低温压力容器技术要求汇总
低温压力容器设计探究
低温压力容器设计探究发布时间:2021-05-14T09:52:36.527Z 来源:《科学与技术》2021年第29卷第4期作者:张永刚[导读] 随着我国经济社会的发展和科技技术的进步张永刚北京石油化工工程有限公司西安分公司陕西西安 710075摘要:随着我国经济社会的发展和科技技术的进步,低温技术得到了迅速发展和广泛应用。
笔者就低温压力容器的使用特点及存在的失效模式,设计时低温压力容器的选材、结构设计、焊接制造要求、焊后热处理、无损检测等应注意的事项作了分类分析,为工作中低温压力容器设计给予更多的参考。
关键词:低温压力容器;设计要点;注意事项;引言随着我国经济社会的发展和科技技术的进步,低温技术得到了迅速发展和广泛应用。
低温压力容器发生失效破坏会造成出人意料的极大危害,因此在低温压力容器设计时必须科学合理,保证其质量。
1低温压力容器的失效形式由于环境低温或介质低温的影响,随着使用温度的降低,低温压力容器的失效主要形式是脆性断裂。
低温脆性断裂是金属材料在温度降低至临界值(一般为其韧脆转变温度)以下时,在没有预兆的情况下发生的,在容器结构失效之前没有明显的塑性变形,一旦发生断裂,失效速度很快,断口齐平、与最大主应力方垂直,光亮平滑,呈晶粒状,壁厚无明显塑性变薄;脆性断裂时,结构元件内部的应力水平通常低于材料的屈服强度,甚至低于材料的设计应力(材料的许用应力),因此脆性断裂具有低应力破坏特征。
在设计低温压力容器时,除了确保容器强度条件之外,还需要进行必要的防脆断设计或评定。
低温脆性断裂与材料的力学性能、操作温度、缺陷形状和大小、残余应力和是否进行热处理等诸多因素有关。
2低温压力容器设计要点 2.1确定设计温度我国对低温容器的划分是指设计温度低于-20℃的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。
对于低温容器,其设计温度是指在正常工作情况下,设定的不高于可能达到的最低金属温度。
GB3531—2014《低温压力容器用钢板》国家标准主要内容介绍分析
≤0.008 ≥27*
≤0.025 ≥27
-40℃ KV2 J
*可协商为40J。
标准
钢号 厚度 mm P S % %
GB35312014 16MnDR 6~60 ≤0.020 ≤0.010 ≥47
ISO9328ISO93283:2011 3:2011 附录A(欧洲) 附录B(美) P355NL1 ≤60 ≤0.025 ≤0.008 ≥27* PT440NL1 6~38 ≤0.025 ≤0.020 ≥47
06Ni9DR钢板冶金质量和力学性能优良, 可用于建造大型深冷储罐和压力容器;国 内企业已成功开发该产品,该产品关键技 术指标,如磷、硫含量,断后伸长率,196℃低温冲击功等优于美国ASMESA553 标准中I型钢板的相应指标,甚至优于国外 先进标准EN10028:4中技术要求最高的 X7Ni9钢板的相应指标。已具备批量生产该 种钢板的能力,纳入标准要求。
钢由氧气转炉或电炉冶炼,并应经炉
外精炼。
连铸坯、钢锭轧制压缩比不小于3;电渣 重熔坯轧制压缩比不小于2。
6.3 交货状态 6.4 力学和工艺性能
。
6. 5 超声检测
厚度大于20mm的正火或正火加回火状态交 货钢板以及厚度大于16mm的淬火加回火状 态交货的钢板供方应逐张进行超声检测。 其他厚度钢板经供需双方协商也可逐 张进行超声检测。 超声检验标准按JB/T 4730.3、GB/T 2970或GB/T 28297执行,检验标准和 合格级别在合同中注明。
ISO93284:2011 附录B(美)
14Ni14 6~50
钢号 厚度 mm
P
S KV2
%
% J
≤0.015
≤0.005 -100℃ ≥60
压力容器焊接、检测、热处理技术要求(1)
、冷却方式等参数,以确保其符合相关标准和要求。
热处理效果检测
02
采用硬度测试、金相分析等方法,对热处理后的压力容器进行
检测,以验证其组织和性能的变化。
安全性能评估
03
根据热处理效果检测结果,对压力容器的安全性能进行评估,
以确定其是否满足使用要求。
综合安全性能评估
综合评估方法
采用综合分析的方法,将焊接接头安全性能评估、无损检测结果安 全性能评估和热处理效果安全性能评估的结果进行综合考虑。
加强产品质量监督和检验
设定明确的改进目标
加大对关键工序和成品的监督力度,提高 产品质量的稳定性和可靠性。
根据公司发展战略和市场需求,设定明确 的改进目标,推动公司持续改进和发展。
THANKS
感谢观看
不合格处理
对于不合格的焊接接头,需进行返 修或报废处理,并重新进行检测和 评定。
记录与报告
详细记录检测结果和评定结果,并 出具相应的检测报告和技术资料。
检测周期与频次
定期检测
根据压力容器使用情况和相关规 范,制定定期检测计划,并按计
划进行检测。
特殊情况下的检测
在压力容器发生异常情况或经过 重大维修后,需进行特殊检测以
预防措施
优化焊接工艺参数,提高 焊工技能水平,加强焊前 预热和焊后热处理等。
控制手段
采用无损检测技术(如射 线检测、超声波检测等) 对焊缝进行质量检查,及 时发现并处理缺陷。
02
检测技术要求
无损检测方法
01
02
03
04
射线检测
利用X射线或γ射线穿透压力 容器焊缝,在胶片上形成影像
,以检测焊缝内部缺陷。
根据压力容器的结构特点和设计要求 ,选择合适的接头形式,如对接接头 、角接接头、T型接头等。
低温压力容器技术要求汇总
低温压力容器技术要求汇总1.材料选择:低温压力容器的材料需要具有良好的低温强度、塑性和韧性。
常见的材料包括低温钢、不锈钢和铝合金等。
在选择材料时需要考虑介质的特性以及运行条件等因素。
2.结构设计:低温压力容器的结构设计需要满足强度和稳定性的要求。
在低温环境下,材料的强度和刚度会减小,因此需要合理设计结构,增强容器的抗弯刚度和稳定性。
