二次函数与面积问题面积

合集下载

二次函数中的面积问题

二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)
使销售利润最大?
请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角

最全二次函数中的面积问题(中考数学必考题型)

最全二次函数中的面积问题(中考数学必考题型)

二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。

【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。

人教九年级数学上册《二次函数与图形面积问题》课件

人教九年级数学上册《二次函数与图形面积问题》课件

第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.

二次函数面积问题 - 学生

二次函数面积问题 - 学生

一.二次函数与面积综合问题在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:1.如图(1),过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加:1122ABC ACD ADB C B ACE CEB A B S S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-; 2.如图(2),首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积: ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---3.如果只是求解面积最大值或者此时动点的坐标,可以通过平移直线,当直线与抛物线只有一个交点时三角形的面积最大,此时可以直接求出动点坐标,然后再利用上述两种方法求出面积的最大值.一.考点:二次函数与面积问题.二.重难点:二次函数中因动点产生的面积问题.三.易错点:1.在用点的坐标表示线段长度,进而表示图形面积的时候一定要保证线段的非负性,可以直接加上绝对值或者是分类讨论;2.与动点问题相关的面积问题一定要分析清楚每个阶段图形的形状,然后再分别求出每个阶段下面积的表达式.图(1)AB C ED 图(2)FD E C BA 知识精讲三点剖析 题型精讲二次函数面积问题题型一:面积最值问题例 4.1.1如图,在平面直角坐标系xOy 中,抛物线22y mx mx n =++经过点()4,0A -和点()0,3B .(1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A ',点B 的对应点为B ',试问:在平移后的抛物线上是否存在一点P ,使△OA P '的面积与四边形AA BB ''的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.例4.1.2如图,抛物线y=-34x2+3与x轴交于点A,点B,与直线y=-34x+b相交于点B,点C,直线y=-34x+b与y轴交于点E.(1)写出直线BC的解析式.(2)求△ABC的面积.(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?随练4.1已知关于x 的一元二次方程210x px q +++=的一个实数根为2.(1)用含p 的代数式表示q ;(2)求证:抛物线2y x px q =++与x 轴有两个交点;(3)设抛物线21y x px q =++的顶点为M ,与y 轴的交点为E ,抛物线221y x px q =+++顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.随堂练习随练4.2如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点()0,3C ,与x 轴交于A 、B 两点,点B 的坐标为()3,0-(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时CPB △的面积最大?最大面积是多少?并求出此时点P 的坐标.xy随练4.3如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.作业1如图,抛物线233y mx mx =+-(0m >)与y 轴交于点C ,与x 轴交于A 、B 两点,点A 在点B 的左侧,且3OC OB =.(1)求此抛物线的解析式;(2)如果点D 是线段AC 下方抛物线上的动点,设D 点的横坐标为x ,ACD ∆的面积为S ,求S 与x 的关系式,并求当S 最大时,点D 的坐标;课后作业 yxO DCB A作业2已知:m 、n 是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点(),0A m 、()0,B n .(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.作业3已知二次函数21342y mx x m =-+-的图象与x 轴交于点()4,0A 、点B ,与y 轴交于点C . (1)求此二次函数的解析式及点B 的坐标; (2)点P 从点A 出发以每秒1个单位的速度沿线段AO 向O 点运动,到达点O 后停止运动,过点P 作PQ AC ∥交OC 于点Q ,将四边形PQCA 沿PQ 翻折,得到四边形''PQC A ,设点P 的运动时间为t ;①当t 为何值时,点'A 恰好落在二次函数21342y mx x m =-+-的图象的对称轴上; ②设四边形''PQC A 落在第一象限内的图形面积为S ,求S 关于t 的函数关系式,并求出当t 为何值时S 的值最大.yxo 1 2 3 4 5 12345﹣1 ﹣1﹣2 ﹣2﹣3 ﹣3﹣4 ﹣4﹣5。

