汽车各电器的匹配和设计
汽车空调系统参数匹配计算指南
− t1 )
计算指南》、R134a 制冷剂压焓图和空气焓湿图,计算空调系统中压缩机排气量、轴功率、冷凝器换热量、 蒸发风量、冷凝器风量等参数。 5 空调系统热力计算 5.1 空调系统热力循环图 5.1.1 空调系统压焓如下图 1 所示。
图 1 空调系统压焓图 1
5.1.2 过程描述 5.1.2.1 压缩过程——低温低压制冷剂气体被压缩机吸入,并被压缩成高温高压的制冷剂气体,这一过 程是以消耗机械功做补偿,压缩增压,以便气体液化。如图 1 中线 1-2 所示。 5.1.2.2 冷凝过程——制冷剂气体有压缩机排除后进入冷凝器。这一过程在压力和温度不变的情况下, 制冷剂由气态逐渐向液态转变。如图 1 中线 2-3-4 所示。 5.1.2.3 节流膨胀过程——高温高压的制冷剂液体经膨胀阀节流降温降压后进入蒸发器。该过程的作用 是制冷剂降温降压、调节流量、控制制冷能力。如图 1 中线 4-5 所示。 5.1.2.4 蒸发过程——制冷剂液体经膨胀阀降压后进入蒸发器,吸热制冷后从蒸发器出口被压缩机吸 入。此过程的特点是在压力不变的情况下,制冷剂由液态变为气态,如图 1 中线 5-0 所示。 5.1.2.5 图 1 中过程 0-1 为在蒸发器和压缩机之间,产生吸气过热的阶段,是通过回热循环,利用节流 前的制冷剂液体来加热回到压缩机的气体,从而产生液体过冷和吸气过热两种结果。液体过冷可以避免 因节流损失使少量制冷剂蒸发而产生的闪气现象。吸气过热可防止液滴被带入压缩机气缸内,从而避免 气缸中的液击(在一般空调系统中,没有回热循环过程,只有吸气过热过程)。 5.1.2.6 图 1 中过程 1-2s 为等熵过程,是理论上的压缩机绝热变化过程,但实际上,压缩过程不是完 全的绝热过程,其绝热指数也是不断变化的,因此,压缩机的实际工作过程为 1-2 状态点 2 的焓值可用 下式经验公式进行计算:
汽车线束布置设计要求
汽车线束布置设计要求摘要:汽车线束系统设计是一项非常复杂和重要的工程,要兼顾插接器的匹配选型、整车管线布置等多个方面。
同时,还要充分考虑并满足整车性能要求,以及整车的使用工况、周边环境和用户驾驶习惯等多个因素,选择最优的线束布置设计方案。
基于此,本文主要分析了汽车线束布置设计要求关键词:汽车;电线束;轻量化;设计方法引言随着汽车自动化、智能化的快速发展,汽车线束的质量、体积也随之增大。
为了确保整车电器设备能够在正常使用的条件下保持可靠的连接,将全车各电器设备使用不同规格、颜色、耐温等级的导线及护套、端子,通过合理的布线并充分考虑装配及维修的需要,将整车所需的导线连接整合,再通过定位件、保护管等部件按照合理的工艺捆扎到一起,就形成了线束。
1汽车线束概括及特点车身线束也叫做地板线束,即主要布置在汽车地板上,也是贯穿汽车主体的一种线束。
从产品角度看,车身线束的质量在整车线束中较大,长度最长,卡扣、扎带数量最多;从工艺制造上来看,因车身线束较长,工装模具也是较大的一种;从设计角度来看,由于其在内饰板、地毯等下方布置,大多数情况下是不可见的,无法直观判断损坏程度,因此需要特别注意其防护;从装配角度来看,车身线束在装配顺序上是比较靠前的位置,是在内饰一工位装配,其所需要的工时也是线束中较多的[1]。
2电线束产品分析电线束由导线、护套、端子、熔断丝、继电器以及其他能够起到绝缘、保护、固定、密封等作用的零部件组成。
与现代自动化生产工艺不同,汽车电线束产品是管理密集、劳动力密集、零部件密集为一身的特殊产品,能够实现自动化工艺的工序有限,对过程管控能力、品质保证能力及操作人员技能具有较高的要求。
各个系别的整车已经形成体系,那么与之配套的零部件自然各成体系,线束产品亦不例外,车系不同,线束产品中使用的零部件亦不相同。
构成线束产品实体的零部件种类大约在20类以上,如护套、端子、电线、定位件、雨塞、熔断丝盒、继电器、橡胶件、管材、胶带以及泡沫条等,其中按照使用部位不同,使用的零部件材质亦不相同。
汽车用电器熔断器及连接导线间的匹配设计
汽车用电器熔断器及连接导线间的匹配设计电器系统在汽车中扮演着至关重要的角色,其质量和可靠性直接影响着汽车性能和安全性。
熔断器是电器系统的关键部件之一,其作用是在系统受到过大电流冲击时,通过断开电路来保护系统不受损坏,从而起到保护汽车和乘客的作用。
因此,熔断器的选择和连接导线的匹配设计至关重要。
首先,选择正确的熔断器是设计的第一步。
要选择符合汽车电气系统要求的,稳定可靠的熔断器。
熔断器的电流容量必须与电气系统的电流要求相匹配。
如果熔断器的电流容量太小,可能因系统中的过大电流而导致熔断器的熔丝烧断,从而使电器系统无法正常工作;如果熔断器的电流容量太大,则可能会导致熔断器在系统故障时无法断开电路,从而导致电气设备的过载损坏,甚至引起火灾。
因此,在选择熔断器时,要仔细了解汽车电气系统的电流要求,确保选取正确的熔断器。
其次,熔断器与连接导线之间的匹配设计也很关键。
连接导线与熔断器之间的截面积必须匹配。
如果熔断器和连接导线之间的截面积不匹配,会导致电线过热,引起线路失火。
为了保证汽车电气系统的安全可靠,连接导线的厚度和长度也必须得到适当的考虑。
如果连接导线太细,则无法承受过载电流,从而导致线路烧断,影响整个汽车系统的正常工作。
