解决二次函数中三角形存在性问题

合集下载

(完整版)二次函数与三角形的存在性问题的解法

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。

2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。

判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。

2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。

判定:有一个角是直角的三角形是直角三角形。

3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。

判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。

二次函数三角形存在性问题-学生版

二次函数三角形存在性问题-学生版

二次函数动点产生的等腰、直角以及等腰直角三角形 一、二次函数动点产生的等腰三角形【知识点】(1) 代数法:设点坐标,利用两点间距离公式表示出两条腰长度的平方,构造:;(2) 几何法:利用两线一圆分析点的存在情况,利用几何关系或公式法求解;方法:分类讨论:①当A 为顶点时,即AB=AC 时,以A 为圆心,AB 为半径画圆②当B 为顶点时,即BA=BC 时,以B 为圆心,BA 为半径画圆③当C 为顶点时,即CA=CB 时,作线段AB 的垂直平分线【例题讲解】★★☆例题1.如图,在平面直角坐标系中,已知点C (0,4),点A 、B 在x 轴上,并且OA =OC =4OB ,动点P 在过A 、B 、C 三点的抛物线上.(1)求抛物线的函数表达式;(2)在直线AC 上方的抛物线上,是否存在点P ,使得△PAC 的面积最大?若存在,求出P 点坐标及△PAC 面积的最大值;若不存在,请说明理由.(3)在x 轴上是否存在点Q ,使得△ACQ 是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.22AB AC★★☆练习1.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y 轴交于点C.(1)求抛物线的表达式;(2)如图1,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标;(3)如图2,在x轴上是否存在一点D使得△ACD为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.★★☆练习2.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c 与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).二、二次函数动点产生的直角三角形【知识点】(1)利用勾股定理构造三边关系;(2)利用两直线垂直,斜率之积关系代数求解;(3)利用两线一圆几何方法求解;方法:分类讨论:当∠A=90︒时,过点A作线段AB的垂线当∠B=90︒时,过点B作线段AB的垂线当∠C=90︒时,以AB为直径作圆【例题讲解】★★☆例题1.在平面直角坐标系中,抛物线y=mx2﹣2x+n与x轴的两个交点分别为A(﹣3,0),B(1,0),C为顶点.(1)求m、n的值.(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.★★☆练习1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.★★☆练习2.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(4,0),B(﹣1,0),交y 轴于点C.(1)求抛物线的解析式;(2)点D 是直线AC 上一动点,过点D 作DE 垂直于y 轴于点E ,过点D 作DF ⊥x 轴,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点D 的坐标;(3)在AC 上方的抛物线上是否存在点P ,使得△ACP 是直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.三、二次函数动点产生的等腰直角三角形【知识点】(1) 按照等腰直角三角形的边角特征分情况讨论;(2) 利用构建三垂直模型证明三角形全等的思路来证明等腰直角三角形【例题讲解】★★★例题1.如图,在等腰直角三角形ABC 中,90BAC ∠=︒,点A 在x 轴上,点B 在y 轴上,点(3,1)C ,二次函数21332y x bx =+-的图象经过点C . (1)求二次函数的解析式,并把解析式化成2()y a x h k =-+的形式;(2)把ABC ∆沿x 轴正方向平移,当点B 落在抛物线上时,求ABC ∆扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使ABP ∆是以AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.★★★练习1的等腰直角三角板ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(1,0)-,点B 在抛物线22y ax ax =+-上.(1)点A 的坐标为 (0,2) ,点B 的坐标为 ;(2)抛物线的解析式为 ;(3)设(2)中抛物线的顶点为D ,求DBC ∆的面积;(4)在抛物线上是否还存在点P (点B 除外),使ACP ∆仍然是以AC 为直角边的等腰直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.★★★例题2.如图,抛物线2:L y ax bx c =++与x 轴交于A 、(3,0)B 两点(A 在B 的左侧),与y 轴交于点(0,3)C ,已知对称轴1x =.(1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在OBC ∆内(包括OBC ∆的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线:3l x =-上,PBQ ∆能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.★★★练习1.如图,抛物线212y x bx c =++与直线3:14l y x =-交于点(4,2)A 、(0,1)B -. (1)求抛物线的解析式;(2)点D 在直线l 下方的抛物线上,过点D 作//DE y 轴交l 于E 、作DF l ⊥于F ,设点D 的横坐标为t . ①用含t 的代数式表示DE 的长;②设Rt DEF ∆的周长为p ,求p 与t 的函数关系式,并求p 的最大值及此时点D 的坐标;(3)点M 在抛物线上,点N 在x 轴上,若BMN ∆是以M 为直角顶点的等腰直角三角形,请直接写出点M 的坐标.【课后练习】★★☆1.如图,已知抛物线y1=-x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点3的坐标为A(﹣2,0).(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.★★☆2如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.★★☆3.在平面直角坐标系中有Rt△AOB,O为原点,OB=1,OA=3,将此三角形绕点O顺时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c过A,B,C三点.(1)求此抛物线的解析式及顶点P的坐标;(2)直线l:y=kx﹣k+3与抛物线交于M,N两点,若S△PMN=2,求k的值;(3)抛物线的对称轴上是否存在一点Q使得△DCQ为直角三角形.★★☆4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.★★☆5.如图,在平面直角坐标系中.直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y ax bx c =++经过B ,C 两点,与x 轴负半轴交于点A ,连结AC ,(1,0)A -(1)求抛物线的解析式;(2)点(,)P m n 是抛物线上在第一象限内的一点,求四边形OCPB 面积S 关于m 的函数表达式及S 的最大值;(3)若M 为抛物线的顶点,点Q 在直线BC 上,点N 在直线BM 上,Q ,M ,N 三点构成以MN 为底边的等腰直角三角形,求点N 的坐标.★★☆6.在平面直角坐标系中,直线122y x =-与x 轴交于点B ,与y 轴交于点C ,二次函数212y x bx c =++的图象经过B ,C 两点,且与x 轴的负半轴交于点A .(1)直接写出:b 的值为 ;c 的值为 ;点A 的坐标为 ;(2)点M 是线段BC 上的一动点,动点D 在直线BC 下方的二次函数图象上.设点D 的横坐标为m . ①如图1,过点D 作DM BC ⊥于点M ,求线段DM 关于m 的函数关系式,并求线段DM 的最大值;②若CDM为等腰直角三角形,直接写出点M的坐标.2.【拔高练习】★★★1.练习4.(2017•潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.★★★2.如图,在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于A ,B 两点,点(3,0)B ,经过点A 的直线AC 与抛物线的另一交点为5(4,)2C ,与y 轴交点为D ,点P 是直线AC 下方的抛物线上的一个动点(不与点A ,C 重合).(1)求该抛物线的解析式.(2)过点P 作PE AC ⊥,垂足为点E ,作//PF y 轴交直线AC 于点F ,设点P 的横坐标为t ,线段EF 的长度为m ,求m 与t 的函数关系式.(3)点Q 在抛物线的对称轴上运动,当OPQ ∆是以OP 为直角边的等腰直角三角形时,请直接写出符合条件的点P 的坐标.。