3.焊接工艺:低温压力容器的焊接工艺需要选择合适的焊接材料和焊接方法,确保焊接接头的质量和可靠性。
在低温环境下,焊接接头容易产生冷裂纹和焊接残余应力,需要采取相应的预热和后热处理措施。
4.密封性能:低温压力容器的密封性要求非常高,以确保介质不泄漏和外界不进入容器。
需要采用高性能的密封材料和密封结构,并进行严格的密封性能测试。
5.热绝缘和保温:低温压力容器需要采取有效的热绝缘和保温措施,以减少介质热量的传导和散失。
常见的保温材料包括气体绝热材料、真空层和多层隔热结构等。
6.安全防护:低温压力容器需要具备良好的安全性能和可靠的防护措施。
需要设计安全阀、爆破片和泄漏报警装置等安全装置,以防止容器内部压力超过安全范围或发生泄漏事故。
7.检验和监测:低温压力容器需要进行严格的检验和监测,以确保容器的安全运行。
需要进行外观检查、尺寸检验、无损检测和压力测试等各项检验工作,并建立完善的监测系统进行容器的实时监测和故障预警。
8.缺陷评定:低温压力容器的缺陷评定需要参考相关标准和规范,对容器的缺陷进行定性和定量评定,并制定相应的修复方案。
9.记录和档案:低温压力容器需要建立完善的记录和档案,包括容器的设计、制造、检验和维护等各个环节的相关资料,以便于追溯和管理。
总之,低温压力容器技术要求极高,需要在材料选择、结构设计、焊接工艺、密封性能、热绝缘和保温、安全防护、检验和监测、缺陷评定以及记录和档案等方面进行全面考虑和实施,以确保容器在低温环境下的安全运行和可靠性。
《HGT20585-2020钢制低温压力容器技术规范》条文说明
中华人民共和国化工行业标准钢制低温压力容器技术规范HG/T20585-20XX条文说明目次修订说明 (29)1总则 (30)3基本规定 (31)4材料 (33)5强度计算与结构设计 (34)6制造和检验 (35)6.1制造与检验一般要求 (35)6.3受压元件的成形 (35)6.4焊接 (35)6.5焊后消除应力热处理 (35)6.7无损检测 (35)修订说明《钢制低温压力容器技术规范》(HG/T20585—20XX),经工业和信息化部XXXX年XX月XX日以第XX 号公告批准发布。
本规范是在《钢制低温压力容器技术规定》(HG/T20585—2011)的基础上修订而成,上一版的主编单位是中石油东北炼化工程有限公司吉林设计院(现中石油吉林化工工程有限公司),主要编制人员为:倪云峰、王巍、梁瑾、王宏、阮黎祥、逄金娥、郝文生、王钰玮、安丰华、郭益德、赵斌义、丁伯民、秦叔经。
本次修订的主要技术内容是:1.将适用范围章节修改合并为总则章节;2.将低温低应力工况压力容器纳入基本规定章节;3.对低温低应力工况压力容器的要求改为与GB/T150相协调;4.对碳素钢、低合金钢、高镍合金钢材料及其焊接接头的冲击吸收能量进行了适当提高;5.对于标准抗拉强度下限值大于630MPa的材料,其低温冲击试验增加了侧向膨胀值的要求;6.取消了09MnNiDR做壳体时接管的推荐结构;7.增加了3.5%Ni钢和9%Ni钢制低温压力容器的相关技术要求;本规范修订过程中,编制组进行了广泛调查研究,总结了我国工程建设化工设备设计、使用过程中的实践经验,同时参考了国外先进标准。
为便于广大设计、科研、学校等单位有关人员在使用本规范时能正确理解和执行条文规定,《钢制低温压力容器技术规范》编制组按章、节、条顺序编制了本规范的条文说明,对条文规定的目的、依据以及执行中需注意的有关事项进行了说明。
但是,本条文说明不具备与标准正文同等的法律效力,仅供使用者作为理解和把握标准规定的参考。
GB150-98附录C低温压力容器
附录 C (标准的附录) 低温压力容器C1 总则C1.1 本附录适用于设计温度低于或等于- 2O ℃钢制低温压力容器(以下简称“低温容器”)的设计、制造、检验与验收。
C1.2 对本附录未作规定者,还应符合本标准各有关章节的要求。
C1.3 由于环境温度的影响,壳体的金属温度低于或等于- 20 ℃时,也应遵循本附录的规定。
注:环境温度系指容器使用地区历年来“月平均最低气温的最低值”。
“月平均最低气温”系按当月各天的最低气温相加后除以当月的天数。
C1.4 铬镍奥氏体不锈钢低温容器,在设计温度高于或等于- 196 ℃,且满足下列各项要求时,可不遵循本附录的规定。
a) 母材应为含碳量小于或等于 0.10 %符合本标准的铬镍奥氏体不锈钢;b) 焊接材料和工艺应符合 JB/T4709 的要求;c) 设计温度低于- 100 ℃时,应按 JB4708 进行焊缝金属的低温夏比(V形缺口)冲击试验,且符合 C2.1.7 的要求。
C1.5 当壳体或其受压元件使用在“低温低应力工况”下,若其设计温度加 50 ℃后,高于- 20 ℃时,不必遵循本附录的规定。
“低温低应力工况”系指壳体或其受压元件的设计温度虽然低于或等于- 20 ℃,但其环向应力小于或等于钢材标准常温屈服点的六分之一,且不大于 50MPa 时的工况。
“低温低应力工况”不适用于钢材标准抗拉强度下限值大于 540MPa 的低温容器。
螺栓材料一般不列入低温低应力工况考虑,但应计及螺栓和壳体设计温度间的差异。
C2 材料C2.1 钢材C2.1.1 低温容器受压元件用钢必须是镇静钢,钢材的使用温度下限可不同于钢材标准中规定的最低试验温度。
C2.1.2 直接与受压元件焊接的非受压元件用钢,应符合下列要求:a) 承受较大载荷需做强度计算的非受压元件用钢,应具有与受压元件相当的韧性;b) 应是焊接良好的钢材。
C2.1.3 钢材的超声检测、磁粉检测,除以下要求外,均按第 4 章的有关规定。
低温压力容器技术要求汇总
低温压力容器技术要求汇总1. 钢板逐张超声检测板厚大于20mm的16MnDR、Ni系低温钢(调质状态除外),逐张检查,不低于Ⅱ级合格。