一般而言,连接导线的选择应遵循以下原则:1.必须匹配电气设备的功率和电流;2.必须选择符合要求的导线材料,在保证导线功能的同时可靠性能;3.导线的长度应符合要求,且应保证导线不承受系统过载电流。
如果导线太长,会增加电气系统的电阻,从而降低系统效率,影响汽车性能和安全。
总之,汽车电气系统中的熔断器和连接导线之间的匹配设计是确保汽车电气系统正常工作、安全可靠的重要环节。
因此,在设计汽车电气系统时,必须考虑电气设备的功率、电流、导线的截面积、材料、长度等因素,并合理选择熔断器和连接导线。
只有在这些方面合理匹配的情况下,汽车电气系统才能实现高效稳定的工作,为汽车的性能和安全保驾护航。
在实际的汽车电气系统中,熔断器和连接导线的匹配设计是非常重要的。
汽车电路电源分配的设计
汽车电路电源分配的设计汽车是现代人生活中不可或缺的交通工具之一,而汽车电路作为汽车的命脉,电路电源分配设计的好坏直接关乎汽车的安全性、舒适性和使用寿命,所以汽车电源分配设计非常重要。
首先,汽车的电源分配一般由车辆电池作为主要电源,通过整车电气系统连接各个电器设备。
针对车辆电池的选择要根据汽车型号和使用情况而定。
对于普通的小型车,电池电压一般为12V,而对于一些大型卡车,电池的电压可能会达到24V。
在选择电池时,一定要注意其自放电率和循环寿命。
另外,电路电源分配还必须要考虑到不同电器设备的功率、电流和使用时间等因素。
运用负载管理技术实现对电器设备的控制,对各个电器设备的电源进行分配。
在一定的容量范围内进行负载均衡,保证整车电器设备的正常工作,同时也能有效地延长电池的寿命。
针对汽车电器设备的电路电源分配,一般可以分为三个级别:主线、副线和分车线。
主线通常是指供应整个微型控制器、点火发动机和其他高功率负载设备电源的电线。
副线一般是指供应稍微低一点的负载设备的电线,例如车灯、风扇、收音机等设备的电源。
分车线则是针对车门窗电器或者座椅加热器等附属设备的电源需求而开辟的。
在电路电源分配的设计中还要考虑到急停状况下的应急电源配置。
急停电源分配可以使用单独的汽车蓄电池作为应急电源。
在车辆失去主电源的情况下,急停电源可以提供必要的电源支持,保证车辆仍能正常启动和行驶。
此外,为了防止短路和过载等危险情况的发生,汽车电路电源分配中还需要安装保险丝和保护器等电路保护装置。
它们能够在电路负载过大或者出现短路时自动切断电路或者降低电流,起到保护电器设备和车辆的安全作用。
总之,汽车的电路电源分配设计非常重要,需要考虑到不同的因素进行科学、合理地配置。
只有在电源配置的合理性和有效性上下功夫,才能保证汽车电器设备的正常工作,提高汽车的安全性和舒适度。
针对上述电源分配设计方式,还应该注意以下几点:1. 在车辆线路设计上,应该遵循尽量减少传输能量损失和电阻的原则。
柴油车电气系统的设计方法
柴油车电气系统的设计方法柴油车电气系统是整个车辆电气系统中的一个重要组成部分,其设计的合理与否直接关系到车辆的使用可靠性、维修保养成本和行车安全。
下面,本文将从需求分析、选型设计、布线设计、维护保养等方面介绍柴油车电气系统的设计方法。
需求分析是柴油车电气系统设计的第一步,在进行设计前,需要对整个系统进行需求分析,明确系统应具备的功能和性能,例如车辆起动、照明、音响设备、空调等等。
同时考虑车辆的使用环境和工况,为各种情况下的电气系统安全使用打下基础。
另外,需求分析还需要考虑到成本因素,合理控制成本,确保电气系统的设计符合车辆的使用需求同时又不会过于昂贵。
通过需求分析,可以明确电气系统在设计中所要满足的各种条件和要求。
选型设计是电气系统设计中的重要部分,不同元器件的选型不仅会直接影响到电气系统性能,还会影响到成本和使用寿命等方面。
在选型阶段需要详细了解汽车电气元器件的特性、性能和相应的标准,更好地合理选用合适的元器件。
例如,选择合适的电池、发电机、按键开关等等,不仅涉及到功率与电压的匹配,还会对电气系统的工作稳定性、耐久性和维护保养带来影响。
布线设计是柴油车电气系统设计过程中十分重要的一部分,在设计阶段应当考虑到布线的与元器件的匹配、布局、绝缘和安全性等要素。
如果布线不合理,会直接影响到电气系统的正常工作。
因此,设计者应当注重布线的细节,同时遵循一些基本原则,如尽量采用金属导线,避免使用铝线等等。
布线和电气连线的规格与质量必须满足标准的要求,关注一些危险因素例如高温、潮湿、震动等,使整个柴油车电气系统在正常使用下长期保持稳定。
维护保养是柴油车电气系统设计的关键一环,将直接影响到使用寿命和可靠性。
在维护保养阶段,设计者应当定期检查电气系统,保证电气系统各器件、导线和接口固定可靠、接触良好、没有损坏或无法使用,同时,需要随时清理电气系统中的灰尘或污垢,防止积聚物对电气系统产生不良影响。
对于发现的问题,需要及时修理或更换问题元器件以保证电气系统正常工作,延长电气系统使用寿命和可靠性。
浅谈汽车控制面板结构和布局设计
车辆工程技术84 车辆技术浅谈汽车控制面板结构和布局设计赵 云,朱明明(曼德电子电器有限公司保定热系统分公司,河北 保定 071000)摘 要:汽车空调对控制面板一般布置于汽车前风挡仪表板的中间,便于驾驶者和乘员进行操控,本文主要从汽车空调控制面板结构设计、按键设计、旋钮设计、内部设计等方面进行总结和叙述。
