a 3b 33c 3B .3a 13b 13c 13a 23b 23c 23a 33b 33c 3C .3a 1-3b 13c 1a 2b 2c 2a 3b 3c 3D.3a 13b 13c 1a 2b 2c 2a 3b 3c 32.已知四阶行列式A 的值为2,将A 的第3行元素乘以-1加到第4行的对应元素上去,则现行列式的值为(). A.2 B .0C .-1 D.-23.设D =a +m c +e b +nd +f,则D =().A.a c b d +m en f B .a c b d +m c n d +a e b f +m en f C .a c n d +m e b fD.m a b n +c ed f 4.设行列式D 1=abc +aa 1b 1c 1+a 1a 2b 2c 2+a 2,D 2=abca 1b 1c 1a 2b 2c 2,则D 1=().A.0 B .D 2C .2D 2D.3D 25.设行列式x y z403111=1,则行列式2x 2y 2z 4301111=().A.23B .1C .2D.836.设行列式D =a 11a 12a 13a 21a 22a 23a 31a 32a 33=3,D 1=a 115a 11+2a 12a 13a 215a 21+2a 22a 23a 315a 31+2a 32a 33,则D 1的值为().A.-15 B .-6C .6D.157.214-13-12-1123-256-2的值为().A.1B .2C .0 D.-1二㊁计算下列行列式1.4251625170929092.2.a +b c 1b +c a 1c +a b 1.3.D=246427327 1014543443 -342721621.4.D=1234124314234123.5.a 100-1b 100-1c1-1d.6.a 1-b 1a 1-b 2a 1-b n a 2-b 1a 2-b 2a 2-b n ︙︙︙a n -b 1a n -b 2a n -b n.7.1+x 11111-x 11111+y 11111-y .(B )提高练习一㊁选择题1.设D =a 11a 12a 13a 21a 22a 23a 31a 32a 33=1,则D =4a 114a 11-3a 12a 134a 212a 21-3a 22a 234a 312a 31-3a 32a 33=( ). A.0 B .-12 C .12D.12.方程111112-2x144x218-8x 3=0的根为(). A.1㊁2㊁-2 B .1㊁2㊁3 C .1㊁-1㊁2 D.0㊁1㊁23.三阶行列式1+a 11111+a 21111+a 3的值为(),其中a 1,a 2,a 3均不为0.A.(1+a 1)(1+a 2)(1+a 3)B .a 1a 2a 31+1a 1+1a 2+1a 3æèçöø÷C .a 1a 2a 31a 1+1a 2+1a 3æèçöø÷D.以上均不对二㊁计算题1.设f (x )=x 1233x 1223x 1123x,求f (4).2.计算D =1+a 111111+a 211111+a 311111+a 4的值(其中a 1a 2a 3a 4ʂ0).三㊁证明题1.a 2a b b22a a +b 2b 111=(a -b )32.a x +b y a y +b z a z +b x a y +b z a z +b x a x +b y a z +b x a x +b y a y +bz =(a 3+b 3)x y z y z x z x y第三节 行列式按行(列)展开(A )基础练习一㊁选择题1.设A =208-315297éëêêêêùûúúúú,则代数余子式A 12=(). A.-31 B .31 C .0 D.-112.行列式a b c d e f g h k中元素f 的代数余子式是().A.d eg hB .-a b g hC .a bg hD.-d e g h3.已知四阶行列式D 中第3列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4,则D =( ). A.-15 B .15 C .0D.14.四阶行列式D 4=1020020330400401的值为().A.20B .-20 C .10 D.-10二㊁计算题1.求D =-3045032-21中元素a 23,a 31的余子式和代数余子式.2.设行列式D =a b c b a c d b c,求代数余子式A 11+A 21+A 31.3.