二次函数中面积问题

二次函数中面积问题

专题10 二次函数中面积问题方法1 割补法求面积1.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线()2240y ax ax a a =-++<经过点B .(1)求该抛物线的函数表达式:(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2)21252528S m ⎛⎫=--+ ⎪⎝⎭;当52m =时,S 取得最大值258.【解析】 【分析】(1)根据题意先求出点B 的坐标,然后代入二次函数解析式求解即可;(2)由题意可求点A 坐标,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则有03m <<,然后根据割补法求面积即可.【详解】解:(1)把0x =代入33y x =-+得3y =, △(0,3)B .把(0,3)B 代入224y ax ax a =-++, 得34a =+,△1a =-.△抛物线的解析式为2y x 2x 3=-++;(2)令0y =,则2230x x -++=,解得1x =-或3, △抛物线与x 轴的交点横坐标分别为1-和3. △点M 在抛物线上,且在第一象限内, △03m <<.将0y =代入33y x =-+,得033x =-+,解得1x =, △(1,0)A .如解图,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则2111(31)2223132AOBOBMOAMAOBOAMB S S SSSSm m m =-=+-=⨯⨯+⨯-⨯-++⨯⨯四边形 2215122522528m m m ⎛⎫=-+=--+⎪⎝⎭, △102-<,且03m <<, △当52m =时,S 取得最大值258. 【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.方法2 铅锤高水平宽求面积2.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;解:(1)由题意得:4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,△抛物线解析式为y=﹣x2+2x+3;(2)△A(0,3),D(2,3),△抛物线对称轴为x=1,△E(3,0),设直线AE的解析式为y=kx+3,△3k+3=0,解得,k=﹣1,△直线AE的解析式为y=﹣x+3,如图1,作PM△y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),△PM=﹣t2+2t+3+t﹣3=﹣t2+3t,△12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,△t=32时,△PAE的面积最大,最大值是278.方法3 △=0时求面积最大3.如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式; (2)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.(1)将A (-1,0)、点C(0,-2).代入232y ax x c =-+ 求得:213222y x x =-- (2)已求得:B (4,0)、C (0,-2),可得直线BC 的解析式为:y=12x -2; 设直线l△BC ,则该直线的解析式可表示为:y=12x+b , 当直线l 与抛物线只有一个交点时,可列方程:12x+b=12x 2-32x -2,即:12x 2-2x -2-b=0,且△=0; △4-4×12(-2-b )=0,即b=-4; △直线l :y=12x -4.所以点M 即直线l 和抛物线的唯一交点,有: 213222{142y x x y x =--=-,解得:2{3x y ==-即 M (2,-3).过M 点作MN△x 轴于N ,S△BMC=S 梯形OCMN+S△MNB -S△OCB=12×2×(2+3)+12×2×3-12×2×4=4. △点M (2,﹣3),△MBC 面积最大值是4. 考点:二次函数综合题.类型拓展1 求四边形面积4.如图1,在平面直角坐标系中,一次函数y =12x ﹣2的图象与x 轴交于点B ,与y 轴交于点C ,抛物线y =12x 2+bx +c 的图象经过B 、C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)若点D 在直线BC 下方的抛物线上,如图1,连接DC 、DB ,设四边形OCDB 的面积为S ,求S 的最大值;解:(1)对于y =12x ﹣2,令y =12x ﹣2=0, 解得:x =4; 令x =0,则y =﹣2,故点B 、C 的坐标分别为(4,0)、(0,﹣2);将点B 、C 的坐标代入抛物线表达式得2116402c b c =-⎧⎪⎨⨯++=⎪⎩,解得:322b c ⎧=-⎪⎨⎪=-⎩, 故抛物线的表达式为213222y x x =--①; (2)连接OD ,点D 的坐标为(x ,213222x x --),则S =S △ODC +S △ODB =12×OC ×D x +12×BO ×(﹣D y )=12×2×x +12×4×(213222x x -++)=﹣x 2+4x +4,△﹣1<0,故S 有最大值, 当x =2时,S 有最大值8;5.如图,抛物线2y x bx c =-++与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点,连接AC .(1)求抛物线的表达式;(2)点E 为直线BC 上方的抛物线上的一动点(点E 不与点B ,C 重合),连接BE ,CE ,设四边形BECA 的面积为S ,求S 的最大值; (1)解:(1)将(1A -,0)(3B ,0)代入2y x bx c =-++,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,223y x x ∴=-++;(2)(2)过E 作EF x ⊥轴于点F ,与BC 交于点H ,(1A -,0)(3B ,0),4AB ∴=当0x =时,3y =,(0,3)C ∴,3OC ∴=,设2(,23)F a a a -++,则(,3)H a a -+,222333EH a a a a a ∴=-+++-=-+,ABC BCE BECA S S S ∆∆=+四边形,21143(3)322S a a ∴=⨯⨯+-+⨯ 236(3)2a a =+-+23375()228a =--+,∴当32a =时,S 的最大值为758;类型拓展2 抛物线上有且只有三个点6.如图1,已知抛物线y =ax 2+2x +c (a ≠0),与y 轴交于点A (0,6),与x 轴交于点B (6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P 是抛物线上的动点,若在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,求这三个点的坐标及定值S .解:(1)△抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).△603612ca c=⎧⎨=++⎩△126 ac⎧=-⎪⎨⎪=⎩△抛物线解析式为:y=﹣12x2+2x+6,△y=﹣12x2+2x+6=﹣12(x﹣2)2+8,△顶点坐标为(2,8)(2)△点A(0,6),点B(6,0),△直线AB解析式y=﹣x+6,当x=2时,y=4,△点D(2,4)如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设直线PC解析式为y=﹣x+b,△﹣12x2+2x+6=﹣x+b,且只有一个交点,△△=9﹣4×12×(b﹣6)=0△b =212, △直线PC 解析式为y =﹣x +212, △当x =2,y =172, △点C 坐标(2,172), △CD =92,△﹣12x 2+2x +6=﹣x +92,△x =3, △点P (3,152) △在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,△另两个点所在直线与AB ,PC 都平行,且与AB 的距离等于PC 与AB 的距离, △DE =CD =92,△点E (2,﹣12),设P 'E 的解析式为y =﹣x +m , △﹣12=﹣2+m , △m =32△P 'E 的解析式为y =﹣x +32,△﹣12x 2+2x +6=﹣x +32,△x =△点P '(,﹣32﹣,P ''(3﹣,﹣32,△S =12×6×(152﹣3)=272.7.如图,直线334y x =-+与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 234y ax x c =++经过 B 、C 两点.(1)求抛物线的解析式;(2)如图,点 E 是抛物线上的一动点(不与 B ,C 两点重合),△BEC 面积记为 S ,当 S 取何值时,对应的点 E 有且只有三个?【答案】(1)233384y x x =-++;(2)3【解析】 【分析】(1)先利用一次函数解析式确定B (0,3),C (4,0),然后利用待定系数法求抛物线解析式;(2)由于E 点在直线BC 的下方的抛物线上时,存在两个对应的E 点满足△BEC 面积为S ,则当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S ,所以过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+,利用方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解求出b 得到E 点坐标,然后计算此时S △BEC . 【详解】(1)当x=0时,y=-34x+3=3,则B (0,3),当y=0时,-34x+3=0,解得x=4,则C (4,0),把B (0,3),C (4,0)代入y=ax 2+34x+c 得383a c ⎧=-⎪⎨⎪=⎩, 所以抛物线解析式为233384y x x =-++;(2)当E 点在直线BC 的下方的抛物线上时,一定有两个对应的E 点满足△BEC 面积为S , 所以当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S , 即此时过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+, 方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解, 方程23333844x x x b -++=-+有两个相等的实数解, 则△=122-4×3×(-24+8b )=0,解得b=92,解方程得x 1=x 2=2, E 点坐标为(2,3), 此时1343322BEC S ⎛⎫=⨯⨯-= ⎪⎝⎭, 所以当S=1时,对应的点E 有且只有三个.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.8.如图,直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线223y x bx c =-++经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是抛物线上的一动点(不与B ,C 两点重合),当14BEC BOC S S =△时,求点E 的坐标;(3)若点F 是抛物线上的一动点,当BFC S △为什么取值范围时,对应的点F 有且只有两个?【答案】(1)225433y x x =-++;(2)1E ⎝⎭,2E ⎝⎭,34222E ⎛-+ ⎝⎭,44222E ⎛+- ⎝⎭;(3)当163BFC S >△时,对应的点F 有且只有两个.【解析】【分析】(1)根据待定系数法,即可求解;(2)过点E 作x 轴的垂线交BC 于点N ,设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,点(,4)N a a -+,根据12BEC B C S EN x x =-△,14BEC BOC S S =△,列出方程,即可求解; (3)当F 点在直线BC 的下方的抛物线上时,一定有两个对应的F 点满足BCF △面积为S ,当F 点在直线BC 的上方的抛物线上时,无F 点满足BCF △面积为S 才符合题意,故只需要求出当点F 在直线BC 的上方时,BFC S △的最大值,即可得到结论 .【详解】(1)△直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,△(0,4)B ,(4,0)C ,将(0,4)B ,(4,0)C 代入223y x bx c =-++, 可得2424403c b c =⎧⎪⎨-⨯++=⎪⎩,解得534b c ⎧=⎪⎨⎪=⎩, △225433y x x =-++; (2)如图,过点E 作x 轴的垂线交BC 于点N , 设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,则点(,4)N a a -+, △2212541624423333BEC B C S EN x x a a a a a =-=-+++-=-+△, △182BOC S BO OC =⋅=△,14BEC BOC S S =△, △2416233a a -+=,解得:1x =2x =3x =4x = 将1x ,2x ,3x ,4x代入抛物线解析式,可得:1y =,2y =3y =4y =△1E ⎝⎭,2E ⎝⎭,34222E ⎛ ⎝⎭,44222E ⎛ ⎝⎭; (3)当点F 在直线BC 上方的抛物线上时,设点225,433F m m m ⎛⎫-++ ⎪⎝⎭, 由(2)同理可得:22416416(2)3333BFC S m m m =-+=--+△, △当2m =时,BFC S △的最大值为163, △当BFC S △>163时,在直线BC 的上方的抛物线上无法找到F 点, 综上所述:当163BFC S >△时,对应的点F 有且只有两个.【点睛】本题主要考查二次函数与一次函数的综合,掌握待定系数法,函数图像上的点的坐标特征以及三角形的面积=铅垂高×水平宽,是解题的关键.类型拓展3 综合运用9.综合与实践 如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是()4,0,与y 轴交于点()0,3C -,点D 在抛物线上运动.(1)求抛物线的表达式;(2)如图2,当点D 在第四象限的抛物线上运动时,连接BD ,CD ,BC ,当BCD △的面积最大时,求点D 的坐标及BCD △的最大面积;(1)解:点B ()4,0和点()0,3C -代入二次函数234y x bx c =++, 得:01243b c c=++⎧⎨-=⎩ 解得943b c ⎧=-⎪⎨⎪=-⎩. △抛物线的表达式是239344y x x =--. (2) 解:如图,连接OD ,过点D 作DM x ⊥轴,作DN y ⊥轴.设点D 的坐标是239,344m m m ⎛⎫-- ⎪⎝⎭.△239344DM m m =-++,DN m =. △()4,0B ,()0,3C -,△4OB =,3OC =.△BCD OCD OBD OBC S S S S =+-△△△△111222OC DN OB DM OB OC =⋅+⋅-⋅ 2113913434322442m m m ⎛⎫=⨯+⨯-++-⨯⨯ ⎪⎝⎭ 2362m m =-+ 23(2)62m =--+. △302-<, △当2m =时,BCD △的面积最大且为6.当2m =时,2239399322344442m m --=⨯-⨯-=-. △点D 的坐标是92,2⎛⎫- ⎪⎝⎭,BCD △的最大面积是6. 10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()()3,0,0,3B C ,点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D ,若OD m =,PCD 的面积为S ,求S 与m 的函数关系式,并求当S 取得最大值时,点P 的坐标;(1)解:将点B (3,0),C (0,3)代入y =-x 2+bx +c ,得09333b c =-++⎧⎨=⎩;解得23b c =⎧⎨=⎩, △二次函数的解析式为y =-x 2+2x +3;(2)△y =-x 2+2x +3=-(x -1)2+4,△顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, △直线BM 的解析式为y =-2x +6,△PD △x 轴且OD =m ,△P (m ,-2m +6),△S =S △PCD =12PD •OD =12m (-2m +6)=-m 2+3m ,即S =-m 2+3m ,△当点P 与点B 重合时,不存在以P 、C 、D 为顶点的三角形,△1≤m <3,△S =-m 2+3m =-(m -32)2+94, △-1>0,△当m =32时,S 取最大值94;此时点P 的坐标为332⎛⎫ ⎪⎝⎭,. 11.如图,在平面直角坐标系中,抛物线2y ax bx c =++的对称轴为2x =,与y 轴交于点A 与x 轴交于点E 、B ,且点(0,5)A ,(5,0)B ,过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的点,且在AC 的上方,作PD 平行于y 轴交AB 于点D .(1)求二次函数的解析式;(2)当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(1) 解:抛物线2y ax bx c =++的对称轴为2x =, △22b a-=, 4b a ∴=-,∴抛物线解析式为24y ax ax c =-+,点(0,5)A ,(5,0)B ,∴52550c a b c =⎧⎨-+=⎩, ∴15a c =-⎧⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)解://AC x 轴,点(0,5)A ,当5y =时,2455x x -++=,10x ∴=,24x =,(4,5)C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,(0,5)A ,(5,0)B ,由点A 、B 的坐标得,直线AB 的解析式为5y x =-+;设2(,45)P m m m -++,,5()D m m ∴-+,224555PD m m m m m ∴=-+++-=-+,4AC =, △()221525252222APCD S AC PD m m m ⎛⎫=⋅=-+=--+ ⎪⎝⎭四边形 ∴当52m =时,四边形APCD 的面积最大, ∴即点5(2P ,35)4时,四边形APCD 的面积最大为252; 12.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点B 的坐标为(1,0),点C 的坐标为(0,4),点D 的坐标为(0,2),点P 为二次函数图象上的动点.(1)求二次函数的解析式和直线AD 的解析式;(2)当点P 位于第二象限内二次函数的图象上时,连接AD ,AP ,以AD ,AP 为邻边作平行四边形APED ,设平行四边形APED 的面积为S ,求S 的最大值.【答案】(1)y =-x 2-3x +4,122y x =+;(2)814【解析】【分析】 (1)利用待定系数法将B (1,0),C (0,4)代入二次函数y =﹣x 2+bx +c 即可求出二次函数的解析式,令y =0,可求出A 点坐标,然后设直线AD 的解析式为y =kx +b ,利用待定系数法将A 点坐标和D 点坐标代入y =kx +b 即可求出直线AD 的解析式;(2)连接PD ,作PG y 轴交AD 于点G ,根据题意设出点P 和点G 的坐标,然后表示出线段PG 的长度,进而根据2APD S S ∆=表示出平行四边形APED 的面积,最后根据二次函数的性质求解即可.【详解】解:(1)将B (1,0),C (0,4)代入y =-x 2+bx +c 中,得014b c c =-++⎧⎨=⎩,解得34b c =-⎧⎨=⎩, △二次函数的解析式为y =-x 2-3x +4在y =-x 2-3x +4中,令y =0,即2340x x --+=,解得x 1=-4,x 2=1,△A (-4,0).设直线AD 的解析式为y =kx +b'.△D (0,2),△04'2'k b b =-+⎧⎨=⎩, 解得:12'2k b ⎧=⎪⎨⎪=⎩ △直线AD 的解析式为122y x =+. (2)连接PD ,作PG y 轴交AD 于点G ,如图所示.设P (t ,-t 2-3t +4)(-4<t <0),则G (t ,122t +), △2217342222PG t t t t t =--+--=--+, △2122||41482APD D A S S PG x x t t ∆==⨯⋅-=--+, 27814()44t =-++. △-4<0,-4<t <0,△当74t =-时,S 有最大值814.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积.。