(GB150-2011)用于制造低温压力容器筒体、凸形封头和球壳的钢板,厚度超过以下数值时,需按《承压设备无损检测》JB4730.3进行超声检测,且不低于Ⅲ级。
(HG/T20585-2011)板厚大于16~20mm的钢板,每批抽检20%,最少1张。
板厚大于20mm的钢板,逐张检查。
(GB150规定质量等级不低于Ⅱ级)用作低温压力容器筒体的无缝钢管应逐根按《承压设备无损检测》JB4730.3进行超声检测检查。
2. 焊后热处理球壳板厚度≥16mm的低温球罐应进行焊后整体热处理。
(GB12337-1998附录A)受压元件焊接接头厚度超过16mm时,低温压力容器或部件全部施焊工作完成后,应进行消除应力热处理。
热处理工艺应与焊接工艺评定的热处理制度(温度曲线)一致。
(HG/T20585-2011)3. 100%射线或超声检测设计温度低于-40℃的或者焊接接头厚度大于25mm的低温容器。
(GB150-2011)低温压力容器的对接接头符合下列情况之一者,应经100%射线或超声检测:(HG/T20585-2011)盛装易爆介质的容器,且设计压力大于0.6MPa者设计压力大于等于1.6MPa者壳体板厚大于25mm者钢材标准规定的最低抗拉强度Rm>540MPa或合金元素含量大于3%的低合金钢。
设计温度低于-40℃者。
C.无损检验方法和评定标准应符合下列要求对接接头的射线检测按《承压设备无损检测》的规定进行。
射线照相的质量应不低于AB级,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测)焊接接头的超声检测按《承压设备无损检测》的规定进行,无论100%检测及局部检测均应不低于Ⅰ级要求。
焊接接头的TOFD检测《承压设备无损检测》的规定进行,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测)。
压力容器低温低应力工况原理及其温度调整准则探讨
压力容器低温低应力工况原理及其温度调整准则探讨发布时间:2022-03-22T01:59:37.438Z 来源:《福光技术》2022年3期作者:张红卫[导读] 低温压力容器泛指设计温度低于零下二十度的碳素钢、低合金钢、双相不锈钢等容器,低温压力容器在原则上应根据低温工况开展设计、制造、检验、使用、管理等工作,但是,并非所有设计温度低于零下二十度的压力容器都需开展低温压力容器设计与制造。
基于此,本文将主要针对压力容器低温低应力工况原理以及其温度调整准则展开相关探讨研究。
张红卫重庆市特种设备检测研究院 401121摘要:低温压力容器泛指设计温度低于零下二十度的碳素钢、低合金钢、双相不锈钢等容器,低温压力容器在原则上应根据低温工况开展设计、制造、检验、使用、管理等工作,但是,并非所有设计温度低于零下二十度的压力容器都需开展低温压力容器设计与制造。
基于此,本文将主要针对压力容器低温低应力工况原理以及其温度调整准则展开相关探讨研究。
关键词:压力容器;低温低应力;温度调整引言:与传统的压力容器相比,在设计、材料、制造、检验等方面都有很高的要求。
在实际工程中,某些装置的运行参数达到了GB/T15-2011 《压力容器》中规定的标准,因此,若只采用这种方法,会大大提高设备的生产成本。
如果能够通过运行参数来判断,该装置满足 GB/T1551-2011 《压力容器》、 HG/T20585-2011 《钢制低温压力容器技术规定》中的低温、低应力条件,从而降低了生产成本,缩短了生产周期,达到了TSG21-2016 《固定式压力容器安全技术监察规程》的节能标准。
1低温低应力工况原理GB150.3-2011 《压力容器》附录 E 《关于低温压力容器的基本设计要求》 E1.4中所述:“低温低应力状态”是指在设计压力小于或等于钢材在-20℃下的情况下,在设计压力小于或等于钢的标准屈服强度的6/6,而不超过50 MPa。
(注:即一次应力P,二次应力σ和峰值应力F。
GB1501-2019压力容器通用要求--新GB150宣贯教材
GB150.1《压力容器 通用要求》
安全系数的确定和国家的综合技术能力以及 压力容器的建造历史有关,一般要考虑如下的 因素:
(1) 压力容器材料的技术水平和供应稳定状 况;
(2) 强度设计准则和设计计算方法的可靠性 ;
(3) 压力容器建造的技术能力和装备能力; (4) 压力容器建造的质量管理方式和管理水
GB 150—2019 中所采用的稳定安全系数如下: 1. 对于圆筒的外压稳定计算,取稳定安全系数m=3.0; 2. 对于球壳和成形封头(包括椭圆形、碟形、半球形、球冠 形)封头的外压稳定计算,取稳定安全系数m=15; 3. 对于圆筒加强圈的外压稳定计算,取稳定安全系数m=3.0 。
GB150.1-2019
《压力容器 第1部分:通用要求》
GB150.1《压力容器 通用要求》
压力容器 第1部分:通用要求
1 前言 现代压力容器建造技术标准的发展趋势具有如下特点:
[) 采用基于失效模式的设计方法.保证容器在完整寿命周 期内的功能性、安全性和经济性; 2) 在设计、制造、检验等环节广泛采用以计箅机技术应用 为代表的信息技术,实现以可靠性为基础的质量控制技术; 3) 更广的标准适用范围,实现技术标准和安个法规的协调 一致,包容其他国家的技术要求,体现综合建造能力; 4) 谋求提高本国产在国际贸易中的国家竞争力。
GB150.1《压力容器 通用要求》
3.2.4.1 确定材料基本许用应力的系数 在世界各国的压力容器标准中,确定材料基本许用应力
的系数一般主要针对材料的抗拉强度、屈服强度、高温持久 断裂强度和高温蠕变强度设定相应的设计裕度,以防止由于 前述原因等引起的失效。 3.2.4.2 针对外压失稳失效模式的稳定安全系数
(medium and high cycle fatigue)or under elasticplasticstrains(low cycle fatigue); ● 环境助长疲劳Environmentally assisted fhtigue