计算D6=a30000b3 0a200b20 00a1b100 00c1d100 0c200d20 c30000d3.4.计算行列式2c o sθ100 12c o sθ10 012c o sθ1 0012c o sθ.(B)提高练习1.设B=1-523000114-262351,计算B41+B42+B43+B44,B i j为B的(i,j)位元素的代数余子式.2.计算行列式D=1-11x-1 1-1x+1-1 1x-11-1 x+1-11-1.3.计算行列式123 n -103 n -1-20 n ︙︙︙︙-1-2-3 0.第四节行列式的计算1.计算行列式D=2-512 -37-14 5-927 4-612.2.计算行列式D=406-3 7091 -8-2710 5055.3.计算行列式D=2+x22222-x22222+y22222-y.4.计算行列式D n=1+x21x1x2x1x3 x1x n x2x11+x22x2x3 x2x n x3x1x3x21+x23 x3x n ︙︙︙︙x n x1x n x2x n x3 1+x2n.5.计算行列式D n=a b b bb a b b b b a b ︙︙︙︙b b b a.6.计算行列式D n =a 011 11a 10 010a 20︙︙︙︙1a n,其中a 1a 2 a 0ʂ0.第五节 克莱姆法则1.用克莱姆法则解方程组:5x 1+6x 2=1x 1+5x 2+6x 3=0x 2+5x 3+6x 4=0x 3+5x 4+6x 5=0x 4+5x 5=1ìîíïïïïïïïï2.用克莱姆法则解方程组:x 1+x 2+x 3+x 4=5x 1+2x 2-x 3+4x 4=-22x 1-3x 2-x 3-5x 4=-23x 1+x 2+2x 3+11x 4=0ìîíïïïïïï3.问λ取何值时,齐次线性方程组(1-λ)x 1-2x 2+4x 3=02x 1+(3-λ)x 2+x 3=0x 1+x 2+(1-λ)x 3=0ìîíïïïï有非零解?4.问λ,μ取何值时,齐次线性方程组λx 1+x 2+x 3=0x 1+μx 2+x 3=0x 1+2μx 2+x 3=0ìîíïïïï有非零解?历年考研真题集锦1.(1996数一)四阶行列式a 10b 10a 2b 200b 3a 30b 400a 4的值等于().A.a 1a 2a 3a 4-b 1b 2b 3b 4B .a 1a 2a 3a 4+b 1b 2b 3b 4C .(a 1a 2-b 1b 2)(a 3a 4-b 3b 4)D.(a 2a 3-b 2b 3)(a 1a 4-b 1b 4)2.(1992数二)记行列式x -2x -1x -2x -32x -22x -12x -22x -33x -33x -24x -53x -54x4x -35x -74x -3为f (x ),则方程f (x )=0的根的个数为().A.1B .2C .3D.43.(2001数四)设行列式D =304022220-753-22,则第4行各元素余子式之和的值为.4.(1996数四)五阶行列式D =1-aa000-11-a a0b -11-a a 000-11-a a0-11-a=.5.(1999西安电子科大)计算n +1阶行列式D n +1=011 11a 10 010a 20︙︙︙︙1a n.其中,a i ʂ0,i=1,2, ,n.6.(1998西安电子科大)计算行列式Δ=a a a a -a a x x -a-a x x -a-a-a x.。
线性代数(经济数学2)_习题集(含答案)
![线性代数(经济数学2)_习题集(含答案)](https://img.taocdn.com/s3/m/234abd0c0b4e767f5acfce27.png)
四、计算题 4
26. 求线性方和组的解
x1 x1
x2 2x3 3x2 x3
3 1
2x2 x3 2
27. 求解下列线性方程组
2xx11
1 2 4 1 3 4 D 2 3 1 2 1 1 (4 分)
1 1 1 1 0 1
(1)3(3)4(1)2(1)(3+) (1)32(1)23 (6 分) 令 D0 得 0 2 或 3 于是 当 0 2 或 3 时 该齐次线性方程组有非零解 (8 分)
20
4 1 10
2 1 2
2 (1)43 (5 分)
10 5 2 0 c4 7c3 10 3 2 14 10 3 14
0 117
0 01 0
4 1 10 c2 c3 9 9 10 1 2 2 0 0 2 0 (10 分)
10
3
14
c1
1 2
c3
1 0 0
0 1 1
0
2 1
的逆。
1 2 1
20.