二次函数与几何综合-面积问题(解析版)

二次函数与几何综合-面积问题(解析版)

专项11 二次函数与几何综合-面积问题【方法1直接法】一般以坐标轴上线段或以与轴平行的线段为底边【方法2 铅锤法】铅锤高水平宽⨯=21S 【方法3 其他面积方法】如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【方法4 利用相似性质】利用相似图形,面积比等于相似比的平方。

【方法1 铅锤法求面积】【典例1】(聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC.又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【答案】(1)y=﹣x2+2x+8 (2)【解答】解:(1)将点A、B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+2x+8;(2)在Rt△PFD中,∠PFD=∠COB=90°,∵l∥y轴,∴∠PDF=∠OCB,∴Rt△PFD∽Rt△BCO,∴,∴S△PDF=•S△BOC,而S△BOC=OB•OC==16,BC==4,∴S△PDF=•S△BOC=PD2,即当PD取得最大值时,S△PDF最大,将B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣2x+8,设点P(m,﹣m2+2m+8),则点D(m,﹣2m+8),则PD=﹣m2+2m+8+2m﹣8=﹣(m﹣2)2+4,当m=2时,PD的最大值为4,故当PD=4时,∴S△PDF=PD2=【变式1-1】(娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.【答案】(1):y=x2﹣2x﹣3 (2)①﹣m2+m+3 ②【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设点P(m,m2﹣2m﹣3),①当点P在第三象限时,设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S△POD=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,②当点P在第四象限时,设PD交y轴于点M,同理可得:S△POD=×OM(x D﹣x P)=﹣m2+m+3,综上,S△POD=﹣m2+m+3,∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;【变式1-2】(2021秋•龙江县校级期末)综合与探究如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式,连接BC,并求出直线BC的解析式;(2)请在抛物线的对称轴上找一点P,使AP+PC的值最小,此时点P的坐标是(,);(3)点Q在第一象限的抛物线上,连接CQ,BQ,求出△BCQ面积的最大值.(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,解得,∴y=﹣x2+3x+4;在y=﹣x2+3x+4中,令x=0,则y=4,∴C(0,4),设BC的解析式为y=kx+b,∵B(4,0),C(0,4),∴,∴,∴直线BC的解析式为y=﹣x+4;(2)如图1中,由题意A,B关于抛物线的对称轴直线x=对称,连接BC交直线x=于点P,连接P A,此时P A+PC的值最小,最小值为线段BC的长==4,∵直线BC的解析式为y=﹣x+4,∴x=时,y=﹣+4=,∴此时P(,).故答案为:(,);(3)设Q(m,﹣m2+3m+4)过Q作QD⊥x轴,交BC于点D,则D(m,﹣m+4),∴QD=(﹣m2+3m+4)﹣(﹣m+4)=﹣m2+4m,∵B(4,0),∴OB=4,,当m=2时,S△BCQ取最大值,最大值为8,∴△BCQ面积的最大值为8;【变式1-2】(2022春•南岸区月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x 轴交于A(﹣1,0),B(3,0),交y轴于点C,且OC=3.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一点,连接AC、BC、CP、BP,求四边形PCAB 的面积的最大值,以及此时点P的坐标;【解答】解:(1)∵OC=3,∴C(0,﹣3),将点A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,得,解得,∴y=x2﹣2x﹣3;(2)∵S四边形PCAB=S△ABC+S△PBC,∴当S△PBC面积最大时,S四边形PCAB的面积最大,设BC的直线解析式y=kx+b,∴,解得,∴y=x﹣3,过点P作PQ⊥x轴交BC于点Q,设P(t,t2﹣2t﹣3),则Q(t,t﹣3),∴当PQ最大时,S△PBC面积最大,∴PQ=t﹣3﹣t2+2t+3=﹣t2+3t=﹣(t﹣)2+,当t=时,PQ取最大值,∴P(,﹣),∵A(﹣1,0),B(3,0),C(0,3),∴AB=4,∴S四边形PCAB=S△ABC+S△PBC=×4×3+××3=;【方法2 其他方法】【典例2】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【答案】(1)y=﹣x2+2x+3 ;x=1(2)P的坐标为(4,﹣5)或(8,﹣45)【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①,函数的对称轴为:x=1;(2)如图,设直线CP交x轴于点E,直线CP把四边形CBP A的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(y C﹣y P):AE×(y C﹣y P)=BE:AE,则BE:AE=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E的坐标代入直线CP的表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45).【变式2-1】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;【答案】(1)y=﹣x2+5x+6 (2)P(,)【解答】解:(1)∵抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),∴,∴,∴抛物线的解析式为y=﹣x2+5x+6;(2)∵抛物线y=﹣x2+5x+6过点C,∴C(0,6),设直线BC的解析式为y=kx+n,∴,∴,∴直线BC的解析式为y=﹣x+6,设P(m,﹣m2+5m+6),则D(m,﹣m+6),∴PE=﹣m2+5m+6,DE=﹣m+6,∵△PBD与△BDE的面积之比为1:2,∴PD:DE=1:2,∴PE:DE=3:2,∴3(﹣m+6)=2(﹣m2+5m+6),解得,m2=6(舍去),∴P(,);【典例3】(淮安)如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3).(1)求该二次函数的表达式;(2)试问在该二次函数图象上是否存在点G,使得△ADG的面积是△BDG的面积的?若存在,求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣(x﹣1)2+3(2)G的坐标为(0,)或(﹣15,﹣45).【解答】解:(1)依题意,设二次函数的解析式为y=a(x﹣1)2+3将点B代入得0=a(5﹣1)2+3,得a=﹣∴二次函数的表达式为:y=﹣(x﹣1)2+3(2)存在点G,当点G在x轴的上方时,设直线DG交x轴于P,设P(t,0),作AE⊥DG于E,BF⊥DG于F.由题意:AE:BF=3:5,∵BF∥AE,∴AP:BP=AE:BF=3:5,∴(﹣3﹣t):(5﹣t)=3:5,解得t=﹣15,∴直线DG的解析式为y=x+,由,解得或,∴G(0,).当点G在x轴下方时,如图2所示,∵AO:OB=3:5∴当点G在DO的延长线上时,存在点G使得S△ADG:S△BDG=3:5,此时,DG的直线经过原点,设直线DG的解析式为y=kx,将点D代入得k=3,故y=3x,则有整理得,(x﹣1)(x+15)=0,得x1=1(舍去),x2=﹣15当x=﹣15时,y=﹣45,故点G为(﹣15,﹣45).综上所述,点G的坐标为(0,)或(﹣15,﹣45).【变式3】(2021秋•南阳)如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x 轴相交于A,B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①求抛物线的解析式.②若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.【答案】(1)点B的坐标为(1,0)(2)①y=x2+2x﹣3②点P的坐标为(4,21)或(﹣4,5)【解答】解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2,将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3,∴抛物线的解析式为y=x2+2x﹣3;②∵抛物线的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3,设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×OC×|x|=4××OC×OB,即×3×|x|=4××3×1,∴|x|=4,解得x=±4,当x=4时,x2+2x﹣3=16+8﹣3=21,当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5,∴点P的坐标为(4,21)或(﹣4,5);1.(2021秋•日喀则市月考)如图,二次函数y=﹣x2+4x+5的图象与x轴交于A,B两点,与y轴交于点C,M为抛物线的顶点.(1)求M点的坐标;(2)求△MBC的面积;【解答】解:(1)y=﹣x2+4x+5=﹣(x﹣2)2+9,∴M(2,9);(2)令y=0,得﹣x2+4x+5=0,解得x=﹣1或x=5,∴A(﹣1,0),B(5,0),令x=0,得y=﹣x2+4x+5=5,∴C(0,5),过点M作ME⊥y轴于点E,∴S△MBC=S四边形MBOE﹣S△MCE﹣S△BOC==15;2.(2022•东方二模)如图,抛物线y=x2+bx+c经过B(3,0)、C(0,﹣3)两点,与x 轴的另一个交点为A,顶点为D.(1)求该抛物线的解析式;(2)点E为该抛物线上一动点(与点B、C不重合),当点E在直线BC的下方运动时,求△CBE的面积的最大值;【解答】解:(1)将B(3,0),C(0,﹣3)代入y=x2+bx+c得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接CE、BE,经过点E作x轴的垂线FE,交直线BC于点F,设直线BC的解析式为y=kx+m,将B,C两点的坐标代入得:,解得:,∴直线BC的解解析式为y=x﹣3,设点F(x,x﹣3),点E(x,x2﹣2x﹣3),∴EF=(x﹣3﹣x2+2x+3)=﹣x2+3x,∴S△CBE=S△CEF+S△BEF=EF•OB=(﹣x2+3x)=﹣(x﹣)2+,∵a=﹣<0,且0<x<3,∴当x=时,S△CBE有最大值,最大值是,此时E点坐标为(,﹣);3.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则P A=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴CF=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=P A•CF﹣P A•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).4.(2022春•青秀区校级期末)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c,与y 轴交于点A,与x轴交于点E、B.且点A(0,5),B(5,0),抛物线的对称轴与AB 交于点M.(1)求二次函数的解析式;(2)若点P是直线AB上方抛物线上的一动点,连接PB,PM,求△PMB面积的最大值;【解答】解:(1)∵点A(0,5),B(5,0)在抛物线y=﹣x2+bx+c上,∴,∴,∴二次函数的解析式为y=﹣x2+4x+5;(2)如图,∵A(0,5),B(5,0),∴直线AB的解析式为y=﹣x+5,∵点M是抛物线的对称轴与直线AB的交点,∴M(2,3),由(1)知,二次函数的解析式为y=﹣x2+4x+5,过点P作PH∥y轴交AB于H,设P(m,﹣m2+4m+5)(0<m<5),∴H(m,﹣m+5),∴PH=﹣m2+4m+5﹣(﹣m+5)=﹣m2+5m,∴S△PMB=PH(x B﹣x M)=(﹣m2+5m)(5﹣2)=﹣(x﹣)2+,∴当x=时,S△PMB最大=,即△PMB面积的最大值为;5.(2022春•南岸区月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A (﹣1,0),B(3,0),交y轴于点C,且OC=3.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一点,连接AC、BC、CP、BP,求四边形PCAB 的面积的最大值,以及此时点P的坐标;【解答】解:(1)∵OC=3,∴C(0,﹣3),将点A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,得,解得,∴y=x2﹣2x﹣3;(2)∵S四边形PCAB=S△ABC+S△PBC,∴当S△PBC面积最大时,S四边形PCAB的面积最大,设BC的直线解析式y=kx+b,∴,解得,∴y=x﹣3,过点P作PQ⊥x轴交BC于点Q,设P(t,t2﹣2t﹣3),则Q(t,t﹣3),∴当PQ最大时,S△PBC面积最大,∴PQ=t﹣3﹣t2+2t+3=﹣t2+3t=﹣(t﹣)2+,当t=时,PQ取最大值,∴P(,﹣),∵A(﹣1,0),B(3,0),C(0,3),∴AB=4,∴S四边形PCAB=S△ABC+S△PBC=×4×3+××3=;6.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x 轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;【解答】解:(1)对于直线y=﹣x+3,令y=0,即﹣x+3=0,解得:x=3,令x=0,得y=3,∴B(3,0),C(0,3),∵A为x轴负半轴上一点,且OA=OB,∴A(﹣1,0).将点A、B的坐标分别代入y=﹣x2+bx+c中,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)由(1)知:A(﹣1,0),B(3,0),D(1,0),∴BM=|3﹣t|,∵S△MNB=BM•DN=,即•|3﹣t|•2t=,当t<3时,•(3﹣t)•2t=,化简得:4t2﹣12t+15=0,∵Δ=(﹣12)2﹣4×4×15=﹣96<0,∴方程无解;当t>3时,•(t﹣3)•2t=,解得t1=,t2=(舍),∴DN=2t=3+2,∴点M的坐标为(,0),点N的坐标为(1,3+2);7.(2022•烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S 的最大值及此时D点的坐标;【解答】解:(1)当x=0时,y=4,∴C(0,4),当y=0时,x+4=0,∴x=﹣3,∴A(﹣3,0),∵对称轴为直线x=﹣1,∴B(1,0),∴设抛物线的表达式:y=a(x﹣1)•(x+3),∴4=﹣3a,∴a=﹣,∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;(2)如图1,作DF⊥AB于F,交AC于E,∴D(m,﹣﹣m+4),E(m,m+4),∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,∵S△ABC===8,∴S=﹣2m2﹣6m+8=﹣2(m+)2+,∴当m=﹣时,S最大=,当m=﹣时,y=﹣=5,∴D(﹣,5);。