关键词:空调;控制面板;设计0 概述 随着汽车总线技术的发展,空调向环保、绿色、自动化方向发展,空调系统的控制面板由钢丝拉锁式向电子式和总线式的传输方式转变,逐渐演变成为电子电器控制单元的重要节点,是需要重点研究的一项课题。
1 结构设计 控制面板是负责控制汽车空调模式,温度,风速等。
空调控制面板结构组成,主要由关键部件按键、旋钮、主体结构等组成,如图1所示。
图1 空调控制面板结构是基于人机工程学原理设计的,考虑使用操作的便捷性和舒适性。
各关键部件之间通过定位孔、定位槽或卡扣的方式相互连接,并保持相对位置固定,最后通过辅助部件将整体结合起来,保持零件的稳定性。
在各零件的结构设计中,各部分的功能元件都要有不同的规范标准要求,进而保证整体功能输出能够满足总成设计要求。
控制面板通常采用同按压式控制,很少部分采用下拔式控制。
按压式控按键整体感和稳定杆较为突出;下拔式按键的动感和控制杆较为突出,两种控制方式的结构原理基本上是一致的。
2 按键设计 (1)空调按键是驾驶过程中主要操控和功能组成部分,直至影响成驾驶者和成员的感官感受。
在控制面板设计时,首先要考虑匹配其周围的环境,是其整体感官协调、舒服,一般设计偏向于条纹要求;其次在结构上考虑间隙、平面度、按压手感等技术要求。
(2)各按键之间布局要整洁、整齐,不仅相邻两个按键之间间隙均匀对称,各个按键之间间隙也要保持匀称,既要保证按键在按压时自由活动功能,也要满足整体外观的审美要求。
间隙过大易造成灰尘或杂物即虐面板内部造成功能失效;间隙过小则易造成按键卡滞,影响功能实现。
汽车dc充电口连接器设计注意事项
汽车dc充电口连接器设计注意事项示例第一篇:《汽车DC充电口连接器设计注意事项》在汽车这个“移动的城堡”里,DC充电口连接器就像是城堡的“能量吸管”,负责将外界的电能输送到汽车这个“大胃王”里。
所以,它的设计可不能马虎,下面就来详细说说设计时的注意事项。
一、安全性方面1. 触电防护这就好比是在电力的“雷区”里设置安全网。
首先,连接器的触头必须要有良好的绝缘保护。
不能让那些调皮的电流“乱跑”,不小心就电到周围的东西或者人。
比如说,就像给小刺猬(触头)穿上厚厚的棉衣(绝缘材料),防止它扎到别人。
在设计时,要确保绝缘材料的质量和厚度,能够承受正常使用以及一些意外情况下的电压冲击。
而且,在插拔过程中,要防止人手意外触碰到带电部分,这就要求设计合理的插拔结构,像是给危险地带设置了一道智能的“门禁”,只有按照正确的方式操作才能安全进出。
2. 防火性能汽车里面要是着火了,那可就像在“火药桶”里点了个炮仗。
所以DC 充电口连接器必须有良好的防火性能。
材料的选择就很关键,要选择那些像防火小卫士一样的材料,即使在高温或者短路产生火花的情况下,也不会轻易燃烧起来。
而且,要考虑到如果充电过程中发生故障,热量的散发途径。
不能让热量像被关在小笼子里的野兽一样无处可去,要设计合理的散热结构,避免因为过热引发火灾。
3. 防水防尘汽车可不会总是在干干净净的环境里行驶,有时候会像个调皮的孩子在泥坑水洼里打滚。
这时候,DC充电口连接器就得像个坚强的卫士,抵御水和灰尘的入侵。
如果水或者灰尘进入到连接器里面,就可能像小沙子钻进了机器的齿轮里一样,导致短路或者其他故障。
所以,连接器的接口处要有可靠的密封设计,可以想象成是给充电口戴上了一个严实的“口罩”,不管是倾盆大雨还是漫天沙尘,都能安然无恙。
二、兼容性方面1. 标准统一这就好比全世界的人都得说同一种语言才能顺畅交流一样。
在汽车DC 充电口连接器的设计上,要遵循统一的标准。
不同的汽车品牌和型号之间,充电口连接器应该能够互相兼容。
整车电平衡的设计与验证研究
整车电平衡的设计与验证研究发布时间:2022-12-09T07:19:05.299Z 来源:《工程管理前沿》2022年15期8月作者:徐伟[导读] 整车电平衡是研究整车电源系统电能供给和消耗之间的平衡关系,即发电机、蓄电池、和其他各种用电设备之徐伟陕西汽车集团股份有限公司技术中心,陕西西安 710200摘要:整车电平衡是研究整车电源系统电能供给和消耗之间的平衡关系,即发电机、蓄电池、和其他各种用电设备之间的电能产生与消耗的动态平衡。
本文结合笔者在整车电平衡的开发研究,分析开发的整个过程,并最终通过验证的方式,分析整车电平衡开发设计方法的正确性,以期通过本文的验证研究为日后整车电平衡设计工作的展开提供参考性意见。
关键词:整车;电平衡;设计;验证;意见前言:汽车电气系统的电量平衡,决定着汽车能够正常启动和行驶,是汽车电气系统设计中一项重要的环节。
对起动机最大输出功率与蓄电池容量优化匹配,既能保证车辆在不同地区环境温度条件下可以正常起动,同时又能降低蓄电池成本和油耗量;对发电机有效输出功率与整车电器耗电量优化匹配,既能保证蓄电池正常充放电工作,延长发电机与蓄电池寿命,同时又能降低发电机成本和油耗量。
为达到电气系统设计既满足设计要求,又不会因产生设计裕量过大而增加成本,需对整车电气系统进行电量平衡计算与校核。
1.蓄电池选型1.1 蓄电池容量构成蓄电池的容量主要由两部分构成:一是起动容量,即起动过程中消耗的电量;二是静态容量,即车辆放置时需要消耗的电量。
考虑蓄电池的最低起动容量,一般情况下,铅酸蓄电池在 SOC≥0.6 时有起动能力。
因此,蓄电池容量≥最低起动容量+静态容量[1]。