压力容器常用标准、规范
压力容器设计常用规范、规定和标准1.设计标准GB 150-1998 钢制压力容器*GB 151-1999 管壳式换热器*GB 12337-1998 钢制球型储罐HG/T 20569-1994 机械搅拌设备JB/T 4710-2005 钢制塔式容器JB/T 4731-2005 钢制卧式容器JB/T 4734-2002 铝制焊接容器JB/T 4735-1997 钢制焊接常压容器JB/T 4745-2005 钛制焊接容器2.基础标准HG 20580-1998 钢制化工容器设计基础规定*HG 20581-1998 钢制化工容器材料选用规定*HG 20582-1998 钢制化工容器强度计算规定HG 20583-1998 钢制化工容器结构设计规定*HG 20584-1998 钢制化工容器制造技术要求HG 20585-1998 钢制低温压力容器技术规定*HG 20652-1998 塔器设计技术规定3.设备型式参数标准GB/T 17261-1998 钢制球型储罐型式与基本参数JB/T 4714-1992 浮头式换热器和冷凝器型式与基本参数JB/T 4715-1992 固定管板式换热器型式与基本参数JB/T 4716-1992 立式热虹吸式重沸器型式与基本参数JB/T 4717-1992 U型管式换热器型式与基本参数4.制造检验标准GB/T 4334.1-2000 不锈钢 10%草酸浸蚀试验方法GB/T 4334.2-2000 不锈钢硫酸-硫酸铁腐蚀试验方法GB/T 4334.3-2000 不锈钢 65%硝酸腐蚀试验方法GB/T 4334.4-2000 不锈钢硝酸-氢氟酸腐蚀试验方法GB/T 4334.5-2000 不锈钢硝酸-硫酸铜腐蚀试验方法GB/T 4334.6-2000 不锈钢 5%硫酸腐蚀试验方法JB 4708-2000 钢制压力容器焊接工艺评定JB/T 4709-2000 钢制压力容器焊接规程JB/T 4730-2005 承压设备无损检测5.筒体GB/T 9019-2001 压力容器公称直径GB/T 17395-1998 无缝钢管尺寸、外形、重量及允许偏差6.封头HG 21607-1996 异型筒体和封头JB/T 4746-2002 钢制压力容器用封头GB/T 539-1995 耐油石棉橡胶板GB/T 3985-1995 石棉橡胶板GB/T 4622.1-2003 缠绕式垫片分类GB/T 4622.2-2003 缠绕式垫片管法兰用垫片尺寸GB/T 4622.3-1993 缠绕式垫片技术条件GB/T 9112-2000 钢制管法兰类型与参数GB/T 9113.1-2000 平面、突面整体钢制管法兰GB/T 9113.2-2000 凹凸面整体钢制管法兰GB/T 9113.3-2000 榫槽面整体钢制管法兰GB/T 9113.4-2000 环连接面整体钢制管法兰GB/T 9114-2000 突面带颈螺纹钢制管法兰GB/T 9115.1-2000 平面、突面对焊钢制管法兰GB/T 9115.2-2000 凹凸面对焊体钢制管法兰GB/T 9115.3-2000 榫槽面对焊钢制管法兰GB/T 9115.4-2000 环连接面对焊钢制管法兰GB/T 9116.1-2000 平面、突面带颈平焊钢制管法兰GB/T 9116.2-2000 凹凸面带颈平焊钢制管法兰GB/T 9116.3-2000 榫槽面带颈平焊钢制管法兰GB/T 9116.4-2000 环连接面带颈平焊钢制管法兰GB/T 9117.1-2000 突面带颈承插焊钢制管法兰GB/T 9117.2-2000 凹凸面带颈承插焊钢制管法兰GB/T 9117.3-2000 榫槽面带颈承插焊钢制管法兰GB/T 9118.1-2000 突面对焊环带颈松套钢制管法兰GB/T 9118.2-2000 环连接面对焊环带颈松套钢制管法兰GB/T 9119-2000 平面、突面板式平焊钢制管法兰GB/T 9120.1-2000 突面对焊环板式松套钢制管法兰GB/T 9120.2-2000 凹凸面对焊环板式松套钢制管法兰GB/T 9120.3-2000 榫槽面对焊环板式松套钢制管法兰GB/T 9121.1-2000 突面平焊环板式松套钢制管法兰GB/T 9121.2-2000 凹凸面平焊环板式松套钢制管法兰GB/T 9121.3-2000 榫槽面对焊环板式松套钢制管法兰GB/T 9122-2000 翻边环板式松套钢制管法兰GB/T 9123.1-2000 平面、突面钢制管法兰GB/T 9123.2-2000 凹凸面钢制管法兰GB/T 9123.3-2000 榫槽面钢制管法兰GB/T 9123.4-2000 环连接面钢制管法兰GB/T 9124-2000 钢制管法兰技术条件GB/T 9125-2003 管法兰连接用紧固件GB/T 9126-2003 管法兰用非金属平垫片尺寸GB/T 9128-2003 钢制管法兰用金属环垫尺寸GB/T 9129-2003 管法兰用非金属平垫片技术条件GB 9130-1988 钢制管法兰连接用金属环垫技术条件HG 20592-2009 钢制管法兰型式、参数(欧洲体系)*HG 20615-1997 钢制管法兰型式、参数(美洲体系)*8.压力容器法兰、垫片、紧固件JB/T 4700-2000 压力容器法兰分类与技术条件JB/T 4701-2000 甲型平焊法兰JB/T 4702-2000 乙型平焊法兰JB/T 4703-2000 长颈对焊法兰JB/T 4704-2000 非金属软垫片JB/T 4705-2000 缠绕垫片JB/T 4706-2000 金属包垫片JB/T 4707-2000 等长双头螺柱9.