(word完整版)二次函数与几何综合--面积问题

(word完整版)二次函数与几何综合--面积问题

二次函数与几何综合—-面积问题➢ 知识点睛1.“函数与几何综合"问题的处理原则:_________________,__________________.2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息.3.二次函数之面积问题的常见模型①割补求面积—-铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .➢ 例题示范例1:如图,抛物线y =ax 2+2ax —3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (—3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,—3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】解:(1)由223y ax ax a =+-(3)(1)a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =,∴(03)C -,, 将(03)C -,代入223y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3〈x P <0; (2)设计方案:1()2APBB A S PM x x =⋅⋅-△注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP .【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--设点P 的横坐标为t ,则2(23)P t t t +-,, ∵PQ ∥y 轴, ∴(3)Q t t --,,∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139()(30)222ACP C A S PQ x x t t t =⋅-=---<<△ ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-, ∴当32t =-时,ACP S △最大,为278. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素: 要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(—1,m ),当四边形是□ABFE 时,由(30)A -,,(10)B ,可知,F 1代入抛物线解析式,可得,m =12, ∴F 1(3,12); 当四边形是□ABEF 时,由(30)A -,,(10)B ,可知,F 2(—5,m )可得,m =12, ∴F 2(—5,12).②当AB 为对角线时,AB 与EF 互相平分,AB 的中点D (—1,0),设E (—1,m ),则F (—1,—m ),代入抛物线解析式,可得,m =4, ∴F 3(—1,-4).综上:F 1(3,12),F 2(—5,12),F 3(—1,—4).精讲精练1.如图,抛物线经过A (—1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB ,MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及四边形OBMC 的最大面积;若不存在,2.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E . (1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在直线AD 下方的抛物线上,是否存在点G ,使得6AEG S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.(4)已知点Q 在x 轴上,点P 在抛物线上,Q 的坐标.3.如图,已知抛物线y =ax 2-2ax -b (a 〉0)与x 轴交于A ,B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC ,CD ,∠ACD =90°. (1)求抛物线的解析式;(2)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,设M 的横坐标为m ,求m 的值.(3)已知点E 在抛物线的对称轴上,点F 在抛物线上,且以A ,B ,E ,F 为顶点的四边形是平行四边形,求点F 的坐标.4.如图,抛物线254y ax ax =-+(0a <)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为点D ,在抛物线上是否存在异于点B 的一点Q ,使△CDQ 的面积与△CDB 的面积相等?若存在,求出点Q 的横坐标;若不存在,请说明理由.(3)已知点F 是抛物线上的动点,点E 是直线y =—x 上的动点,且以O ,C ,E ,F 为顶点的四边形是平行四边形,求点E 的横坐标.。

二次函数中面积问题

二次函数中面积问题

二次函数中面积问题在数学中,二次函数是一种定义域和值域都是实数的函数。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数,且a ≠ 0。

二次函数在数学中有着广泛的应用,而与其相关的面积问题也是数学教学中常见的一个重要内容。

二次函数的图像是一个抛物线,它可以是开口向上的,也可以是开口向下的。

对于二次函数而言,面积问题主要涉及到两个方面:一是求解图形所围成的面积,二是求解函数与坐标轴所围成的图形面积。

下面将从这两个方面结合实际问题进行详细说明。

首先,我们来看第一个问题:求解图形所围成的面积。

对于给定的二次函数f(x) = ax^2 + bx + c,我们可以通过计算抛物线与坐标轴交点的横纵坐标,来确定被图形所围成的区域。

一般情况下,图形围成的区域可以是一个三角形、一个梯形或一个扇形。

以一个具体例子来说明:假设有一个二次函数f(x) = 3x^2 - 2x + 1,我们希望求出图形所围成的面积。

首先,要确定函数与坐标轴交点的横纵坐标。

当f(x) = 0时,即3x^2 - 2x + 1 = 0,则可以使用求根公式得到x的值。

求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。

带入a = 3,b = -2,c = 1,则x的值为(-(-2) ± √((-2)^2 - 4*3*1)) / (2*3),化简得到x = 1/3 和 x = 1然后,我们计算函数在两个交点处的纵坐标。

带入x=1/3和x=1,可以得到对应的y值。

令x=1/3,则f(1/3)=3*(1/3)^2-2*(1/3)+1,计算得到f(1/3)=10/9;令x=1,则f(1)=3*1^2-2*1+1,计算得到f(1)=2接下来,我们要确定图形所围成的区域。