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。

这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。

【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。

专题01 二次函数中的等腰三角形存在性问题 (学生版)

专题01 二次函数中的等腰三角形存在性问题 (学生版)

专题01 二次函数中的等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.【模型解读】如图,点A 坐标为(1,1),点B 坐标为(4,3),在x 轴上取点C 使得△ABC 是等腰三角形.【几何法】“两圆一线”得坐标(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.同理可求,下求.显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:而对于本题的,或许代数法更好用一些.故C 5坐标为(196,0)解得:x =1363-x ()2+22=x 2设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3,BH =234C C 、5C 5CC 21+23,0()C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13【代数法】表示线段构相等(1)表示点:设点坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3),(2)表示线段:,(3)分类讨论:根据,(4)求解得答案:解得:,故坐标为.【小结】几何法:(1)“两圆一线”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标A 、B 、C ;(2)由点坐标表示出三条线段:AB 、AC 、BC ;(3)根据题意要求取①AB=AC 、②AB=BC 、③AC=BC ;(4)列出方程求解.问题总结:(1)两定一动:动点可在直线上、抛物线上;(2)一定两动:两动点必有关联,可表示线段长度列方程求解;(3)三动点:分析可能存在的特殊边、角,以此为突破口.5C 5AC =5BC =55AC BC ==236m =5C 23,06⎛⎫⎪⎝⎭【模型实例】1.如图,已知两直线,分别经过点,点,且两条直线相交于轴的正半轴上的点,当点的坐标为时,恰好有,经过点、、的抛物线的对称轴与、、轴分别交于点、、,为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明与的数量关系?并说明理由;(3)若直线绕点旋转时,与抛物线的另一个交点为,当为等腰三角形时,请直接写出点的坐标.2.如图,抛物线交轴于,两点,与轴交于点,连接,.为线段上的一个动点,过点作轴,交抛物线于点,交于点.(1)求抛物线的表达式;(2)试探究点在运动过程中,是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标;若不存在,请说明理由.1l 2l (1,0)A (3,0)B -y CC 12l l ⊥A B C 1l 2l x G E FD DG DE 2l C M MCG ∆M 24y ax bx =++x (3,0)A -(4,0)B y C AC BC M OB M PM x ⊥P BC Q M Q A C QQ3.如图,抛物线与轴交于、两点,且(1)求抛物线的解析式和点的坐标;(2)如图,已知直线分别与轴、轴交于、两点,点是直线下方的抛物线上的一个动点,过点作轴的平行线,交直线于点,点在线段的延长线上,连接.问:以为腰的等腰的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.4.如图,抛物线与轴交于,两点,与轴交于点,点的坐标是,为抛物线上的一个动点,过点作轴于点,交直线于点,抛物线的对称轴是直线.(1)求抛物线的函数表达式;(2)若点在第二象限内,且,求的面积.(3)在(2)的条件下,若为直线上一点,在轴的上方,是否存在点,使是以为腰的等腰三角形?若存在,求出点的坐标;若不存在,请说明理由.223y ax x =+-x A B (1,0)B A 2439y x =-x y C F Q CF Q y CF D E CD QE QD QDE ∆x A B y (0,2)C -A (2,0)P P PD x ⊥D BC E 1x =-P 14OD PBE ∆M BC x M BDM ∆BDM5.抛物线过点,点,顶点为.(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;6.如图,在中,,且点的坐标为,点坐标为,点在轴的负半轴上,抛物线经过点和点(1)求,的值;(2)在抛物线的对称轴上是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由23y ax bx =++(1,0)A -(3,0)B C C P CP x D AC DAC ∆AC P ABC ∆AB AC =A (3,0)-C By 2y x bx c =++A C b c Q ACQ ∆Q7.如图,开口向上的抛物线与轴交于,、,两点,与轴交于点,且,其中,是方程的两个根.(1)求点的坐标,并求出抛物线的表达式;(2)垂直于线段的直线交轴于点,交线段于点,连接,求的面积的最大值及此时点的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标,若不存在,请说明理由.9.如图,已知抛物线与轴交于、两点,与轴交于点(1)求点,,的坐标;(2)此抛物线的对称轴上是否存在点,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.x 1(A x 0)2(B x 0)y C AC BC ⊥1x 2x 2340x x +-=C BC l x D BC E CD CDE ∆D P PDE ∆P 2y ax bx c =++x (4,0)A -(2,0)B y (0,6)C y (0,2)E -AE P AEP ∆P 211242y x x =--+x A B y CA B C M ACM ∆M。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