求矩阵
3
4
2
的逆。
5 4 1
三、计算题 3
第 3 页 共 25 页
21. 设矩阵
1 1 2 2 1
A
0 2 1
2 0 1
1 3 0
5 1 4
1 31
求矩阵 A 的秩 R(A)。
(3 分)
(10 分)
(1 分) (3 分)
第 10 页 共 25 页
线性代数第二章习题部分答案
![线性代数第二章习题部分答案](https://img.taocdn.com/s3/m/73bb22244b7302768e9951e79b89680203d86b24.png)
线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 n维向量,线性相关与线性无关(一)一、填空题1. 设3 α1?α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,?1,1)T, 则α= (1,2,3,4)T . 2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1?3α2+α3= (?5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2?β3= (?2,8,?2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=0?3k2?k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,?1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,?1)T, α3=(5,?3,t)T,问t 取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13?1 +k3 5?3t =0即 k1+k2+5k3=0k1+3k2?3k3=0?k2+tk3=0k1+k2+5k3=0k2?4k3=0?k2+tk3=0k1+k2+5k3=0k1+3k2?3k3=0(t?4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=?k1a1?k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=?k1k1+k2a1?k2k1+k2a2.五、已知向量组α1,α2,?,α2n,令β1=α1+α2,β2=α2+α3,?,β2n=α2n+α1,求证向量组β1,β2,?,β2n线性相关。
高等数学第二章复习题及答案(1)
![高等数学第二章复习题及答案(1)](https://img.taocdn.com/s3/m/e77f55dedb38376baf1ffc4ffe4733687e21fc63.png)
⾼等数学第⼆章复习题及答案(1)思思学姐独家整理QQ33760379⾼等数学习题集及解答第⼆章⼀、填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。
2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。
3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。
4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。
5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dy dx =。
6、()x f x xe =,则_______________(ln 2)f '''=。
7、如果(0)y ax a =>是21y x =+的切线,则__________a =。
8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。
9、()(1)(2)()f x x x x x n =+++L ,则_________________(0)f '=。
11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。
12、设tan x y y +=,则_________________________dy =。
13、设lny =_______________(0)y '''=。
14、设函数()y f x =由⽅程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线⽅程是______________________。
线性代数解析及例题
![线性代数解析及例题](https://img.taocdn.com/s3/m/c4438bb283d049649b66588c.png)
由此可见
.
例4设
,
, ,
证明D=D1D2.
证记 ,
其中
dij=aij(i,j=1,2,…,k);
dk+i,k+j=bij(i,j=1,2,…,n);
di,k+j=0 (i=1,2,…,k;j=1,2,…,n).
考察D的一般项 ,R是排列 的逆序数,由于 (i=1,2,…,k;j=1,2,…,n),因此 均不可大于k值,否则该项为0,故 只能在1,2,…,k中选取,从而 只能在k+1,k+2,…,k+n中选取,于是D中不为0的项可以记作
我们观察到(1.2)式的右端是一些项的代数和,其中,每一项是位于不同行不同列的三个数相乘,这三个数的第一个下标是按自然顺序排列的,第二个下标则不按自然顺序排列.我们不禁要问:这个代数和的项数、每一项前的符号与第二个下标的排列顺序有无关系?有什么关系?为此我们引入全排列与逆序数等概念.
定义1由1,2,…,n组成的一个有序数组称为一个n级全排列(简称排列).
,
所以
.
推论行列式D中任一行(列)的元素与另一行(列)的对应元素的代数
余子式乘积之和等于零,即
(i≠j)
或
(i≠j).
证
.
当i≠j,因为 与行列式中第j行的元素无关,将上式中的 换成 (k=1,2,…,n),有
.
同理可证
(i≠j).
综上所述,即得代数余子式的重要性质(行列式按行(列)展开公式):
或
例11计算n阶行列式(递推公式法)
例如,以数k乘以第i行(列)上的元素加到第j行(列)对应元素上,记作 ,有
性质3—性质6的证明请读者自证.
例5计算四阶行列式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设有矩阵,(m≠n),下列运算结果不是阶矩阵的是().
A、BA
B、AB
C、
D、
设矩阵A可以左乘矩阵B,则().
A、
B、
C、
)
D、
若|A|=0,则A=().
A、0矩阵
B、数字0
C、不一定是0矩阵
D、A中有零元素
两个n阶初等矩阵的乘积为().
A、初等矩阵
《
B、单位矩阵
C、可逆阵
D、不可逆阵
若m×n阶矩阵A中的n个列线性无关,则A的秩().
A、大于m
B、大于n
~
C、等于n
D、等于n
矩阵A经有限次初等行变换后变成矩阵B,则().
A、A与B相似
B、A与B不等价
C、A与B相等
D、r(A)=r(B)
(
设m×n阶矩阵A,B的秩分别为,则分块矩阵(A,B)的秩r适合关系式(). A、
B、
C、
D、
矩阵A经过初等变换后().