由于二次函数是一个抛物线,且a为正值,所以图形是开口向上的。

因此,图形所围成的区域为一个梯形。

梯形上底为x=1/3,下底为x=1,高为f(1/3)和f(1)之间的差值。

二次函数综合(一)——面积问题

二次函数综合(一)——面积问题

二次函数综合(一) ——面积问题
一、解决函数综合题中面积问题的常用方法:
1. 割补法
当所求图形的面积没有办法直接求出时,我们采取间接(分割或补全图形再分割)的方法来表示所求图形的面积,如图1:
4. 相似法
利用相似三角形面积比等于相似比的平方进行转化.
二、基本题型
1.如图,在平面直角坐标系中,△AOB的顶点O为原点,已知点A(3,6),B(5,2),求△AOB的面积.
2.已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△ACD的面积。

3已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△BCD的面积。

专题58 二次函数中的面积问题(解析版)

专题58 二次函数中的面积问题(解析版)

例题精讲求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S AE BF CD AE BF=+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下面求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.例题精讲【例1】.如图,抛物线y=﹣x2﹣2x+3与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C.点P为抛物线第二象限上一动点,连接PB、PC、BC,求△PBC面积的最大值,并求出此时点P的坐标.解:令x=0,则y=3,∴C(0,3),设直线BC的解析式为y=kx+3(k≠0),把点B坐标代入y=kx+3得﹣3k+3=0,解得k=1,∴直线BC的解析式为y=x+3,设P的横坐标是x(﹣3<x<0),则P的坐标是(x,﹣x2﹣2x+3),过点P作y轴的平行线交BC于M,则M(x,x+3),∴PM=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,=PM•|x B﹣x C|=(﹣x2﹣3x)×3=﹣(x2+3x)=﹣(x+)2+,∴S△PBC∵﹣<0,有最大值,最大值是,∴当x=﹣时,S△PBC∴△PBC面积的最大值为;当x=﹣时,﹣x2﹣2x+3=,∴点P坐标为(﹣,).变式训练【变1-1】.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式和直线AC的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.解:(1)∵y=ax2+bx+3经过A(1,0),C(4,3),∴,解得:,∴抛物线的解析式为:y=x2﹣4x+3;设直线AC的解析式为y=kx+h,将A、C两点坐标代入y=kx+h得:,解得:,∴直线AC的解析式为y=x﹣1;(2)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,).【变1-2】.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣+bx+c 经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得x=4,∴C(4,0).把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)过M点作MN⊥x轴,与AC交于点N,如图,设M(a,﹣a2+a+2),则N(a,﹣a+2),=•MN•OC=(﹣a+2﹣a2﹣a﹣2)×4=﹣a2+2a,∴S△ACMS△ABC=•BC•OA=×(4+2)×2=6,=S△ACM+S△ABC=﹣a2+2a+6==﹣(a﹣2)2+8,∴S四边形ABCM∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2).【例2】.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.解:(1)抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)把C(2,m)代入y=x2﹣2x﹣3得m=4﹣4﹣3=﹣3,则C(2,﹣3),设直线AC的解析式为y=mx+n,把A(﹣1,0),C(2,﹣3)代入得,解得,∴直线AC的解析式为y=﹣x﹣1;设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),∴PE=﹣t﹣1﹣(t2﹣2t﹣3)=﹣t2+t+2,∴△ACE的面积=×(2+1)×PE=(﹣t2+t+2)=﹣(t﹣)2+,当t=时,△ACE的面积有最大值,最大值为,此时P点坐标为(,﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:,故抛物线的表达式为:,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点,=S△APO+S△CPO﹣S△ODC=则S=S四边形ADCP=,∵﹣1<0,故S有最大值,当时,S的最大值为.【变2-2】.如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)连接DC,DB,设△BCD的面积为S,求S的最大值.解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1)=x2﹣x﹣2;(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.△BCD2+4.∴当x=2时,S有最大值,最大值为4.1.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)解:对于y=﹣x2+x+2y=﹣x2+x+2=0,解得x=﹣1或4,令x=0,则y =2,故点A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,2),过点P作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为y=﹣x+2,设点P的坐标为(x,﹣x2+x+2),则点H的坐标为(x,﹣x+2),+S△PHC=PH×OB=×4×(﹣x2+x+2+x﹣2)=﹣则△BCP的面积=S△PHBx2+4x,∵﹣1<0,故△BCP的面积有最大值,当x=2时,△BCP的面积有最大值,此时,点P的坐标为(2,3),故选:A.2.如图1,抛物线与x轴交于A、B两点,与y轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)点P为抛物线上直线BC上方的一动点,求△PBC面积的最大值,并求出点P坐标;(3)若点Q为抛物线对称轴上一动点,求△QAC周长的最小值.解:(1)令x=0,则y=2,∴C(0,2),令y=0,则x=4,∴B(4,0),将点B(4,0)和点C(0,2)代入,得,解得:,∴抛物线的解析式为y=﹣x2+x+2;(2)作PD∥y轴交直线BC于点D,设P(m,﹣m2+m+2),则D(m,﹣m+2),∴PD=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,=×4×(﹣m2+2m)=﹣m2+4m=﹣(m﹣2)2+4,∴S△PBC∴当m=2时,△PBC的面积有最大值4,此时P(2,3);(3)令y=0,则,解得x=﹣1或x=4,∴A(﹣1,0),∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,∵A点与B点关于对称轴对称,∴AQ=BQ,∴AQ+CQ+AC=BQ+CQ+AC≥BC+AC,∴当B、C、Q三点共线时,,△QAC周长最小,∵C(0,2),B(4,0),A(﹣1,0),∴BC=2,AC=,∴AC+BC=3,∴△QAC周长最小值为3.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC面积的最大值.若没有,请说明理由.解:(1)根据题意得:,解得,则抛物线的解析式是y=﹣x2﹣2x+3;(2)理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称,∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小,对于y=﹣x2﹣2x+3,令x=0,则y=3,故点C(0,3),设BC的解析式是y=mx+n,则,解得,则BC的解析式是y=x+3.x=﹣1时,y=﹣1+3=2,∴点Q的坐标是Q(﹣1,2);(3)过点P作y轴的平行线交BC于点D,设P的横坐标是x,则P的坐标是(x,﹣x2﹣2x+3),对称轴与BC的交点D是(x,x+3).则PD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x.=(﹣x2﹣3x)×3=﹣x2﹣x==﹣(x+)2+,则S△PBC∵﹣<0,故△PBC的面积有最大值是.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的二次函数解析式:(2)若点P在抛物线上,点Q在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.解:(1)∵y过A(﹣1,0),B(5,0)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5得,解得y=x2﹣4x﹣5;(2)当x=0时,y=﹣5,∴C(0,﹣5),设P(m,m2﹣4m﹣5),Q(n,0),①BC为对角线,则x Q﹣x C=x B﹣x P,y Q﹣y C=y B﹣y P,解得,(舍去),∴P(4,﹣5),②CP为对角线,则x Q﹣x C=x P﹣x B,y Q﹣y C=y P﹣y B,解得或,∴P(2+,5)或(2﹣,5),③CQ为对角线时,CP∥BQ,则点P (4,﹣5);综上P (4,﹣5)或(2﹣,5)或(2+,5);第三种,CQ 为对角线不合要求,舍去;(3)过H 作HD ∥y 轴交BC 于D ,∴S △BCH =S △CDH +S △BDH =HD (x H ﹣x C )+HD (x B ﹣x H )=HD (x B ﹣x C )=HD ,设BC :y =kx +b 1,∵BC 过B 、C 点,代入得,,,∴y =x ﹣5,设H (h ,h 2﹣4h ﹣5),D (h ,h ﹣5),S △BCH =HD =×[h ﹣5﹣(h 2﹣4h ﹣5)]=﹣(h ﹣)2+,∴当h =时,H (,﹣)时,S △BCHmax =.5.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=OC,∵点C(0,﹣3),∴OC=3,∴OE=,∴E(0,﹣),∴点P的纵坐标为﹣,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,∴x2﹣2x﹣3=﹣,∴x=或x=,∵点P在直线BC下方的抛物线上,∴0<x<3,∴点P(,﹣);(3)如图2,过点P作PF⊥x轴于F,则PF∥OC,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴A(﹣1,0),∴设P(m,m2﹣2m﹣3)(0<m<3),∴F(m,0),=S△AOC+S梯形OCPF+S△PFB=OA•OC+(OC+PF)•OF+PF•BF∴S四边形ABPC=×1×3+(3﹣m2+2m+3)•m+(﹣m2+2m+3)•(3﹣m)=﹣(m﹣)2+,∴当m=时,四边形ABPC的面积最大,最大值为,此时,P(,﹣),即点P运动到点(,﹣)时,四边形ABPC的面积最大,其最大值为.6.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,解得:a=﹣,b=,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)设点P的坐标为(t,﹣t2+t+2).∵A(﹣1,0),B(3,0),∴AB=4.∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);(3)当△ODP∽△COB时,=即=,整理得:4t2+t﹣12=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).当△ODP∽△BOC,则=,即=,整理得t2﹣t﹣3=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).综上所述点P的坐标为(,)或(,).7.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.E是BC上一点,PE∥y轴.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当m为何值时MN=BM,解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得解这个方程组,得.故直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴S△BCP∵﹣<0,∴当t=时,S=.△BCP最大(3)M(m,﹣m+3),N(m,m2﹣4m+3),∴MN=|m2﹣3m|,BM=|m﹣3|,当MN=BM时,m2﹣3m=(m﹣3),解得m=.9.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.解:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,解得,所以二次函数解析式为y=﹣x2+x﹣3;(2)存在.过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D 到AC的距离最大,此时△ACD的面积最大,∵直线AC的解析式为y=x﹣3,∴k=,即y=x+b,由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣12x+4b+12=0,∴△=122﹣4×3×(4b+12)=0,解得b=0,∴3x2﹣12x+12=0,解得x1=x2=2,把x=2,b=0代入y=x+b得y=,∴D点坐标为(2,).10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0),过点B的直线y==x﹣2交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求△PBC面积的最大值.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx﹣3中,得:,解得:,∴该抛物线表达式为y=x2﹣2x﹣3.(2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2﹣2m﹣3),则点E(m,m﹣2),∴PE=PD﹣DE=﹣m2+2m+3﹣(﹣m+2)=﹣m2+m+1,联立方程组:,解得:,.∵点B坐标为(3,0),∴点C的坐标为(﹣,﹣),∴BD+CF=3+||=.=S△PEB+S△PEC=PE•BD+PE•CF∴S△PBC=PE(BD+CF)=(﹣m2+m+1)×=﹣(m﹣)2+,(其中﹣<m<3).∵﹣<0,∴这个二次函数有最大值.的最大值为.∴当m=时,S△PBC11.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;=S△OAB?若存在,请求出点P的坐标,若不(2)在抛物线上是否存在一点P,使S△P AB存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;(2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,∵OP∥AB,∴△ABP和△ABO是等底等高的两个三角形,=S△ABO,∴S△P AB∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,解得:或,∴点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',连接AP'',BP'',∴AB∥EP''∥OP,OB=BE,=S△ABO,∴S△AP''B∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.12.直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△PBA的面积最大时,求点P的坐标;②在①的条件下,点P关于抛物线对称轴的对称点为Q,在直线AB上是否存在点M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明理由.解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为:(4,0)、(0,2),将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2;(2)①过点P作y轴的平行线交BC于点N,设P(m,﹣m2+m+2),点N(m,﹣m+2),则:△PBA的面积S=PN×OA=×4×(﹣m2+m+2+m﹣2)=﹣2m2+8m,当m=2时,S最大,此时,点P(2,5);②点P(2,5),则点Q(,5),设点M(a,﹣a+2);(Ⅰ)若:∠QM1B=2∠QAM1,则QM1=AM1,则(a﹣)2+(a+3)2=(a﹣4)2+(﹣a+2)2,解得:a=,故点M1(,);(Ⅱ)若∠QM2B=2∠QAM1,则∠QM2B=∠QM1B,QM1=QM2,作QH⊥AB于H,BQ的延长线交x轴于点N,则tan∠BAO==,则tan∠QNA=2,故直线QH表达式中的k为2,设直线QH的表达式为:y=2x+b,将点Q的坐标代入上式并解得:b=2,故直线QH的表达式为:y=2x+2,故H(0,2)与B重合,M2、M1关于B对称,∴M2(﹣,);综上,点M的坐标为:(,)或(﹣,).13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0).(1)求此抛物线的表达式.(2)若点P是直线AB下方的抛物线上一动点,当△ABP的面积最大时,求出此时点P 的坐标和△ABP的最大面积.(3)设抛物线顶点为D,在(2)的条件下直线AB上确定一点H,使△DHP为等腰三角形,请直接写出此时点H的坐标(﹣,﹣).解:(1)将点B(﹣3,0)和点C(1,0)代入y=ax2+bx﹣3,得,∴,∴y=x2+2x﹣3;(2)令x=0,则y=﹣3,∴A(0,﹣3),设直线AB的解析式为y=kx+b,∴,∴,∴y=﹣x﹣3,过点P作PG⊥x轴交AB于点G,设P(t,t2+2t﹣3),则G(t,﹣t﹣3),∴PG=﹣t﹣3﹣t2﹣2t+3=﹣t2﹣3t,∴S△ABP=×3×(﹣t2﹣3t)=﹣(t+)2+,当t=﹣时,S△ABP有最大值,此时P(﹣,﹣);(3)由y=x2+2x﹣3的顶点D(﹣1,﹣4),设H(m,﹣m﹣3),∵△DHP为等腰三角形,∴DH=PH,∴(m+1)2+(﹣m+1)2=(m+)2+(﹣m+)2,解得m=﹣,∴H(﹣,﹣),故答案为:(﹣,﹣).14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1;(2)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,同理可得:AN=,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+;(3)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,PF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)∴S△PBC×4=﹣2(t﹣2)2+8,最大值为8,此时t2﹣3t﹣4=﹣6,∴当t=2时,S△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.(3)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图2,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2).16.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,抛物线的对称轴交x轴于点M,连接BC、CM.求△BCM的周长及tan∠BCM的值;(3)如图2,过点A的直线m∥BC,点P是直线BC上方抛物线上一动点,过点P作PD⊥m,垂足为点D,连接BD,CD,CP,PB.当四边形BDCP的面积最大时,求点P 的坐标及四边形BDCP面积的最大值.解:(1)将A(﹣1,0),B(3,0)分别代入y=﹣x2+bx+c得:,解得,∴y=﹣x2+2x+3.(2)由解析式可得M(1,0),C(0,3),∴.∴△BCM的周长为.如图1,过点M作MN⊥BC于点N,∵OB=OC,∴∠OBC=∠BMN=45°.∴.∴.∴.=S△BDC+S△BPC,(3)由题意可知:S四边形BDCP∵过点A的直线m∥BC,∴.∵A(﹣1,0),B(3,0),∴AB=4.∵抛物线y=﹣x2+2x+3交y轴于点C(0,3),∴OC=3.∴.如图2,过点P作PF⊥x轴,垂足为点F,交BC于点E,直线BC的解析式为:y=﹣x+3.设P(x,﹣x2+2x+3),则E(x,﹣x+3),∵点P是直线BC上方抛物线上一动点,∴PE=PF﹣EF=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.则=.∴.当时,四边形BDCP的面积最大,最大面积为.此时,点P的坐标为.17.如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B (1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.∴,解得,∴y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),∵顶点(﹣1,﹣4)关于原点的对称点为(1,4),∴抛物线F2的解析式为y=﹣(x﹣1)2+4,∴y=﹣x2+2x+3;(3)由题意可得,抛物线F3的解析式为y=﹣(x﹣1)2+6=﹣x2+2x+5,①联立方程组,解得x=2或x=﹣2,∴C(﹣2,﹣3)或D(2,5);②设直线CD的解析式为y=kx+b,∴,解得,∴y=2x+1,过点M作MF∥y轴交CD于点F,过点N作NE∥y轴交CD于点E,设M(m,m2+2m﹣3),N(n,﹣n2+2n+5),则F(m,2m+1),E(n,2n+1),∴MF=2m+1﹣(m2+2m﹣3)=﹣m2+4,NE=﹣n2+2n+5﹣2n﹣1=﹣n2+4,∵﹣2<m<2,﹣2<n<2,∴当m=0时,MF有最大值4,当n=0时,NE有最大值4,=S△CDN+S△CDM=×4×(MF+NE)=2(MF+NE),∵S四边形CMDN∴当MF+NE最大时,四边形CMDN面积的最大值为16.18.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y =a(x﹣h)2+k.抛物线H与x轴交于点A、B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式.(2)如图1,点P在线段AC上方的抛物线H上运动(不与A、C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值.(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A、P、C、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为.解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∵PD⊥AB,∴∠ADP=90°,∴∠ADP=∠AOC,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,∴PF=EF=PE,=PF•EF=PE2,∴S△PEF=×()2=;∴当m=﹣时,S△PEF最大值(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).。