专题六 二次函数与几何图形的综合

专题六 二次函数与几何图形的综合
∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;
若不存在,请说明理由.
+ + = ,
【解析】(1)由题意得:ቐ

= ,


= ,
解得ቊ
= −,
故抛物线的表达式为y=x2-5x+4①;
(2)对于y=x2-5x+4,令y=x2-5x+4=0,解得x=1或4,令x=0,则y=4,
= − +
= −
得:ቐ
,解得ቐ = ,
=
= + +
=
∴抛物线的表达式为:y=-x2+2x+3;
(2)∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,
∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;
(3)存在.∵抛物线交正方形OBDC的边BD于点E,
设AB的中点为J,连接PJ,则J(-2,-2),

∴PJ= AB=2

,∴12+(n+2)2=(2 )2,解得n= -2或n=- -2,
∴P3(-1, -2),P4(-1,- -2),
综上所述,满足条件的点P的坐标为(-1,3)或(-1,-5)或(-1, -2)或(-1,- -2).
在Rt△BOM中,BM=tan 30°·OB= ,∴ME=BE-BM=2- ,
综上所述,ME的值为:3 -2或2- .
考点二直角三角形的存在性问题
解答二次函数中直角三角形存在性问题的方法:
(1)假设其存在,画出相应的图形.
(2)分情况讨论:当所给条件不能确定直角顶点时,应分情况讨论.分别令三角形三个

二次函数压轴之直角三角形的存在性问题,方法集锦

二次函数压轴之直角三角形的存在性问题,方法集锦


AF BG
BF CG

3 m
3
3 (m2 3m)
解得m1 2 7(舍去), m 2 7
C2 (2 7,5 7)
方法一:一线三角构相似
① ②合并
第一种情况
E
设C(m, m2 3m)如图可得AOB : BEC
C
AO BO 得
3
3
BE EC |m2 3m 3| |m|

解得m1 2 7, m 2 7
C=900, AC2 CB2 AB2 (m 3)2 (m2 3m)2 m2 (m2 3m 3)2 18
m1
0,
m2
3 2
17
,
m3
3 2
17
C(0, 0),C(3 17 , 2)C(3 17 , 2)
2
2
ቤተ መጻሕፍቲ ባይዱ
方法三:利用勾股定理
设C(m,m2 -3m)A(3,0)B(0,3) AB2 18, AC 2 (m 3)2 (m2 3m)2 BC 2 m2 (m2 3m 3)2
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标