A、不改变它的秩
:
B、改变它的秩
C、改变它的行秩
D、改变它的列秩
设A为三阶方阵,且|A|=-2,则矩阵|A|A行列式||A|A|=().
A、16
B、-16
C、8
D、-8
^
两矩阵A与B既可相加又可相乘的充要条件是().
A、A、B是同阶方阵
B、A的行数=B的行数
C、A的列数=B的列数
D、A的行数、列数分别等于B的行数、列数
初等矩阵().
·
A、相乘仍为初等阵
B、相加仍为初等阵
C、都可逆
D、以上都不对
线性方程组有解的充分必要条件是a=().
A、
》
B、-1
C、
D、1
存在有限个初等矩阵,使是A为可逆矩阵的().
A、必要条件
B、充分条件
C、充要条件
D、无关条件
$
矩阵A经过有限次初等行变换后变成矩阵B,则().
A、r(A)≠r(B)
B、A与B相等
C、A的行向量组与B的行向量组等价
D、A与B不等价
*
设,,,,则向量组共有()个不同的极
大无关组.
A、1
B、2
C、3
D、4
》
设n阶矩阵A的秩为r,则结论()成立.
A、|A|≠0
B、|A|=0
C、r>n
D、
已知矩阵则().
!
A、0
B、1
C、2
D、3
设A、B均为n阶方阵,则必有().
A、|A+B|=|A|+|B|
~
B、AB=BA
C、|AB|=|BA|
D、
若均为n阶可逆矩阵,则().
A、
B、
C、
D、
^
阵的行向量组().
A、一定线性无关
[
B、一定线性相关
C、不能确定
D、以上都不对
一个向量组若有两个或两个以上的极大无关组,则各个极大无关组所含向量个数必().
A、不相等
B、相等
C、大于零且小于2
D、大于零且小于3。
设是齐次线性方程组的三个线性无关的解向量,则().
A、一定是的基础解系
B、不一定是的解
C、不一定是的解
D、有可能是的基础解系
设A,B均为n阶矩阵,如果则必有().
】
A、A=E
B、B=0
C、A=B
D、AB=BA
设n阶矩阵A,B,C满足ABC=E,则必有().
A、ACB=E
B、BAC=E
C、CBA=E
(
D、BCA=E
设矩阵,则下列结论不正确的是().
A、A是上三角矩阵
B、A是下三角矩阵
C、A是对称矩阵
D、A是可逆矩阵
设矩阵,则下列结论正确的是().
]
A、A是上三角矩阵
B、A是下三角矩阵
C、A是对称矩阵
D、A是对角矩阵
已知,则A=().
A、
B、
C、
>
D、
下列矩阵中,不是初等矩阵的是().
A、
B、
《
C、
D、
设是齐次线性方程组的二个线性无关的解向量,则().
A、一定是的一个基础解系
B、有可能是的一个基础解系
C、不是的一个解
{
D、不是的一个解
设A为n阶方阵,且|A|=8,A*是A的伴随矩阵,则AA*是().
A、数量矩阵
B、单位矩阵
C、三角矩阵
若矩阵A中有一个r阶子式D≠0,且A中有一个含有D的r+1阶子式等于零,则一定有(). $
A、
B、
设n阶方阵A可逆,数k≠0,则().
A、
B、
C、
D、。
给定矩阵,,,下列()运算可行.
A、AC
B、CB
C、ABC
D、AB-BC
;
. =().
A、
B、
C、
D、
一个n维向量组线性相关的充要条件是其中().
!
A、含有零向量
B、有两个向量的对应分量成比例
C、有一个向量是其余向量的线性组合
D、每一个向量是其余向量的线性组合
设A与B都是n阶方阵,则r(A+B)().
A、
B、
C、
、
D、
若A为n阶可逆矩阵,下列各式正确的是().
A、
B、
C、
D、C和D都不对
若齐次线性方程组(Ⅰ)有非零解,则(Ⅰ)的系数行列式().
A、等于1
B、等于5
C、等于零
D、不等于零D不对
设A是m×n矩阵,齐次线性方程组是非齐次线性方程组的导出组,则().
A、仅有零解时,有唯一解
B、有非零解时,有无穷多解
C、有无穷多解时,仅有零解
D、有无穷多解时,有非零解C不对
设向量可由向量组线性表示,则表示法唯一的充要条件是().
A、全为非零向量AB不对选C或D
B、全为零向量
C、线性相关
D、线性无关。