二次函数图像与面积问题

二次函数图像与面积问题

xy O A BCxC Oy ABD 1 1专题一:二次函数综合面积问题回顾:常见求面积的方法 一、 面积相等问题例1、如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2) 求△CAB 的铅垂高CD 及CAB S △;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由(4) 设点Q 是抛物线(在第一象限内)上的一个动点,是否存在一点Q ,使S △QAB =89S △CAB ,若存在,求出Q 点的坐标;若不存在,请说明理由. 做题要点:怎么读题?求面积有几种方法?方法之间有什么区别?例2. 如图,已知抛物线2y ax bx c =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得△P AC 的周长最小,并求出点P 的坐标;(3)若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE ∥PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,S △PDE =19S 四边形ABMC .例3.如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动.(1)求线段所在直线的函数解析式; (2)设抛物线顶点的横坐标为,①用的代数式表示点的坐标; ②当为何值时,线段最短; (3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.二、 面积最值问题 1、 用解析式解析式求最值例1、.如图①, 已知抛物线32-+=bx ax y (a ≠0)与x 轴交于点A(1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 如图②,若点E 为第三象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.2-2-4-551015yxCNAB512-2-4yxCAB图①图②A CxyBOyxBD O AEC例2、已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合). 过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.例3. 已知:抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA <OC )是方程2540x x -+=的两个根,且抛物线的对称轴是直线1x =.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.xyBFO ACPx =12、 用几何方法求最值例1、如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.例 2. 如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(03)--,、,,点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =, 点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式; (2)若设点P 的横坐标为m ,用含m 的代数式表示线段PF 的长. (3)求PBC △面积的最大值,并求此时点P 的坐标.三、练习1.将直角边长为6的等腰Rt △AOC 放在平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当 △APE 的面积最大时,求点P 的坐标;(3)在第一象限内的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE 的面积最 大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由.(4)在第一象限内的该抛物线上是否存在点M ,使△AMC 的面积最大?若存在,请求出点M 的坐标;若不存在,请说明理由.。