1.2蓄电池容量的计算蓄电池的主要任务是向起动机提供瞬时的大电流,保证起动机在各种条件下能可靠的起动,因此,蓄电池容量的选择可以先根据起动机的功率计算出初步结果,然后再结合其他因素进行校核和调整,最后按蓄电池的规格选取合适额定容量的蓄电池型号。
汽车线束设计及搭铁分析
汽车线束设计及搭铁分析摘要:汽车电气系统采用低压直流电源,由蓄电池和发电机两个电源,并联连接为所有电气设备供电,所有电气设备和汽车两个电源也并联连接。
大多数汽车电路符合单线连接,即负极形式。
即,只有正极连接线连接到电源的正极端子,而负极连接线通过线束直接连接到车身和发动机等金属,最后连接到电源负极端子,因此搭接铁连接也称为接地。
负极铁的设计,不仅减少了电线的消耗,使车身轻量化,进而降低了燃油消耗,从而提高了汽车的经济性,而且与正极铁相比,可以减少电子元件的干扰,减少车架和车身的腐蚀,使汽车电气工作更加可靠。
因此,良好的接地点设计可以减少不良接合造成的电路损坏,从而降低汽车电器的故障率。
本文研究了汽车线束的设计和搭接铁的分析。
关键词:汽车线束;设计;搭铁;分析;研究1汽车线束设计原则1.1导线的选择1.1.1直径的选择根据工作的电气部件的额定电流,长期工作的电气设备可选择电线的60%的实际承载能力;短时间工作的电气设备可以选择60%~100%导体中的实际负载。
1.1.2导线颜色的选择ZBT35002《汽车用低压电线的颜色》中规定了电线的颜色代码和选择顺序,GB9328《公路车辆用低压电缆(电线)》中也规定了双色电线的组合。
原则上,同一护套不能具有相同的线颜色,如果线直径差异较大,可以考虑使用相同的颜色线。
1.2线路保护装置的确定1.2.1中央配电箱中央配电箱是车辆电气和电子电路的控制中心。
线路的保护装置,如保险丝和继电器,集中布置在中央配电箱上。
它是车辆电源的核心,也是线路保护的核心。
1.2.2继电器的选择继电器选型的技术要求如下:可靠性好、性能稳定、体积小、寿命长、装配好、成本低。
常用的继电器设备一般包括雨刮器、喇叭、除霜、前照灯、雾灯、风扇、鼓风机和转向灯(闪光灯)等。
常用的继电器为电压型,通常为12V。
1.2.3保险丝的选择1)发动机ECU、ABS等,对车辆的性能和安全性有很大影响,容易受到其他电气设备的干扰。
国内外电动汽车整车控制器(VCU)性能指标及设计思路
国内外电动汽车整车控制器(VCU)性能指标及设计思路一、国外产品介绍(1)丰田公司整车控制器丰田公司整车控制器的原理图如下图所示:该车是后轮驱动,左后轮和右后轮分别由2个轮毂电机驱动。
其整车控制器接收驾驶员的操作信号和汽车的运动传感器信号,其中驾驶员的操作信号包括加速踏板信号、制动踏板信号、换档位置信号和转向角度信号,汽车的运动传感器信号包括横摆角速度信号、纵向加速信号、横向加速信号和4个车轮的转速信号。
整车控制器将这些信号经过控制策略计算,通过左右2组电机控制器和逆变器分别驱动左后轮和右后轮。
(2)日立公司整车控制器日立公司纯电动汽车整车控制器的原理图如下图所示。
图中电动汽车是四轮驱动结构,其中前轮由低速永磁同步电机通过差速器驱动,后轮由高速感应电机通过差速器驱动。
整车控制器的控制策略是在不同的工况下使用不同的电机驱动电动汽车,或者按照一定的扭矩分配比例,联合使用2台电机驱动电动汽车,使系统动力传动效率最大。
当电动汽车起步或爬坡时,由低速、大扭矩永磁同步电机驱动前轮。
当电动汽车高速行驶时,由高速感应电机驱动后轮。
(3)日产公司整车控制器日产聆风LEAF是5门5座纯电动轿车,搭载锂离子电池,续驶里程是160km。
采用200V家用交流电,大约需要8h可以将电池充满;快速充电需要10min,可提供其行驶50km的用电量。
日产聆风LEAF的整车控制器原理图如下图所示,它接收来自组合仪表的车速传感器和加速踏板位置传感器的电子信号,通过子控制器控制直流电压变换器DC/DC、车灯、除霜系统、空调、电机、发电机、动力电池、太阳能电池、再生制动系统。
(4)英飞凌新能源汽车VCU & HCU解决方案该控制器可兼容12V及24V两种供电环境,可用于新能源乘用车、商用车电控系统,作为整车控制器或混合动力控制器。
该控制器对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性。
整车电气系统设计手册
系统设计篇第一章电路系统设计综述 (65)1.1整车电路设计的开发流程 (65)1.2各开发阶段简介 (70)1.2.1 整车电路的概念设计 (70)1.2.2 产品工程设计阶段 (70)1.2.3 设计验证 (71)1.2.4 产品认可 (72)第二章电路系统概念设计 (73)2.1设计输入 (73)2.1.1 产品的开发类型 (73)2.1.2 产品的基本信息 (73)2.1.3 配置表 (73)2.2数据分析 (73)2.2.1 整车配置分析 (73)2.2.2 电器功能分析: (74)2.2.3 知识产权分析 (74)2.2.4 重大、典型历史质量风险排除 (74)2.3 BENCH MARK 测试 (74)2.3.1 整车电器功能测量 (75)2.3.2拆车过程电器性能测试 (75)2.33拆车后零部件测试分析 (75)2.4概念设计 (75)2.4.1 单元电路图初步设计 (75)2.4.2 设计构想书的编制 (76)2.4.3 整车控制策略的编制 (76)2.4.4 FMEA编制 (76)第三章电路系统工程设计 (77)3.1整车电路设计 (77)3.1.1 单元电路图设计 (77)3.1.2 电路保护设计 (77)3.1.3 电路负载的分配 (84)3.1.4 电路集成 (86)3.1.5 导线选择 (87)3.2电源系统设计 (91)3.2.1蓄电池 (91)3.2.2. 