试镜、液面(位)计HG 21505-1992 组合式视镜HG/T 21550-1993 防霜液面计HG/T 21575-1994 带灯视镜HG/T 21584-1995 磁性液位计HG 21588-1995 玻璃液面计标准系列及技术要求HG 21589.1-1995 透光式玻璃板液面计(PN2.5)HG 21589.2-1995 透光式玻璃板液面计(PN6.3)HG 21590-1995 反射式玻璃板液面计(PN4.0)HG 21591.1-1995 视镜式玻璃板液面计(常压)HG 21591.2-1995 视镜式玻璃板液面计(PN0.6)HG/T 21619-1986 视镜(Pg10,16,25)HG/T 21620-1986 带颈视镜(Pg10,16,25)HG/T 21622-1990 衬里视镜标准图HG/T 21622.3-1990 带颈衬里视镜JB/T 9243-1999 玻璃管液位计JB/T 9244-1999 玻璃板液位计10.安全附件GB 567-1999 爆破片与爆破片装置GB/T 12241-1989 安全阀一般要求GB/T 12243-1989 弹簧直接载荷式安全阀GB/T 12253-1999 拱形金属爆破片装置分类与安装尺寸GB/T 12266-1993 正拱形金属爆破片型式与参数GB/T 12267-1999 反形金属爆破片型式与参数GB/T 12268-1999 开缝形金属爆破片型式与参数GB/T 16181-1996 爆破片装置夹持型式和外形尺寸11.人孔、手孔钢制人孔和手孔(HG/T 21514~21535-2005 ) HG/T 21514-2005 钢制人孔和手孔的类型与技术条件HG/T 21515-2005 常压人孔HG/T 21516-2005 回转盖板式平焊法兰人孔HG/T 21517-2005 回转盖带颈平焊法兰人孔HG/T 21518-2005 回转盖带颈对焊法兰人孔HG/T 21519-2005 垂直吊盖板式平焊法兰人孔HG/T 21520-2005 垂直吊盖带颈平焊法兰人孔HG/T 21521-2005 垂直吊盖带颈对焊法兰人孔HG/T 21522-2005 水平吊盖板式平焊法兰人孔HG/T 21523-2005 水平吊盖带颈平焊法兰人孔HG/T 21524-2005 水平吊盖带颈对焊法兰人孔HG/T 21525-2005 常压旋柄快开人孔HG/T 21526-2005 椭圆形回转盖快开人孔HG/T 21527-2005 回转拱盖快开人孔HG/T 21528-2005 常压手孔HG/T 21529-2005 板式平焊法兰手孔HG/T 21530-2005 带颈平焊法兰手孔HG/T 21531-2005 带颈对焊法兰手孔HG/T 21532-2005 回转盖带颈对焊法兰手孔HG/T 21533-2005 常压快开手孔HG/T 21534-2005 旋柄快开手孔HG/T 21535-2005 回转盖快开手孔不锈钢人孔、手孔(HG 21594~21604-1999)HG 21594-1999 不锈钢人、手孔分类与技术条件HG 21595-1999 常压不锈钢人孔HG 21596-1999 回转盖不锈钢人孔HG 21597-1999 回转拱盖快开不锈钢人孔HG 21598-1999 水平吊盖不锈钢人孔HG 21599-1999 垂直吊盖不锈钢人孔HG 21600-1999 椭圆快开不锈钢人孔HG 21601-1999 常压快开不锈钢手孔HG 21602-1999 平盖不锈钢手孔HG 21603-1999 回转盖快开不锈钢手孔HG 21604-1999 旋柄快开不锈钢手孔JB/T 577-1979 常压人孔JB/T 579-1979 长圆形回转盖快开人孔JB/T 580-1979 回转盖人孔JB/T 581-1979 回转吊盖快开人孔JB/T 582-1979 垂直吊盖人孔JB/T 583-1979 水平吊盖人孔JB/T 584-1979 回转盖对焊法兰人孔JB/T 585-1979 水平吊盖对焊法兰人孔JB/T 586-1979 常压快开手孔JB/T 587-1979 回转盖快开手孔JB/T 588-1979 常压手孔JB/T 589-1979 平盖手孔JB/T 590-1979 旋柄快开手孔JB/T 591-1979 平盖对焊法兰手孔JB/T 592-1979 回转盖对焊法兰人孔JB/T 2555-1979 碳素钢、低合金钢人、手孔分类与技术条件JB/T 2556-1979 垂直吊盖对焊法兰人孔JB/T 2557-1979 常压旋柄快开人孔12.搅拌传动装置、搅拌器HG/T 2043-1991 三叶后弯式搅拌器技术条件HG/T 2123-1991 搅拌器型式及主要参数HG/T 2124-1991 桨式搅拌器技术条件HG/T 2125-1991 涡轮式搅拌器技术条件HG/T 2126-1991 推进式搅拌器技术条件HG/T 2127-1991 框式搅拌器技术条件搅拌传动装置(HG 21563~21572-95 HG 21537.7~8-92)HG 21563-1995 搅拌传动装置系统组合、选用及技术要求HG 21564-1995 搅拌传动装置--凸缘法兰HG 21565-1995 搅拌传动装置--安装底盖HG 21566-1995 搅拌传动装置--单支点机架HG 21567-1995 搅拌传动装置--双支点机架HG 21568-1995 搅拌传动装置--传动轴HG 21569.1-1995 搅拌传动装置--带短节联轴器HG 21569.2-1995 搅拌传动装置--块式弹性联轴器HG 21570-1995 搅拌传动装置--联轴器HG 21571-1995 搅拌传动装置-机械密封HG 21572-1995 搅拌传动装置-机械密封循环保护系统13.