二次函数求面积问题

二次函数求面积问题

二次函数求面积问题
在数学中,二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b和c是实数
且a不等于零。

这种类型的函数可以用来解决许多实际问题,包括求解面积问题。

想象一下,我们有一个二次函数的图像,限定在x轴上的两个点x1和x2之间。

我们需要求解这段x轴上方的面积。

首先,我们需要将x1和x2代入二次函数的方程中,计算出对应的y值,在这
两个点上方的y值都表示函数图像在该范围内的高度。

然后,我们需要找到一个近似函数或者采用数值积分的方法来计算这两个点之
间的曲线下面积。

一种常用的方法是通过定积分来计算二次函数的面积。

我们可以将二次函数表
示为f(x) = ax^2 + bx + c。

然后,我们对该函数进行积分,积分结果将是一个新的函数F(x),即f(x)的原
函数。

在这个过程中,我们需要记住积分的不定性,并添加一个常数项。

接下来,我们在范围[x1, x2]上划定区间,在F(x)的两个端点x1和x2处的值分
别为F(x1)和F(x2)。

最后,我们通过计算这两个点的函数值之差来求得二次函数在给定范围内的面积。

简而言之,求解二次函数在给定范围内的面积可以通过以下步骤来实现:
1. 将x1和x2代入二次函数方程,计算对应的y值。

2. 采用数值积分或定积分方法,计算二次函数f(x)在这两个点之间的面积。

需要注意的是,如果x1和x2是两个实根,那么函数图像将在这两个点之间与
x轴相交,并形成一个三角形。

在这种情况下,求解面积就等于计算这个三角形的
面积。

二次函数与面积计算问题ppt课件

二次函数与面积计算问题ppt课件

y
x=m y=x
抛物线的解析式为y=x 2-2x-4
B
N
MN=MP+PN=-m 2+3m+4
OP A
x
当m=1.5时,S有最大值。
M
精选ppt课件
13
(西湖区2011学年第一学期期末测试)
如图,二次函数 yx2 b图x象c与轴x交于A,B两点
(A在B的左边),与 y轴交于点C,顶点为M ,MAB为
(1,4)
P
4
(0,3) C 3
2
1
(-1,0)
A O
(3,0)
B
2
S△ PCB=_______
(1,4) D E4E P (0,3) C
3
2
S△ ACP=_______ 1
(-1,0)
A
FF
O
(3,0)
B
2
在平面直角坐标系中,有两点A(-1,0),
B(3,0),如图,小敏发现所有过A,B两点
的抛物线如果与y轴负半轴交于点C,M为抛物
请说明理由;
Py
P Q
C
(1)抛物线解析式为
y x2 -2x 3
Q(1,2)
B
A
O
x
P( 3 ,15) 24
精选ppt课件
11
(3)在(1)中的抛物线上的第二象限内是 否存在一点P,使△PBC的面积最大?
若存在,求出点P的坐标及△PBC的面积最 大值;若不存在,请说明理由.
y
P Q
C
B
A
O
练习1.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,
将线段OA绕原点O顺时针旋转120°,得到线段OB.

22.3 第1课时 二次函数与图形面积问题 课件(共21张PPT)

22.3 第1课时 二次函数与图形面积问题 课件(共21张PPT)
(2)请你设计一个方案,使获得的设计费最多,并求出此时的费
用.
解:(1)∵矩形的一边长为x m,∴其邻边长为(6-x)m,
∴S=x(6-x)=-x²+6x,其中0<x<6.
(2)∵ S=-x²+6x=-(x-3)²+9, ∴当x=3, 即矩形的一边长为
3 m时, 矩形面积最大, 为9 m², 此时设计费最多, 为9×
问题3 面积S关于的函数解析式是什
么?自变量的取值范围是什么?
自主探究
1.已知二次函数 y=x²+2x-3,在下列各条件下,当x取何值时,
y有最大值或最小值.
(1)x为全体实数; (2)-3≤x≤0;
(3)-10≤x≤-4.
(1)当x=-1时,y有最小值;无最大值.
(2)当x=-3时,y有最大值;当x=-1时,y有最小值.
(2)开口向下,对称轴为直线x=1,顶点坐标(1,-6),当
x=1时,y有最大值-6.
女排精神是永不言败,一排球运动员从地面竖直向上抛出一
排球,排球的高度h(单位:m)与排球的运动时间t(单位:
s)之间的关系式是h=25t-5t2(0≤t≤5).排球的运动时间是多
少时,排球最高?排球运动过程中的最大高度是多少?
6cm/s的速度沿A→D运动,直到两点都到达终点为止.设点P的运动时间 为
t(s),△APQ的面积为S(cm²),则S关于t的函数图象大致是( C)
例2: 某广告公司设计一个周长为12 m的矩形广告牌,广告设计费
为每平方米1 000元,设矩形的一边长为x m,面积为S .
(1)求S与x之间的关系式,并写出自变量x的取值范围;

× −
= ,即最

二次函数与面积问题

二次函数与面积问题

二次函数与面积问题二次函数是中学数学中一个重要的概念,其应用不仅仅限于代数学习中的求解,还包括了实际生活中的丰富应用。

其中,面积问题是二次函数应用的一个重要方面。

在本文中,我们将重点探讨二次函数与面积问题的应用。

一、二次函数基本概念1. 二次函数的定义二次函数是指函数 $y=ax^2+bx+c$,其中 $a,b,c$ 是已知常数,一个非零实数。

2. 二次函数图像特征二次函数的图像通常是一个开口向上或者向下的抛物线,其对称轴在 $x$ 轴上的直线,称为二次函数的轴,其方程为 $x=-\frac{b}{2a}$。

如果 $a>0$,则抛物线开口向上,如果 $a<0$,则抛物线开口向下。

当 $a\neq0$ 时,函数值的范围为 $(-\infty,\frac{4ac-b^2}{4a})$ 或者 $(\frac{4ac-b^2}{4a},\infty)$。

3. 二次函数的变形二次函数除了基本形式 $y=ax^2+bx+c$,还有一些基于基本形式的变形,如 $y=a(x-h)^2+k$,其中 $h,k$ 是常数。

变形后的形式可以更方便地求解问题,但需要熟练运用基本变形公式。

二、二次函数与面积问题1. 抛物线下面积抛物线下面积的计算通常可以通过解析式的积分得出,但是如果需要精确解往往较为困难,尤其是在没有高深数学知识支持的情况下。

在使用二次函数计算抛物线下面积时,可以先求出对应的定积分,即:$$\int_{x_1}^{x_2}ax^2+bx+c\mathrm{d}x=\frac{a} {3}(x_2^3-x_1^3)+\frac{b}{2}(x_2^2-x_1^2)+c(x_2-x_1)$$该式是利用积分的基本公式计算得出的,它可以方便地求解出抛物线在一个给定区间内的面积。