电源管理系统 (92)3.3电器盒 (94)3.3.1.系统简要说明 (94)3.3.2设计构想 (94)3.4.3设计参数 (99)3.4.4环境条件 (100)3.4.5注意事项 (100)3.4原理图制图要求 (102)3.4.1术语和定义 (102)3.4.2图形要求 (102)3.4. 3 图纸要求 (116)第四章电路系统试验验证 (119)4.1整车功能检测 (119)4.1.1 整车动静态功能分析 (119)4.1.2起动性能检测 (126)4.1.3电平衡检测 (129)4.2设计验证试验 (132)4.2.1 单元电路控制逻辑验证 (132)4.2.2 线路设计验证 (133)4.3电源系统匹配性验证 (137)4.4各电气件功能检测 (137)4.4.1 样件尺寸检测 (137)4.4.2 样件功能测试 (137)附一:蓄电池基础知识 (140)附二:导线基础知识 (141)附三:发电机基础知识 (142)附四:保险丝基础知识 (144)附五:蓄电池支架设计 (145)后记...................................................... 错误!未定义书签。
汽车电气接地系统的设计和优化
汽车电气接地系统的设计和优化摘要:汽车电气接地系统是汽车电气系统中至关重要的一部分,其设计和优化直接关系到汽车的安全性和可靠性。
本文介绍了汽车电气接地系统的基本原理和设计要求,分析了接地电阻对汽车电气系统性能的影响,并提出了相应的优化措施。
其中,采用合适的接地电缆和接地点、加强接地电阻的监测和维护、增加接地面积等措施可以有效降低接地电阻,提高汽车电气系统的可靠性和安全性。
最后,通过实验验证了所提出的优化措施的有效性和可行性。
关键词:汽车电气接地系统;接地电阻;优化措施;可靠性;安全性。
引言随着汽车电子技术的不断发展和应用,汽车电气接地系统越来越成为汽车电气系统中至关重要的一部分,其设计和优化直接关系到汽车的安全性和可靠性。
汽车电气接地系统的作用是将车身上所有的电子设备和电路连接到地面,形成一个电气回路,从而确保汽车电气系统的正常工作和安全运行。
然而,在实际应用中,由于种种原因,汽车电气接地系统的接地电阻可能会较大,从而影响汽车电气系统的性能,甚至导致安全隐患。
因此,汽车电气接地系统的设计和优化具有重要的理论研究和实际应用价值。
本文主要介绍了汽车电气接地系统的基本原理和设计要求,分析了接地电阻对汽车电气系统性能的影响,并提出了相应的优化措施。
其中,采用合适的接地电缆和接地点、加强接地电阻的监测和维护、增加接地面积等措施可以有效降低接地电阻,提高汽车电气系统的可靠性和安全性。
最后,通过实验验证了所提出的优化措施的有效性和可行性。
1、汽车电气接地系统的基本原理汽车电气接地系统是汽车电气系统中至关重要的一部分,其作用是将车身上所有的电子设备和电路连接到地面,形成一个电气回路,从而确保汽车电气系统的正常工作和安全运行。
汽车电气接地系统的基本原理是利用地面作为电气系统的参考点,将所有电气设备的负极(接地点)连接到地面,使电气系统形成一个封闭的回路。
在汽车电气系统中,接地点通常是车身结构上的一处金属部件,如车架、发动机、变速箱等,而接地电缆则是将这些金属部件与地面连接的导线。
汽车线束生产工艺
汽车线束生产工艺汽车线束是指连接汽车各个电器设备或系统的线束,它将汽车的各个电器设备或系统通过导线连接在一起,实现电器设备或系统之间的通信和控制。
汽车线束的生产工艺对于汽车的安全性和稳定性非常重要。
下面将详细介绍汽车线束的生产工艺。
1. 设计与规划:汽车线束的生产工艺首先需要进行设计与规划,确定线束连接的电器设备或系统,以及线束布局、导线数量、导线规格和长度等。
2. 选材与采购:根据设计与规划的要求,选定合适的导线、绝缘材料、保护套管、连接器等材料,并进行采购。
3. 切割与剥线:根据设计与规划,将导线按照规定的长度进行切割,并对切割好的导线进行剥线处理,去除导线表面的绝缘层。
4. 组装与焊接:将剥好的导线按照规定的连接方式进行组装,并进行焊接。
焊接是关键的工艺,要保证焊接质量,确保连接牢固、信号传输良好。
5. 绝缘与保护:对组装好的导线进行绝缘处理,使用绝缘材料将导线绝缘,以避免导线短路或其他故障。
同时,对导线进行保护,使用保护套管对导线进行包裹,增强导线的机械强度和耐腐蚀性能。
6. 测试与质检:对生产好的线束进行测试与质检,包括导线连通性、绝缘性能、耐压性能等方面的测试,确保线束的质量符合要求。
7. 包装与出货:对质检合格的线束进行包装,根据客户需求包装成适当的形式,并进行出货。
8. 安装与调试:将生产好的线束安装到汽车上,并进行线束的调试,测试线束的连接状态和功能是否正常。
9. 售后服务:对安装好的线束进行售后服务,包括维修、更换等,以确保线束的长期稳定运行。