轴密封HG/T 2098-2001 釜用机械密封系列及主要参数HG/T 2269-2003 釜用机械密封技术条件HG 21537.1-1992 碳钢填料箱(施工图)(PN0.6DN30.160)HG 21537.2-1992 不锈钢填料箱(施工图)(PN0.6DN30.160)HG 21537.3-1992 常压碳钢填料箱(施工图)(PN<0.1DN30.160)HG 21537.4-1992 常压不锈钢填料箱(施工图)(PN<0.1DN30.160)HG 21537.5-1992 管用碳钢填料箱(施工图)(PN0.6DN25200)HG 21537.6-1992 管用不锈钢填料箱(施工图)(PN0.6DN25200)HG 21537.7-1992 搅拌传动装置-碳钢填料箱HG 21537.8-1992 搅拌传动装置-不锈钢填料箱HG/T 21571-1995 搅拌传动装置--机械密封HG/T 21572-1995 搅拌传动装置--机械14.塔器部件HG 20652-1998 塔器设计技术规定HG/T 21512-1995 梁型气体喷射式填料支承板HG/T 21554.1-1995 碳钢矩鞍环填料HG/T 21554.2-1995 不锈钢矩鞍环填料HG/T21556-1995 鲍尔环填料HG/T 21556.1-1995 碳钢鲍尔环填料HG/T 21556.2-1995 不锈钢鲍尔环填料HG/T 21556.3-1995 聚丙烯鲍尔环填料HG/T 21556.4-1995 玻纤增强聚丙烯鲍尔环填料HG/T 21557-1995 阶梯环填料HG/T 21557.1-1995 碳钢阶梯环填料HG/T 21557.2-1995 不锈钢阶梯环填料HG/T 21559.1-1995 不锈钢网孔板波纹填料HG/T 21559.2-2005 不锈钢孔板波纹填料HG/T 21618-1998 丝网除沫器标准HG/T 21639-2005 塔顶吊柱JB/T 1118-2001 F1型浮阀JB/T 1119-1999 卡子JB/T 1120-1999 双面可拆连接件JB/T 1205-2001 塔盘技术条件JB/T 1212-1999 圆泡帽JB/T 2878.1-1999 X1型楔卡JB/T 2878.2-1999 X2型楔卡JB/T 3166-1999 S型双面可卸卡子15.支座、吊耳HG/T 21574-1994 设备吊耳JB/T 4712-1992 鞍式支座JB/T 4713-1992 腿式支座JB/T 4724-1992 支承式支座JB/T 4725-1992 耳式支座密封循环保护系统16.换热器零部件GB/T 12522-1996 不锈钢波形膨胀节GB 16749-1997 压力容器波形膨胀节JB/T 4718-1992 管壳式换热器用金属包垫片JB/T 4719-1992 管壳式换热器用缠绕垫片JB/T 4720-1992 管壳式换热器用非金属垫片JB/T 4721-1992 外头盖侧法兰JB/T 6171-1992 多层金属波纹膨胀节17.其他零部件HG/T 21630-1990 补强管JB/T 4736-2002 补强圈18.材料GB/T 699-1999 优质碳素结构钢GB/T 700-2006 碳素结构钢GB/T 3077-1999 合金结构钢19.板材GB/T 912-1989 碳素结构钢和低合金结构钢热轧薄钢板及钢带GB/T 2040-2002 铜及铜合金板材GB/T 2054-1980 镍及镍合金板GB/T 2531-1981 热交换器固定板用黄铜板GB/T 3274-1988 碳素结构钢和低合金结构钢热轧厚钢板和钢带GB/T 3280-1992 不锈钢冷轧钢板GB 3531-1996 低温压力容器用低合金钢钢板GB/T 3621-1994 钛及钛合金板材GB/T 3880-1997 铝及铝合金轧制板材GB/T 4237-1992 不锈钢热轧钢板GB/T 4238-1992 耐热钢板GB 6654-1996 压力容器用钢板GB/T 8165-1997 不锈钢复合钢板和钢带GB/T 8546-1987 钛-不锈钢复合板GB/T 8547-1987 钛-钢复合板GB/T 13238-1991铜钢复合钢板JB 4733-1996 压力容器用爆炸不锈钢复合钢板JB/T 4748-2002 压力容器用镍及镍基合金爆炸复合钢板20.钢管GB/T 1527-1997 铜及铜合金拉制管GB/T 1528-1997 铜及铜合金挤制管GB/T 2882-1981 镍及镍铜合金管GB/T 3624-1995 钛及钛合金管GB/T 4437.1-2000铝及铝合金热挤压管GB 5310-1995 高压锅炉用无缝钢管GB 6479-2000 高压化肥设备用无缝钢管GB/T 6893-2000 铝及铝合金拉GB/T 8163-1999 输送流体用无缝钢管GB/T 8890-1998 热交换器用铜合金无缝管GB 9948-1988 石油裂化用无缝钢管GB/T 12771-2000 流体输送用不锈钢焊接钢管GB 13296-1991 锅炉、热交换器用不锈钢无缝钢管GB/T 14976-2002 流体输送用不锈钢无缝管21.锻件JB 4726-2000 压力容器用碳素钢和低合金钢锻件JB 4727-2000 低温压力容器用低合金钢锻件JB 4728-2000 压力容器用不锈钢锻件22.棒材GB/T 1220-1992 不锈钢棒GB/T 1221-1992 耐热钢棒GB/T 4423-1992 铜及铜合金拉制棒GB/T 4435-1984 镍及镍铜合金棒GB/T 13808-1992 铜及铜合金挤制棒23.铸件GB/T 1348-1988 球墨铸铁件GB/T 2100-2002 一般用途耐蚀钢铸件GB/T 7659-1987 焊接结构用碳素钢铸件GB/T 8492-2002 一般用途耐热钢和合金铸件GB/T 9437-1988 耐热铸铁件GB/T 9439-1988 灰铸铁件GB/T 9440-1988 可锻铸铁件GB/T 11352-1989 一般工程用铸造碳钢件GB/T 14408-1993 一般工程与结构用低合金铸钢件。