二次函数中直角三角形的存在性问题

二次函数中直角三角形的存在性问题
〔3〕设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
知识讲解
〔难点突破〕
在两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点。以定点为直角顶点时,构造两条直线与直线垂直;以动点为直角顶点时,以线段为直径构造圆找点。
小结
数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。平时一定要利用数形结合思想去解决实际问题。
教师姓名
肖金凤
单位名称
填写时间
2021年8月23日
学科
ห้องสมุดไป่ตู้数学
年级/册
九年级
教材版本
人教版
课题名称
第22章二次函数-二次函数中直角三角形存在性问题
难点名称
如何把存在的点找全
难点分析
从知识角度分析为什么难
因为学生不会分类讨论,考虑问题不全面,不会用图形的方法找存在的点。不会用数形结合思想解决问题。
从学生角度分析为什么难
二次函数做为压轴题出现,学生想当然的认为难,而直接放弃。会用代数方法计算,但是不会用图像法找点。
难点教学方法
1、通过分类思想,先把复杂问题简单化;
2、通过用希沃白板5的画板作图,直观的找到存在的点在“两线一圆〞上;
3、通过例题的讲解让学生更好的理解数形结合思想。
教学环节
教学过程
导入
1、如图,抛物线y=a +bx+c〔a≠0〕的对称轴为直线x=﹣1,且抛物线经过B〔-3,0〕,C〔0,3〕两点,与x轴交于点A.

二次函数压轴题之全等三角形的存在性(讲义及答案)

二次函数压轴题之全等三角形的存在性(讲义及答案)

二次函数压轴题之全等三角形的存在性(讲义) 课前预习1.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标为(3,0),点D为平面直角坐标系中任一点(与点O,A,B不重合).(1)△AOB和△DOB的公共边为_________.(2)若△DOB与△OAB全等,则点D的坐标为_________.(3)在下图中画出可能的△DOB,并考虑与△AOB之间的联系.知识点睛全等三角形存在性的处理思路1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.2.画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.3.结果验证:回归点的运动范围,画图或推理,验证结果. 精讲精练1.如图,抛物线C1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.(1)求抛物线C1的解析式.(2)设抛物线C1的对称轴与x轴交于点F,另一条抛物线C2经过点E(抛物线C2与抛物线C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)2.如图,抛物线213442y x x =-++与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.3.如图,抛物线21382y x x =--与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.4.如图,抛物线21(2)62y x =--+与y 轴交于点C ,对称轴与x 轴交于点D ,顶点为M .设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 的直线QE 与y 轴交于点E ,使得以O ,Q ,E 为顶点的三角形与△OQD 全等,则直线QE 的解析式为_______________.5.如图,在平面直角坐标系中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数ky(k>0)的图象x过点E且与直线l1相交于点F.(1)若点E与点P重合,求k的值.(2)连接EF.是否存在点E及y轴上的点M,使得以M,E,F为顶点的三角形与△PEF全等?若存在,求出点E的坐标;若不存在,请说明理由.【参考答案】课前预习1.(1)OB(2)(2,-1),(1,1),(1,-1)(3)略精讲精练1.(1)y =-x 2+2x +3;(2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或a =1,b =-4或a =5,b =-4或a =5,b =4.2.(1418241)-+-+,,(1418241)----,,126(426)2-+-,,126(426)2--+,3.(3174)+-,或(3174)--, 4.122y x =+或71724y x -+=-或y =65.(1)2;(2)3(2)8,或8(2)3,.。

2019数学中考复习——二次函数中直角三角形存在性问题

2019数学中考复习——二次函数中直角三角形存在性问题

二次函数中直角三角形存在性问题
解题方法
一、代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
二、几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。

专题训练
例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
几何法:
例2.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB ,动点P 在过A ,B ,C 三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;
例3.如图,在平面直角坐标系中,直线交轴于点,交轴于点,抛物线的图象过点,并与直线相交于、两点. 求抛物线的解析式(关系式);
过点作交轴于点,求点的坐标;
除点外,在坐标轴上是否存在点,使得是直角三角形?若存在,请求出点的坐标,若不存在,请说明理由.
123y x =-
+x P y A 212
y x bx c =-++(1,0)E -A B ⑴⑵A AC AB ⊥x C C ⑶C M MAB ∆M。

数学人教版九年级上册二次函数图像中直角三角形的存在性问题

数学人教版九年级上册二次函数图像中直角三角形的存在性问题

课题:二次函数图像中直角三角形的存在性问题一、教学目标1、掌握求二次函数表达式的方法。

2、掌握判断直角三角形可以从边和角两个角度入手。

3、掌握二次函数与直角三角形结合的动点问题的解决方法。

二、重、难点重点:线段的表示与分类讨论难点:分类讨论三、教学过程情境创设:存在性问题是中考中的热点问题,所涉知识点多,难度较大,也是学生比较荆手的问题,但它也是有解题方法可循的。