总体上,汽车线束的生产工艺包括设计与规划、选材与采购、切割与剥线、组装与焊接、绝缘与保护、测试与质检、包装与出货、安装与调试、售后服务等环节。
所有的生产环节都需要严格控制品质,并符合相关的汽车行业标准和法规要求,以确保汽车线束的安全性和稳定性。
乘用车整车电气原理设计
乘用车整车电气原理设计作者:梁新凤来源:《科技视界》2016年第15期【摘要】整车电气原理是用来表明整车线束系统给各用电器传导电能和传递信号的电路连接关系。
整车电气原理的设计,关系到整车各用电器的功能实现,是分析电气回路、排查电器故障的重要依据。
【关键词】整车电气原理设计;电源分配设计;接地分配设计;回路匹配设计;压接点设计【Abstract】The schematic is used to indicate the vehicle electrical system of the vehicle wiring harness to each electrical power and signal transmission connection between circuits. Vehicle electrical schematic design,all related to the vehicle’s electrical functions to achieve, is an important basis for the analysis of electrical circuits, troubleshoot electrical faults.【Key words】Vehicle electrical schematic design; Power distribution design; Ground distribution design; Matching circuit design; Splices design0 引言整车电气原理,是整车电气系统的核心,它表明了整车线束系统为实现各用电器的功能,一方面通过导线将电源及用电器连接构成回路,为用电器传导电流,另一方面通过导线回路实现相连接的用电器之间的信号传递,从而使各电器件能够按照操作者的意图正常工作。
整车电气原理设计是否合理,直接关系到汽车电器件能否正常工作以及全车的安全性、可靠性、经济性和舒适性,它是整车开发过程中的一个重要环节。
汽车全车电路讲解!
汽车全车电路讲解!展开全文什么叫全车电路?将汽车电气各子系统:电源、起动、点火、照明信号、辅助电器等,用标准电器设备符号,通过开关、熔断丝、继电器(或ECU)及不同颜色、规格导线连接在一起,所构成的图—全车电路。
开关、电路保护装置一、点火开关1.控制项目:a.电源系统发电机励磁b.点火系统的低压电流通路c.起动系统的电磁开关d.部分辅助电器设备2.具有防盗功能的点火开关(1)对方向盘机械锁止(2)点火开关钥匙内设置电阻晶片结构:每把钥匙内设置不同电阻晶片:380~12300Ω。
点火开关钥匙除与锁体匹配之外,其内含晶片电阻值还必须与起动机控制电路匹配。
工作机理:当点火开关钥匙插入锁体并转到ST挡时,晶片电阻值被送到电子钥匙解码器,将出现两种情况:a.钥匙晶片电阻值与解码器中储存的电阻值一致时,解码器控制起动机工作,同时起动信号送至发动机ECU—控制开始喷油、点火。
b.钥匙晶片电阻值与解码器中储存的电阻值不一致时,解码器控制起动机不工作。
尽管锁体能够转到起动挡位,但发动机不会发动。
二、组合开关安装:转向柱上;功能:前照灯开关;变光开关;小灯开关;转向开关;紧急报警开关;雨刮开关;洗涤开关;喇叭按钮;巡航控制开关。
三、电路保护装置(一)熔断器(保险丝)易熔线(保险丝):丰田5A发动机易熔线:中央配电盒,在仪表台下面或发动机室:在丰田5A发动机发动机室在丰田5A发动机仪表板下中央配电盒上:继电器、保险丝、线束分布连接器;桑塔纳中央配电盒(正面):紫 Violet 3A红 Red 10A蓝 Blue 15A黄 Yellow 20A绿 Green 30A桑塔纳中央配电盒(反面):(二)继电器1.四脚触点常开继电器2.四脚触点常闭继电器3.五脚继电器汽车导线、线束及插接器一、导线汽车用导线分为两类:高压线和低压线;1.低压导线截面积的正确选择根据用电设备的负载电流大小选择导线的截面积。
,一般原则为:a. 长时间工作的电气设备可选用实际载流量60%的导线;b.短时间工作的用电设备可选用实际载流量60%~100%之间的导线。
纯电动汽车-电机及控制器ppt课件
.
2.0.3 基本组成
6. 安全保护系统 高压安全 动力电池组具有高压直流电,必须设置安全保护系 统,确保驾驶员、乘员和维修人员在驾驶、乘坐和 维修时的安全。 故障处理 必须配备电气装置的故障自检系统和故障报警系统, 在电气系统发生故障时自动控制EV不能起动等,及 时防止事故的发生。
.
2.0.3 基本组成
电动机替代发动机。 仍然采用内燃机汽车的传动系统,包括离合器、变 速器、传动轴和驱动桥等总成。 有电动机前置、驱动桥前置(F-F),电动机前置、驱 动桥后置(F-R)等各种驱动模式。 结构复杂,效率低,不能充分发挥电动机的性能。
M—电动机 C—离合器 GB—变速器 D—差速器
.
.
经典汽车设计理论推导车辆行驶平 衡方程
.