压力容器制作检验技术要求内容
压力容器制作检验技术要求制作要求:一、下料要求铆工按图纸要求划线(H点),此工序为停止点。
要求受控件划线后由质检员检验合格签字后,方可切割下料。
检验要求:A、核对图纸材料牌号、所下材料牌号是否一致。
B、检查材料标记是否齐全(工号、件号、材料牌号、板厚、移植号)❖低温容器、不锈钢容器以及复合板的耐腐蚀表面不得采用硬印标记。
E、筒体筒节长度不小于300mm。
(不包含接管、管箱)F、检查划线尺寸是否符合工艺、图纸要求以及封头实际展开尺寸。
检验员检验合格签字后并作好检验记录,方可切割下料。
G、切割后无铁渣、氧化物等杂物,坡口符合尺寸,表面无裂纹、深沟等缺陷。
二、卷圆、焊接、校圆1)卷圆要求:A、坡口方向按焊接工艺;组对前,打磨坡口及坡口两边各50mm达金属光泽。
B、组对错边量①筒体焊缝错边量A缝≤1/4δmm,≤3mm。
②复合板的对口错边量不大于钢板复合层厚度的50%,且不大于2mm。
2)焊接要求A、按焊接工艺选取焊接方法、焊接材料、焊接规。
B、筒体表面焊缝高:当板厚≤10时应控制在0~15%的厚板,当板厚>10时,应控制在0~15%×0.75的板厚,且≤4mm。
C、筒体制作焊缝外观要求美观、不得有飞溅、夹杂、裂纹、气孔等不良缺陷。
D、下列容器焊缝表面不得咬边:①不锈钢制造的②Cr-Mo钢材制造的③σb≥540MPa的④焊缝系数取1的(除开无缝钢管制造的)⑤承受循环载荷的⑥有应力腐蚀的⑦低温容器E、其他容器焊缝咬边深度不得大于0.5mm,咬边连续长度不得大于100mm,咬边总长度不得超过焊缝长度的10%。
F、如需变更焊接方法,必须提前向焊接工艺员提出,否则按违反工艺纪律,焊缝重新返工处理。
3)校圆要求A、筒体在同一断面最大径与最小径之差≤断面径Di的1%(对锻焊容器为1‰),且≤25mm。
B、换热器筒体同一断面上最大直径与最小直径之差为e≤0.5%DN且:当DN≤1200mm时,其值≯5mm当DN>1200mm时,其值≯7mm。
压力容器技术要求汇总
盛装极度、高度危害(第一组)介质的压力容器强制性要求1. 厚度大于或者等于12mm的碳素钢和低合金钢钢板(不包括多层压力容器的层板)用于制造压力容器主要受压元件时,应按NB/T 47013.3-2015逐张进行超声检测,合格等级不低于Ⅱ级。
[TSG 21-2016 p8 2.2.1.4]2. 受压元件不得采用铸铁。
[TSG 21-2016 p10 2.2.3.1]3. 受压元件不得采用铸钢。
[TSG 21-2016 p10 2.2.4.1]4. 耐压试验合格后,应当进行泄漏试验,泄漏试验的种类、压力、技术要求等由设计者在设计文件中予以规定。
[TSG 21-2016 p19 3.1.18]5. 接管(凸缘)与壳体之间的焊接接头以及夹套容器的焊接接头,应当采用全焊透结构。
[TSG 21-2016 p21 3.2.2.2]6. 制备产品焊接试件。
[TSG 21-2016 p21 3.2.4.1]7. 管法兰应当按照HG/T 20592~HG/T 20635系列标准的规定,并且选用带颈对焊法兰、带加强环的金属缠绕垫片和专用级高强度螺柱组合。
[TSG 21-2016 p22 3.2.5]8. 容器壳体A、B类对接接头,进行全部无损检测(RT/UT)。
[TSG 21-2016p23 3.2.10.2.2.2]9. 所有焊接接头,需要对其表面进行磁粉(MT)或者渗透(PT)检测。
[TSG21-2016 p24 3.2.10.2.2.4]10. 盛装极度危害介质的碳钢和低合金钢制压力容器及其受压元件,应当进行焊后热处理。
[TSG 21-2016 p25 3.2.11(2)]11. 石墨制压力容器的试验压力不得低于1.75倍设计压力。
[TSG 21-2016p29 3.3.1.4]12. 石墨制压力容器应当在不低于设计压力的试验压力下,进行所有接头和连接处的泄漏试验,试验方法由设计者规定。
[TSG 21-2016 p30 3.3.1.5] 13. 石墨制压力容器,设计者应当在设计文件中提出粘接试件的制作要求,并且规定试样的数量、制备方式、检验与试验方法、合格指标、不合格复验要求等。
GB3531—2014《低温压力容器用钢板》国家标准主要内容介绍
7试验方法
序号 1 2 3 4 5 6 7 检验项目 化学成分 拉伸试验 弯曲试验 低温冲击 超声检测 尺寸、外形 表 面 取样数量 每炉 1 个 每批 1 个 每批 1 个 每批 3 个 逐张 逐张 逐张 取样方法 GB/T 20066 GB/T 2975 GB/T 2975 GB/T 2975 - - - 取样方向 - 横向 横向 横向 - - - 试验方法 GB/T 223 、GB/T 4336、 GB/T 20123、GB/T 20125 GB/T 228.1 GB/T 232 GB/T 229 GB/T 2970、GB/T 28297 JB/T 4730.3 符合精度要求的适宜量具 目 视
8 检验规则
钢板检验由供方质量检验部门进行。 钢板应成批验收,每批钢板由同一牌号、同一炉 号、同一厚度、同一热处理制度的钢板组成,每 批重量不大于30t,单张重量超过30t的钢板按张 组批。06Ni9DR钢板和以正火加回火、淬火加回 火状态交货的08Ni3DR钢板应逐热处理张进行力 学性能试验。 根据需方要求,供需双方协议,厚度大于16mm 的钢板可逐热处理张进行力学性能检验。。
ISO93284:2011 附录A(欧洲) X7Ni9 ≤50
ISO93284:2011 附录B(美) X9Ni9+QT 6~50
P
S KV2
%
% J
≤0.008
≤0.004 -196℃ ≥100
≤0.015
≤0.005 -196℃ ≥80
≤0.025
≤0.020 -196℃ ≥41
6.2 制造方法