比如我们本节课将复习的直角三角形存在性问题,就可利用坐标系中两点的距离公式,正确得到所求三角形三边长的平方的代数式;根据勾股定理的逆定理得到方程,并解方程即可。

知识梳理:1、二次函数的表达式有哪些?一般式:对轴称为顶点坐标(,)项点式:对轴称为顶点坐标(,)交点(两根)式:对轴称为顶点坐标(,)(设计意图:让学生能根据所给条件选用恰当的表达式求二次函数解析式)2、直角三角形的判定方法有哪些?(设计意图:让学生知道判断一个三角形是直角三角形可从边和角两个角度入手,重点是对勾股定理逆定理的运用)3、已知点P(x,y),则点P到x轴的距离为,到y轴的距离为。

(设计意图:让学生知道点的坐标的实际意义)4、两点间的距离公式:用A,B两点的坐标来表示线段AB的长。

(设计意图:让学生知道用两点坐标来表示该两点的线段长)习题展示:oy B( x2,y2)A( x1,y1)x如图,已知抛物线y=-x 2+bx+c 与x 轴交于点A 、B (3,0),与y 轴交于点C (0,3),直线l 经过点B 、C 两点,抛物线的顶点为D 。

(1)求此抛物线和直线l 的解析式;(2)判断ΔBCD 的形状并说明理由;(3)如图,在抛物线的对称轴上求点P ,使ΔPBC 为直角三角形;思考题:如图,在对称轴右侧的抛物线上,是否存在点P ,使ΔPDC 为等腰三角形。

若存在,请求出符合条件点P 的坐标,若不存在,请说明理由;C B A O y xD CBDA yLO C B A O y xD 思路分析:将B (3,0),C (0,3)代入y=-x 2+bx+c 中,得关于b ,c 的二元一次方程组,解出b ,c 的值,从而得到抛物线的解析式;设y=kx+z,将B (3,0),C (0,3)代入y=kx+z ,得关于k ,z 的二元一次方程组,解出k ,z 的值,从而得到直线l 的解析式。

二次函数中直角三角形存在性问题

二次函数中直角三角形存在性问题

二次函数中直角三角形存在性问题
解题方法
一、代数法:
二、几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。

专题训练
例1.如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.
代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
例2.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB,动点P
在过A,B,C 三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;几何法:
例3.如图,在平面直角坐标系中,直线123
y x =-
+交x 轴于点P ,交y 轴于点A ,抛物线212y x bx c =-++的图象过点(1,0)E -,并与直线相交于A 、B 两点.⑴求抛物线的解析式(关系式);
⑵过点A 作AC AB ⊥交x 轴于点C ,求点C 的坐标;
⑶除点C 外,在坐标轴上是否存在点M ,使得∆MAB 是直角三角形?若存在,请求出点M 的坐标,若不存在,请说明理由.。

第07讲二次函数中等腰三角形的存在性问题专题探究(原卷版)

第07讲二次函数中等腰三角形的存在性问题专题探究(原卷版)