2.0.4 关键技术
2. 动力电池组的选择与特性 3. 减速器传动比的确定
由于电动机的转速高,不能直接驱动车辆的车轮, 通常在驱动系统中采用大速比的减速器或2档变速器。 作用:减速、增扭 减速器或变速器中不设置倒档齿轮,倒车是靠电动 机的反转来实现。
纯电动轿车三电匹配研究
纯电动轿车三电匹配研究摘要:对于纯电动汽车动力部件的设计匹配来说,深刻的影响到电动汽车的行驶里程以及经济性和动力性能等等。
本文主要是严格的遵循纯电动车的实际开发需求,实施参数匹配计算整车三电,按照相应的标准,实施动力系统总成参数的合理匹配,同时提出科学的减速器速比选择策略。
关键词:纯电动轿车;驱动电机;动力电池;性能当前随着对各种资源的保护,在研究电动汽车方面具有了更高的重视度。
科学的突破动力电池以及其他技术前,研究电动汽车动力传动系部件的设计参数,属于将电动汽车性能有效增强的关键性方式。
本文采取实例分析的方式,选取某型号的传统轿车将其改装成一款纯电动轿车,对于动力系统参数实施重新的设计,之后进行合理性的验证。
1 电池参数1.1 电池电量匹配对电池的电量进行确定的因素较多,即包含有整车续航里程和电机、电池效率、电控等等。
首先,匀速行驶里程的电池电量需求。
水平路面上,电池电量进行匀速行驶方程Wb={[(m×g×f+Cd×A×V2/21.15)×S1/(3600× 1× 2)]+P0×S1/V}/ 3。
其中,S1指的是车辆续航里程,P0指整车附件耗电量, 1指传动系统效率(92%), 2指电机控制器系统效率(88%), 3指电池的放电效率(100%)。
其次,NEDC下电池电量需求情况。
由于此项目设计中,每小时120km是最高车速,所以进行计算期间,应该对于城市工况、城郊工况进行充分的掌握和分析。
依照加速过程中行驶方程获得匀加速工况下电机所做的功和匀速行驶下的电机所做工,即分别为形W2l=[(m×g×f+ ×m×a)(Vo+a×t)+0.6128×Cd×A×(V0+a×t)3]/( 1×3600)dt(Wh)、W22=[(m×g×f×V)+0.6128×Cd×A×V3]/( 1×3600)×t (Wh)。
EMC整车设计要求标准
引言电动汽车车载电器部件要满足相应EMC技术要求,就应考虑其内部元器件和导线的合理布排,并做相应的测试及优化工作.由于整车电气系统为各电器部件及连接线缆的集成体,设备之间的相互影响加剧了电磁环境的复杂性,部件级EMC测试和整车EMC测试关联解析难度大.同时各车型在功能、市场定位、系统架构与布局、零部件电磁特性、集成度等方面可能存在较大差异,很难给出一个或一组统一的定量化指标去适合于所有电动汽车。
在EMC设计、管理等方面,国内电动汽车厂普遍存在以下几方面问题:①EMC工作主要由EMC工程师开展,缺乏系统内协作;②EMC工作主要围绕电器部件及整车的EMC测试展开,EMC设计不足;③电器部件EMC设计和整车EMC设计脱节,EMC问题几乎全部由车载电器部件承担责任;④企业历史短,缺乏专业的EMC设计经验,缺乏规范的EMC研发、管理流程。
本文参考系统级电磁兼容设计思想,并借鉴国外电动汽车的优秀EMC设计方法,提出一种电动汽车系统级EMC开发方法,该方法建立的系统开发流程贯穿实施于车辆开发各流程中,整车一次性通过EMC法规测试,并做到了系统内的良好兼容性。
1、电动汽车系统级EMC设计思想系统电磁兼容问题在分析方法、设计方法、试验方法方面,均为系统工程问题。
电动汽车系统级EMC设计思想:综合考虑电器部件性能及功能完整性、可靠性、技术成本、车身轻量化、产品上市周期等各种因素,确定布局和技术控制状态,选取材料、结构和工艺,在车辆研发的各阶段,以最低的成本、最有效的方式将接地、屏蔽及滤波等设计思想及具体措施实施到产品或系统中,在测试阶段做出详细的EMC测试评价、优化及管理,最终形成一套可行性高的正向开发设计方法或流程。
在产品质量前期策划(advancedproductqualityplanning,简称APQP)过程中,新产品研发过程一般由5个阶段组成:计划定义和项目、产品设计和开发验证、过程设计和开发验证、产品和过程确认,以及反馈、评估和纠正措施,APQP进度图如图1所示.借鉴APQP流程,电动汽车系统级EMC开发流程可包括:EMC规划阶段、EMC 系统架构布局阶段、EMC设计阶段、EMC系统测试及状态冻结阶段以及EMC 评估、评审和优化阶段.上述各阶段需要车型设计总师、项目经理、EMC专家、EMC工程师、电气工程师、线束工程师、总布置工程师、结构工程师、测试工程师以及各电器部件供应商等协作参与,共同完成。
纯电动汽车动力电池匹配设计
纯电动汽车动力电池匹配设计摘要:发展新能源汽车产业已上升为国家战略,纯电动汽车是新能源汽车发展的核心力量,其具备噪音低、效率高、零排放等优点,适合城市道路运输。
而车辆购置成本中动力电池成本占了一半以上,动力电池电量直接影响整车续航里程,一味追求续航里程,使得整车成本进一步增加。
本文从整车布局要求、续航里程、车辆安全性等方面综合考量,提出了动力电池匹配设计方法,作为整车电池选型的理论依据。
关键词:动力电池;匹配设计;续航里程1动力电池系统简介动力电池系统最基本的功能存储由外部电网,或者驱动系统回馈产生的电能。
电芯采用串、并联方式组成电池组,电池组放置在一个或多个密封并且屏蔽的箱体里面,一个或多个箱体使用可靠的接插件进行连接。