≤0.020
≤0.005 490~630 ≥27*
≤0.025
≤0.025 400~540 ≥24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当壳体或受压元件使用在“低温低应力工况”下,可以按设计温度加50℃(对于不要求焊后热处理的容器,加40℃)后的温度值选择材料,但不适用于Q235系列的钢板。
“低温低应力工况”不适用于钢材标准抗拉强度下限值Rm≥540Mpa的材料。“低温低应力工况”不适用于螺栓材料;螺栓材料的选用应计及螺栓和壳体设计温度间的差异。(GB150-2011)
c.钢材标准规定的最低抗拉强度Rm>540Mpa的高强度钢容器上的全部焊接接头及热影响区表面。
d.受压壳体上工装卡具、拉筋板等临时附件拆除的焊痕表面,焊补前的坡口及焊补的表面以及电弧擦伤处。
设计压力大于或等于1.60Mpa,且设计温度低于-40℃的设备法兰用紧固件材料为铁素体钢时,应逐件进行磁粉检测。(HG/T20585-2011)
低温压力容器技术要求汇总
1.钢板逐张超声检测
板厚大于20mm的16MnDR、Ni系低温钢(调质状态除外),逐张检查,不低于Ⅱ级合格。(GB150-2011)
用于制造低温压力容器筒体、凸形封头和球壳的钢板,厚度超过以下数值时,需按《承压设备无损检测》JB4730.3进行超声检测,且不低于Ⅲ级。(HG/T20585-2011)
5.逐台制备产品焊接试件
(1)低温容器应逐台制备产品焊接试件(GB150-2011)
6.锻件级别
使用温度低于-20℃且公称厚度大于200mm的低温用钢锻件,应选用Ⅲ级或Ⅳ级。(GB150-2011)
低温压力容器用锻件按《低温承压设备用低合金钢锻件》NB/T 47009和《承压设备用不锈钢和耐热钢锻件》NB/T 47010,应不低于Ⅱ级要求,设计压力大于或等于1.60Mpa时,应不低于Ⅲ级。(HG/T20585-2011)
焊接接头的超声检测按《承压设备无损检测》的规定进行,无论100%检测及局部检测均应不低于Ⅰ级要求。
焊接接头的TOFD检测《承压设备无损检测》的规定进行,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测)。
4.磁粉或渗透检测
10.3.1中低温容器上的A、B、C、D、E类焊接接头,缺陷修磨或补焊处的表面,卡具和拉筋等拆除处的割痕表面。(GB150-2011)
11.钢板采用炉外精炼工艺
压力容器受压元件用钢应当是氧气转炉或者电炉冶炼的镇静钢。对标准抗拉强度下限值大于或等于540Mpa的低合金钢钢板和奥氏体-铁素体型不锈钢钢板,以及用于使用温度低于-20℃的低温钢板和低温钢锻件,还应当采用炉外精炼工艺。(GB150-2钢管用钢均应经炉外精炼。(GB150-2011)
盛装易爆介质的容器,且设计压力大于0.6MPa者
设计压力大于等于1.6MPa者
壳体板厚大于25mm者
钢材标准规定的最低抗拉强度Rm>540MPa或合金元素含量大于3%的低合金钢。
设计温度低于-40℃者。
C.无损检验方法和评定标准应符合下列要求
对接接头的射线检测按《承压设备无损检测》的规定进行。射线照相的质量应不低于AB级,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测)
受压元件焊接接头厚度超过16mm时,低温压力容器或部件全部施焊工作完成后,应进行消除应力热处理。热处理工艺应与焊接工艺评定的热处理制度(温度曲线)一致。(HG/T20585-2011)
3. 100%射线或超声检测
设计温度低于-40℃的或者焊接接头厚度大于25mm的低温容器。(GB150-2011)
低温压力容器的对接接头符合下列情况之一者,应经100%射线或超声检测:(HG/T20585-2011)
耐压试验后不应再在受压元件上进行焊接之类可能引起焊接应力和缺口应力集中的加工,否则须重新试压。
10.附加落锤试验
根据设计文件要求,对厚度大于36mm的标准抗拉强度下限值大于或等于540Mpa的钢板和用于设计温度低于-40℃的钢板,可附加进行落锤试验。试验按GB/T6803进行,采用P-2型试样,无塑性转变(NDT)温度的合格指标在设计文件中规定。(GB150-2011)
板厚大于16~20mm的钢板,每批抽检20%,最少1张。
板厚大于20mm的钢板,逐张检查。(GB150规定质量等级不低于Ⅱ级)
用作低温压力容器筒体的无缝钢管应逐根按《承压设备无损检测》JB4730.3进行超声检测检查。
2.焊后热处理
球壳板厚度≥16mm的低温球罐应进行焊后整体热处理。(GB12337-1998附录A)
设计温度低于-40℃的低合金钢制低温压力容器上的焊接接头。(TSG R0004-2009)
低温压力容器下列部位应按《承压设备无损检测》进行表面磁粉检测或表面渗透检测。(HG/T20585-2011)
a.符合本标准第8.7.1条的对接接头,但无法进行射线或超声检测者。
b.符合本标准第8.7.1条的容器壳体上的C类、D类焊接接头以及附件焊接的角接接头、填角焊缝的可及表面。
7.管法兰
(1)低温容器、高温容器、疲劳容器以及第三类压力容器的接管法兰宜采用带颈对焊型管法兰。(HG/T20583-2011)
8.补强结构
(1)对于高温和低温工况下工作的压力容器,不推荐使用补强圈补强结构:(HG/T20583-2011)
a设计温度大于350℃
b设计温度小于或等于-20℃。
9.耐压试验
20MnNiMo、12Cr2Mo1V、和12Cr3Mo1V钢锻件以及NB/T47009中所有低温用钢锻件,均应经炉外精炼的钢锻制而成。(GB150-2011)
12.冲击试验
奥氏体型钢材的使用温度高于或等于-196℃时,可免做冲击试验。低于-196℃~-253℃,由设计文件规定冲击试验要求。(GB150-2011)