第7讲 二次函数中等腰三角形的存在性问题专题探究考点一 “两定一动”型等腰三角形存在性问题【知识点睛】❖ 如图,已知定点A 、O ,在x 轴上找点P ,使△OAP 为等腰三角形则P 1、P 2、P 3、P 4即为符合题意的点P解决策略:⎩⎨⎧“勾股定理”求点“两圆一线”找点(有时也可用两点间距离公式求值) 即:①当OA=OP 时,以O 点为圆心,OA 长为半径画圆,与目标直线x 轴的交点即为所求点②当OA=AP 时,以A 点为圆心,OA 长为半径画圆,与目标直线x 轴的交点即为所求点③当AP=OP 时,线段OA 的中垂线与目标直线x 轴的交点即为所求点【类题训练】1.在平面直角坐标系中,抛物线y =x 2﹣bx +c (b >0,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若△ABC 是等腰直角三角形,则BC 的长为 .4.如图,已经抛物线经过点O (0,0),A (5,5),且它的对称轴为 x =2.(1)求此抛物线的解析式;(2)若点B 是x 轴上的一点,且△OAB 为等腰三角形,请直接写出B 点坐标.5.如图,抛物线与x 轴交于A (﹣2,0),B (4,0),与y 轴交于点C ,点D 在抛物线上.(1)求抛物线的解析式;(2)如图1,连接BC ,若点D 为直线BC 上方抛物线上的点,过点D 作DP ∥x 轴交BC 于点P ,作DQ ∥y 轴交BC 于点Q ,若△DPQ 的面积为2,求D 点坐标;(3)如图2,点M 为抛物线的顶点,当x >﹣2时,在抛物线上是否存在点D 使△AMD 是等腰三角形?若能,请直接写出点D 的坐标;若不能,请说明理由.6.如图,二次函数y =﹣x 2+bx +c 的图象与x 轴相交于点A 和点C (1,0),交y 轴于点B (0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P ,对称轴与x 轴交于点Q ,求四边形AOBP 的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M ,使得△AMB 是以AB 为底边的等腰三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由(请在图2中探索).考点二 “一定两动”型等腰三角形存在性问题【知识点睛】❖ 如图,P 、Q 分别为AB 、CB 上一动点,当△BPQ 是等腰三角形时,有以下几种情况:①BP=BQ ②BQ=PQ ③BP=PQ解决策略:⎩⎨⎧的线段间的等量关系转化或找与定点有关系分类讨论即BQ=PQ 可转化为:85=BP BQ ;BP=PQ 可转化为:85=BQ BP☆特别地:当题目给出的数据还好时,也可选择用代数法来分类讨论等腰三角形步骤如下:①根据点的坐标,表示出三边的平方②根据等腰三角形的性质,可得到两两相等的的三个方程③分别解出这三个方程,再依据结果判断是否存在【类题训练】2.如图,二次函数的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,则∠ACB = °;M 是二次函数在第四象限内图象上一点,作MQ ∥y 轴交BC 于Q ,若△NQM 是以NQ 为腰的等腰三角形,则线段NC 的长为 .3.如图,抛物线y =ax 2+bx +4与x 轴交于A (﹣2,0),B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 是抛物线的顶点,请画出四边形ABDC ,并求出四边形ABDC 的面积;(3)点E 是抛物线上一动点,设点E 的横坐标为t (1<t <4),点F 为抛物线对称轴l 上一点.若△BEF 是等腰直角三角形,请直接写出所有满足条件的点E 的坐标,并写出其中一种情况的计算过程.7.如图1,在平面直角坐标系中,抛物线y =﹣x 2+bx +4经过A (﹣1,3),与y 轴交于点C ,经过点C的直线与抛物线交于另一点E(6,m),点M为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求直线CE的解析式;(2)如图2,点P为直线CE上方抛物线上一动点,连接PC,PE.当△PCE的面积最大时,求点P的坐标以及△PCE面积的最大值.(3)如图3,将点D右移一个单位到点N,连接AN,将(1)中抛物线沿射线NA平移得到新抛物线y′,y′经过点N,y′的顶点为点G,在新抛物线y′的对称轴上是否存在点H,使得△MGH是等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,抛物线x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)如图2,将该抛物线先向左平移4个单位,再向上移3个单位,得到新抛物线y′,新抛物线y′与y轴交于点F,点M为y轴左侧新抛物线y′上一点,过M作MN∥y轴交射线BF于点N,连接MF,当△FMN为等腰三角形时,直接写出所有符合条件的点M的横坐标.。

二次函数中直角三角形存在性问题.doc

二次函数中直角三角形存在性问题.doc

二次函数中直角三角形存在性问题1. 找点:在己知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点•以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直 径构造圆找点2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1以已知线段为斜边时,利用K 型图,构造双垂直模 型,最后利用相似求解,或者三条边分别表示Z 后,利用勾股定理求解例一:如图,抛物线y =加空一2加兀+3加 与x 轴交于A 、B 两点,与y 轴交于C 点.(1) 请求出抛物线顶点M 的坐标(用含m 的代数式表示),A 、B 两点的坐标;(2) 经探究可知,A BC M 与A ABC 的而积比不变,试求出这个比值;(1) 求该抛物线的解析式; (2) M 为第一象限内抛物线上一动点,点M 在何处时,△ ACM 的面积最大;(3) 在抛物线的对称轴上是否存在这样的点P,使得△ PAC 为直角三角形?若存在,请求出所有可能点P 的坐标; 若不存在,请说明理由.(3)是否存在使A BCM 为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由0), B(4, 0),与y 轴交于点C.练习:1.如图.C知抛物线y=ar±bx+c (a«)的顶点M在第一象限,抛物线bx轴相交FA、B两点(点A 住点B的左边),f jy轴交万点C, O为唯标原点,如果ZkABM是何角二角形,AB=2, OM= J5(1)求点M的坐标;(2)求抛物线y=ax2+bx+c的解析式;(3)在抛物线的对称轴匕是否存在点P,使W APAC为直角三角形?若存在.请求出所有符合条件的点P 的坐标:若不存在•请说明理由.2.如图,抛物线y =〒一2加兀(m>0)与x轴的另一个交点为A,过P(l, -m)作PM丄x轴于点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C.(1)若m二2,求点A和点C的坐标;(2)令m>l,连接CA,若AACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得APEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.3.如图,抛物线y =衣+分+2与x轴交于点A(l, 0)和B(4, 0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC〃x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使AOCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4、在平面直角坐标系中,抛物线y = ++仗一1)兀一比与直线y二kx+1交于A, B两点,点A在点B的左侧.(1)如图1,当k二1吋,直接写出A, B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求岀AABP面积的最大值及此时点P 的坐标;(3)如图2,抛物线y =兀2+仗_1)兀一比(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y二kx+1 使得Z0QC=90° ?若存在,请求出此吋k的值;若不存在,请说明理由.5.如图,直线y=x+2与抛物线y = ajc^-bx^6 (a#0)相交于A (2, 2)和B(4, m),点P是线段AB上异于A、B的动点,过点P作PC丄x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求厶PAC为直角三角形时点P的坐标.6、如图,抛物线y = ci^+bx+c经过A(-3, 0)、C(0, 4),点B在抛物线上,。