2. 平面图形面积二次函数还可用于计算平面图形的面积。

例如,一个半径为 $r$ 的圆的面积可以表示为 $A=\pi r^2$。

二次函数面积问题类型总结

二次函数面积问题类型总结

二次函数面积专题知识导航:1、求图形面积2、面积最值3、已知面积探寻其他问题第一讲求图形面积考点类型1.三角形面积求法:特殊型:有一条边在坐标轴或者有一条边平行于坐标轴三角形面积主要分成两类:普通型:三边均不平行于坐标轴特殊型:直接选用平行于坐标轴或者在坐标轴的边为底及对应高进行计算例1、(青海)如图,抛物线224233y x x =-++与坐标轴交点分别为(1,0)A -,(3,0)B ,(0,2)C ,作直线BC .点P 为抛物线上第一象限内一动点,过点P 作PD x ⊥轴于点D ,设点P 的横坐标为(03)t t <<,求ABP ∆的面积S 与t 的函数关系式;1.补形法 一般型2.铅锤法3.面积转化法 1.补形法2. 割法之铅锤线法:公式:三角形面积=铅锤高×水平宽×21 x B -x Ax B -x ABAMPPM AB1()2APB B A S PM x x =⋅⋅-△3:面积转化法转化法——借助平行线转化:AB若S△ABP=S△ABQ,若S△ABP=S△ABQ,当P,Q在AB同侧时,当P,Q在AB异侧时,考点类型2:多边形面积求法多边形面积:主要采用割补法进行计算例1、若抛物线223y x x =--+的顶点为点D ,求四边形ABCD 的面积.练习:已知二次函数y=x 2-2x-3,图象如图所示,求四边形ACBD 及△BCD 的面积.第二讲 面积最值问题例1、如图,已知抛物线215222y x x =-+-,与x 轴交于,A B 两点,交y 轴交于点C .在直线AC 上方的抛物线上是否存在一点D ,使得DCA ∆的面积最大?若存在,求出点D 的坐标及DCA ∆面积的最大值;若不存在,请说明理由.练习:1.如图1,在平面直角坐标系中,直线3944y x =-+与x 轴交于点A ,与y 轴交于点B ;抛物线2339424y x x =-++过A ,B 两点,与x 轴交于另一点(1,0)C -,抛物线的顶点为D ,在直线AB 上方的抛物线上有一动点E ,求出点E 到直线AB 的距离的最大值;小结:三角形面积ABD 最大的时候,F 点坐标有什么特点:2.如图,抛物线223y x x =--+与x 轴交于点A 和点B ,与y 轴交于点C .若动点P 在第二象限内的抛物线上,当四边形P ABC 的面积最大时,求四边形P ABC 面积的最大值及此时点P 的坐标.例2、如图,已知二次函数213222y x x =-++的图象经过()()()1,04,00,2A B C -、、三点. 点P 是该二次函数图象上位于第一象限上的一动点,连接P A 分别交BC 、y 轴于点E 、F ,若△PEB 、△CEF 的面积分别为S 1、S 2,求S 1﹣S 2的最大值.第三讲 已知面积求其他问题例1.已知二次函数y=x 2-2x-3,图象如图所示,在抛物线上求出所有点P 的坐标,使△PBD 的面积与△ABC 面积相等.例2、抛物线223y x x =--+是否存在过点C 的直线把ABC ∆面积分成2:1的两部分,若存在,求出直线解析式,若不存在,请说明理由? xyA C BO变式1、抛物线223y x x =--+上是否存在点P ,使PAB ∆的面积等于BCD ∆的面积的38倍,若存在,求出点P 的坐标;若不存在,请说明理由;例3、如图,抛物线223y x x =-++与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C .如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当:3:2COF CDF S S ∆∆=时,求点D 的坐标.变式、已知抛物线228y x x =-++经过点(3,7)A --,(3,5)B ,顶点为点E ,抛物线的对称轴与直线AB 交于点C .在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.例4、如图,已知抛物线215222y x x =-+-,与x 轴交于,A B 两点,交y 轴交于点C . (1)P 是抛物线上一点,且3ABP S ∆=,求点P 的坐标.(2)Q 是抛物线上一点,且2ACQ S ∆=,求点Q 的坐标.(3)在抛物线上是否存在异于A 、C 的点P ,使PAC ∆中AC 25?若存在,求出点P 的坐标;若不存在,请说明理由.变式、如图,在平面直角坐标系中,A 是抛物线212y x =上的一个动点,且点A 在第一象限内.AE ⊥y 轴于点E ,点B 坐标为(0,2),直线AB 交x 轴于点C ,点D 与点C 关于y 轴对称,直线DE 与AB 相交于点F ,连结BD .设线段AE 的长为m ,△BED 的面积为S .(1)当2m =时,求S 的值.(2)求S 关于m (2m ≠)的函数解析式. (3)①若3S =时,求AF BF 的值.②当2m >时,设AF k BF=,猜想k 与m 的数量关系并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



二 类
A
ED


断 问 题
B
F
C
变式一:用一段30米的篱笆围成一个一边靠
墙的矩形菜园,但须在矩形内加两道平行于
BC的篱笆,如图:设AB=x米,BC=
米,
矩形面积为s.则s与x的函数关系




类 :
A

D
BC 30 2x 3
隔E
F
断G
问 题
B
H S x(30 2x)
C
3
变式二:实际生活中,窗户开得越大,房间 的光线越充足,现有根木料为6米,要做一个 如图所示的矩形的窗户,已知上框架的高AB 与下框架的高BC之比为1:2,设AB=x米,矩 形的面积为S平方米。求出S与x的函数关系式。
∴y=x(10-x) 即y=-x2+10x
C
(0<x<10)
(5)所以矩形的面积可以看作是矩形的一边长
的函数
(6)当问题中存在着有一定关系的两个变量时,
我们考虑可以利用函数来解决问题。
解:设矩形的一边AB=x米,另一边
为BC= ( 20 x)米。面积为y米2。
2
∴y=x(10-x) 即y=-x2+10x
A
D
(0<x<10)
xy
B
C
(7)怎样设计才能使小兔活动范围最大呢? 实质是求矩形生物园的面积最大值?
在自变量的取值范围内,可以通过观察图象或运用
公式法或通过配方法求出二次函数的最大值或最小
值。 y
30 25
x


b 2a
=

2
10 (1)
5
20
4ac b2
15
y 4a
10 5
(0<x<10)

2
x
b

15
15 时,y取最大值
2a 2 ( 1)
2
拓展:用一段长30m的篱笆围成一个一边靠 墙的矩形菜园,墙长为14m,这个矩形的长、
宽各为多少时,菜园的面积最大,最大面积 是多少? y
112
14m

菜园
0
14 15
x
根据问题的实际意义x=15不在自变量取值范围内,
当0<x≤14时,图象在对称轴左侧,y随x的增大而增 大,所以当x取最大值14时,y最大是112。
x
(1) 用长20米的篱笆设计一个矩形的生物园。 需要我们知道矩形的哪些量?
(2)20米的篱笆是矩形的哪个量?
(3)矩形的长与宽之间存在关系是什么?
(4)由长与宽的关系知:当周长一定时,可以 由矩形的一边表示另一边
A
xy
B
解:设矩形的一边AB=x米,
D 另一边为BC= ( 20 x) 米。 面积为y米2。 2
课前基本练习
填空: 1.抛物线y=-(x+1)2+2中,当x= _____时,y有_______值是_________. 2.抛物线y=x2-x+1中,当x=_____时, y有_______值是_________. 3.抛物线y=ax2+bx+c(a≠0)中,当x =_______时,y有_______值是 ________.

二 类 :
AF=BE=CD=
6-7x 3
A
x
B
x
F
x
E

2x
2x
断 问 题
S=
3x(6-7x) 3
C
D
用一段30米的篱笆围成一个一边靠墙的矩形 菜园,但须在BC之间加一道1米宽的门,如图: 设AB=x米,BC= (30+1-2x) 米,矩形面积为S. 则S与x的函数关系为S=x(31-2x) ;

一 类
A
D

靠 墙
学要在教学楼后面的空地上用40米长
的篱笆围出一个矩形ABCD,将此矩形地作生物园,
矩形的一边用教学楼的外墙(外墙足够长),其余 三边用篱笆。设矩形的边AB(AB<BC)为x米,面积 为y平方米。求y与x之间的函数关系式,并求出自 变量的取值范围。
第 一 类 :
102
=
25
4 (1)
-1 0 1 2 3 4 5 6 7 8 9 1o x
第 例1:(原题:教材131页7题)用一段长30m的
一 篱笆围成一个一边靠墙的矩形菜园,墙长为
类 18m,建立矩形面积与矩形一边长的函数关系
: 式,并求出自变量取值范围。当这个矩形的长、
靠 墙 问
宽各为多少时,菜园的面积最大,最大面积是
拓展:用一段长30m的篱笆围成一个一边靠
墙的矩形菜园,墙长为14m,这个矩形的长、
宽各为多少时,菜园的面积最大,最大面积
是多少?
解:设与墙平行的边长为xm,则另一边为
30 x
m,矩
形的面积为ym2.则
2
y x(30 x)
14m
y


1
2
x2
15 x
(0<x≤14)
2
墙 菜园
∵a= 1 <0,∴y有最大值。
解:设AB=x米,则 BC=(40-2x)米。 矩形的面积为y平方 米。则

墙 y=x(40-2x)
问 y = -2x2+40x 题
∵AB<BC,AB>0,BC>0 ∴ x>0,
40-2x>0,
x<40-2x
∴0<x< 40 3
用一段30米的篱笆围成一个一边靠墙
的矩形菜园,但需在矩形内加一道平行于 AB的篱笆,如图:设AB=xm,BC= (30-3x) m,矩形面积为s.则s与x的函数关系 为 S=x(30-3x) ;
多少?
18m

(题1)设AB=xm,BC=(30-2x) m , A 菜园 D
矩形面积为s.则s与x的函数关系
为 S=x(30-2x) ; 30-x
B
C
(2)设BC=xm,AB= 2 m,
矩形面积为s.则s与x的函数关系

S=
x(30-x) 2

变式一:用一段30米的篱笆围成一个两边 靠墙的矩形菜园设AB=xm,BC= (30-x) m,矩形面积为s.则s与x的函数关系 为 S=x(30-x) ;
教学目标:
一、使学生经历探索实际问题中两个变量之 间的函数关系的过程 二、使学生理解用函数知识解决问题的思路。 三、使学生体验数学建模思想,培养学生解 决实际问题的能力。 四、使学生体会数学知识的现实价值,提高 学生的学习兴趣。
问题情境:用20米长的篱笆围成矩形的 生物园饲养小兔,怎样围可使小兔的活动 范围较大?
第 三

A
D



门 问
B
C

变式一:用一段30米的篱笆围成一个一边靠 墙的矩形菜园,但须在BC之间加一道1米宽的 门,在CD之间加一道1米宽的门. 如图:设 AB=x米,BC= (30+2-2x) 米,矩形面积为S.则S 与x的函数关系为 S=x(32-2x) ;


三 类
A
D


门 问 题
B
C
体育课上,老师用绳子围成一个周长为30米的游 戏场地,围成的场地是如图所示的矩形ABCD.设 边AB的长为x(单位:米),矩形ABCD的面积为 S(单位:平方米). (1)求S与x之间的函数关系式(不要求写出自变 量x的取值范围); (2)当x为何值时,S有最大值?并求出最大值. (3)若矩形ABCD的面积为50平方米,且AB< AD,请求出此时AB的长。
相关文档
最新文档