二次函数直角三角形存在性问题解题技巧2019年河南中考

二次函数直角三角形存在性问题解题技巧2019年河南中考

二次函数直角三角形存在性问题解题技巧2019年河
南中考
该问题还可以引生为等腰和直角共存的问题,但是无论什么样的情况,我们都需要先掌握基本的等腰三角形及直角三角形存在性问题的解法。

解这两类存在性问题,一般分三个步骤,一是寻找分类标准,而是列方程,三是解方程并验根。

(突出利用两点间距离公式的思路)。

探究等腰三角形的存在性问题时需将情况考虑全面,题目中未指定哪条边是腰或底边时,需分类讨论哪两条边是腰的情况.当有两个点是定点,一个是动点时,即"两定一动"型,有两种解决方法:①"两圆一线"法;②分类讨论法.
对于直角三角形的存在性问题,应充分利用图形的几何关系,需要常常和相似三角形,锐角三角形函数提供的三角比解决,但无论是哪种方法,分类标准是共通的,而分类时寻找确定的直角顶点往往需要用到圆周角的知识。

一般情况下,按照直角顶点或者斜边分类,然后按照勾股定理或者三角比列方程,有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便。

中考复习 数学压轴题二次函数与三角形存在性问题破解策略课件)

中考复习 数学压轴题二次函数与三角形存在性问题破解策略课件)
3 2
16 3- 137
= ;
153 16
,
当 TA=AC 时,得 t2+16= 16 ,无解; 当 TA=TC 时,得 t2- t+ =t2+16, 解得 t3=- ;
8 77 16 25
153
综上可知,在抛物线y2的对称轴l上存在点T使△TAC是等腰三角形, 此时T点的坐标为
T1(1,
3+ 137 4
所以,抛物线 y1 的解析式为
因为抛物线 y1 平移后得到抛物线 y2,且顶点为 B(1,0), 1 所以抛物线 y2 的解析式为 y2=-4(x-1)2, 即
1 2 1 1 y2=- x + x- ; 4 2 4
(2)抛物线y2的对称轴l为x=1,
设 T(1,t),已知 A(-3,0),C(0, ),
QR=2-2m, 又因为以P,Q,R为顶点的三角形与△AMG全等, 当PQ=GM且QR=AM时,m=0,
4 2 4
可求得 P(0, ),即点 P 与点 C 重合, 所以 R(2,- ). 设 PR 的解析式 y=kx+b, 则有 ������ = 4 ,
3 4 1 4
3
2������ + ������ = - 4 .
坐标,注意要根据题意舍去不合题意的点.
(1)求抛物线y2的解析式; (2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在 ,请求出所有点T的坐标;若不存在,请说明理由; (3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点
Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG
2
∴抛物线的表达式是
2 2 8 y= x +2x- . 3 3

中考复习函数专题28 二次函数中的三角形问题(老师版)

中考复习函数专题28 二次函数中的三角形问题(老师版)

专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

要点补充:专项训练一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A .B .C .D .【答案】A 【分析】设三角形运动速度为1,分0≤t≤2时,2<t≤2时,2<时,时五种情况,可知等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,分别求出函数关系式,即可得出答案. 【详解】∵等腰直角三角形的直角边长为1, ∵当s =12×1×1+2×2﹣212t ⨯=92﹣12t 2;s =22-12+2×12t)2=t 2﹣112;t≤2时,s =2122-×1×1=72;当2<时,s =22-2×12(t -2)2=t 2﹣4t+152;当2+2<s =22+12-2×12t+2)2=92t+2)2,∵等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,且变小、变大时的图象为抛物线,不变时的图象为直线, ∵A 符合要求, 故选:A . 【点睛】考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,熟练掌握二次函数的图象是解题关键.2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .712【答案】B 【分析】由抛物线的对称性可知,所有构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d <1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的顶点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x 轴的交点值与对称轴的距离,从而可求得d 的值 【详解】解: 直线l :13y x b =+经过点M (0,14)则b=14,∵直线l :1134y x =+由抛物线的对称性知:抛物线的顶点与x 轴的两个交点构成的直角三角形必为等腰直角三角形; ∵该等腰三角形的高等于斜边的一半 ∵0<d <1∵该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)∵当x=1时,11173412y =+=<1;当x=2时,221113412y =+= <1; 当x=3时,315144y =+=>1; ∵美丽抛物线的顶点只有12,B B ∵若1B 为顶点,由17(1,)12B ,则7511212d =-= , ∵若2B 为顶点,由211(2,)12B ,则11111(2)11212d ⎡⎤=---=⎢⎥⎣⎦综上所述,d 的值为512或1112时,存在美丽抛物线. 故选B . 【点睛】此题主要考查抛物线与x 轴的交点,抛物线的对称性.3.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是A.16B.15C.14D.13【答案】C【详解】根据在OB上的两个交点之间的距离为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,∵一共有7条抛物线.同理可得开口向上的抛物线也有7条.∵满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选C.4.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果∵ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决二次函数中三角形存在性问题
关于直角三角形找点和求点的方法
1、 直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一圆法,在图上找出存在点的个数,只找不求。

所谓的两线就是指以已知边为直角边,过已知边的两个端点分别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。

2、具体方法 (1)121-=⋅k k ;
(2)三角形全等(注意寻找特殊角,如30°、60°、45°、90°)
(3)三角形相似;经常利用一线三等角模型
(4)勾股定理;
当题目中出现了特殊角时,优先考虑全等法
例1、如图:A(0,1) B(4,3)是直线y=1/2x+1上的两点,点p 是x 轴上一点,若△ABP 是直角三角形,则点p 的坐标是多少?
解:(1)当∠BAP 为90°时,因为LAB: y=1/2x+1 LAP1: y= -2x+1 所以p1(1/2,0)
(2)当∠PBA=90°时,因为LAB: y=1/2x+1 LAP2: y= -2x+11 所以p2(11/2,0)
(3)当∠APB=90°时,,如图过点B 作BD ⊥X 轴于D
例2:如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3).(1)求抛物线的解析式;
(2)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
解:(1)抛物线的解析式为:y=x2+2x-3;
(2)∵y=x2+2x-3=y=(x+1)2-4,∴顶点D的坐标为(-1,-4),
∵A(-3,0),∴AD2=(-1+3)2+(-4-0)2=20.
设点M的坐标为(0,t),分三种情况进行讨论:
(1)A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,
即(0+3)2+(t-0)2+20=(0+1)2+(t+4)2,
解得t=3/2,所以点M的坐标为(0,3/2);
②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,
即(0+1)2+(t+4)2+20=(0+3)2+(t-0)2,
解得t=- 7/2,所以点M的坐标为(0,- 7/2);
③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,
即(0+3)2+(t-0)2+(0+1)2+(t+4)2=20,
解得t=-1或-3,所以点M的坐标为(0,-1)或(0,-3);
综上可知,M的坐标为(0,3/2)或(0,- 7/2)或(0,-1)或(0,-3).
(二)关于等腰三角形找点(作点)和求点的不同,
1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两圆一线法,在图上找出存在点的个数,只找不求。

2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分顶点进行讨论,
如:已知两点A、B,在抛物线上求一点C,使得三角形ABC 为等腰三角形解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度,
第二步,作假设,(1)以点A为顶点的两条腰相等,即AB=AC
(2)以点B为顶点的两条腰相等,即BA=BC
(3)以点C为顶点的两条腰相等,即CA=CB
第三步,根据以上等量关系,求出所求点的坐标
第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。

例:已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
解:(1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得到抛物线的解析式:y=-x2+2x+3.
(2)抛物线的对称轴为:x=1,设M(1,m),已知A(-1,0)、C(0,3),则: MA2=m2+4, MC2=(m -3)2+1=m2-6m+10, AC2=10;
(1)MA=MC,则MA2=MC2,得: m2+4=m2-6m+10,得:m=1;
②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±√6;
③若MC=AC,则MC2=AC2,得:m2-6m+10=10,得:m1=0,m2=6;
设直线AC的解析式为y=k1x+b1(k≠0),将A(-1,0),C(0,3)代入上式,得
Y=3x+3,与直线x=1的交点坐标为(1,6),所以:当m=6时,M、A、C三点共线,构不成三角形,舍去;
综上可知,符合条件的M点,且坐标为 M(1,1),(1,-√6 ),(1,√6),(1,0).易错点及方法总结:当以C为顶点的两条腰相等时,求出的点M有可能与AC共线,所以要进行检验,这一点非常关键。

以其它两点为顶点的两条腰相等时,不可能存在共线问题,所以不用检验。

【课后练习】
1.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
2. 如图,直线和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;
(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .
① 求S 与t 的函数关系式;
② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;
③在运
动过程中,当△MON 为直角三角形时,求t 的值.
434+-=x y
3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
4.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;。

相关文档
最新文档