使用电池管理系统对电池组进行综合管理,实时采集各电芯的电压值、各温度传感器的温度值、电池组的总电压值和总电流值,电池组与箱体的绝缘电阻值等数据,并根据系统中设定的阀值判定电池组工作是否正常。
为满足便利维修,动力电池系统设有维修开关,通过维修开关能够方便断开动力电池组的高压回路,更换动力电池系统中的熔断器等易损件;动力电池系统为汽车零部件,因此要求动力电池系统采用的各个部件为汽车级。
2 动力电池系统部件要求动力电池系统设计以满足车辆动力要求为前提,同时从电池系统自身内部结构和安全设计、电池管理等方面进行设计,主要包括以下几个部分:(1)电池箱外观尺寸:电池箱体尺寸主要根据车辆提供的电池安装空间进行设计,并且要考虑到接插件、高低压线束布置与机械连接部位的尺寸影响。
电池箱内部尺寸,主要从整体设计考虑,从电池的排布、线束的排布以及电池管理系统尺寸位置、热管理系统尺寸及位置等方面进行设计。
电池箱的外观设计主要从空间布局、材料特性、防护等级、绝缘安全、标识等方面进行设计。
(2)电池性能参数:电池系统参数,比如电压平台、额定容量、额定能量、最大可持续放电电流、瞬间峰值放电电流、瞬间峰值充电电流等,在设计时要根据车辆的动力参数、高低压附件电气耗电量进行匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EPS UNIT
安全 气囊
鼓风机
收音机
空调开关 SRS UNIT
顶灯 开关
安全 气囊
仪表
组合 开关
油泵 安全带SW
仪表板保 险丝盒
后视镜电动
后视镜开关
门开关
门主开 关 玻璃升 降器
门 锁
后门线束
EPS线束
门 锁
玻璃升 降器
玻璃升 降器开
关
门开关
轮速传 感器
扬声器
天线
高位制 动灯
RR DEF
扬声器
接地
线径:根据保险丝容量的大小来选择线径的大小
材料的选择:要求具有耐温、耐油、耐磨、防水、 防腐蚀、抗氧化、阻燃等特性
保护装置:波纹管、PVC TAPE、PVC TUBE、 CURSHION等等
导线类型的选择
线束设计选用导线 类型重点考虑线束所处 的环境和功能。
例如:发动机周围环境 温度高,腐蚀性气体和 液体也很多。因此,一 定要使用耐高温、耐油、 耐振动、耐摩擦导线; 行李厢盖上的导线要在 低温下保持其弹性,所 以要选用冷弹性导线保 证其正常工作;自动变 速器上的导线一定要耐 高温、耐液压油,其温 度稳定性要好;门内线 耐弯曲性要求高;弱信 号传感器要用屏蔽导线, 例如天线接收线等.
• 由公式:P=T×ω,将转矩转换为功率, • 式中P为功率,T为转矩,ω为角速度。
ω=2×Π×n/(60) n为起动电机转速。 • 因起动电机在工作过程中有能量损失,所以其
效率会有损失,大部分起动电机的效率都在 65%左右。在实际生产中,启动电机输入功率用 于小齿轮的效率通常只有85% • 该车飞轮和小齿轮的齿数比为:
汽车线束的设计
STEP 1 整车电器部件装配表
通过装配表,再结合各用电设备的功率大小,得出接下来的 整车电器原理图
STEP 2 原理图的设计
这步牵涉的设计内容有:保险丝容量、线束线径 SIZE的确定、线束的编号等等
GB1电气线束平面布置图
2008年12月13日
门锁
发动机前仓线束 发动机线束 蓄电池正极线 地线
玻璃升 降器 玻璃升 降器开 关 门 锁
门开关
轮速传 感器
位置灯 制动灯 倒车灯
牌照灯
门锁
牌照灯
位置灯 制动灯 倒车灯
STEP 3 在3D数据中确定各线束长度
在3D数模中绘制各处线束的连接,并确认各处线束的长度
STEP 4 2D绘制线束
在2D中确定各段线束间的连接、长度、保护装置
整车电器部件的选择
转向灯
后视镜电动
玻璃升 降器
玻璃升 降器开
关
门开关
SRS SENSOR
ABS UNIT
轮速传感器
FI ECU
发电机 起动机
发动机
风扇
接地
喇叭
接地 SRS SENSOR
_+ µç瓶
FUSE BOX
雨刮
ABS液位
轮速 传感器
EPS MOTOR
转向灯
仪表台线束 司机侧门线束 副驾驶侧门线束
地板线束 后尾线束 顶棚线束
根据起动功率计算:1.68(kw)/0.65=2.58(kw)
2.干荷式免维护蓄电池容量的选择
蓄电池最主要功能是保证发动机的起动,另外在用电的极限高峰时段,发电机供电
能力不足时,与发电机一起供电。
• Q=(450—630)P起/U(系数依据铅板材料而定) • 其中:Q—蓄电池容量(Ah) • P起—起动机额定功率(kw) • U—起动机的额定电压(V) • QICHE的BATERRY的容量: Q=510*1.0 /12 = 43 Ah
c) 计算发动机在怠速状态时发电机的输出功率
d) 计算发电机在不同档位、不同速度下的输出功率 n =(V×i×i桥×i档×103)/(120×Π×R滚)
其中:n—发电机转速(r/min) V—汽车车速(km/h)
i—发电机速比
i桥—驱动桥速比
i档—变速箱速比 R滚—驱动轮滚动半径(m)
b) 确保发机能提供电器过载情况下的电流(比如:夏季雨夜、冬季雪夜 等情况),即:选配发电机时应有一定的安全余量
•
∑Idx=∑cn·In
其中:Idx—等效电流 cn—第n个用电设备所对应的使用频度系数
•
In—第n个用电设备的电流
整车在不同季节和环境下的用电量
b) 确认平常夜间常用电器负载的功率大小(电喷系统12.5A、油泵6.5A、 组合仪表0.5A、近光灯9A、远光灯10A、位置灯1.6A)=40.1A
3.发电机功率的选择
∑Idx
∑cn·In
• 发电机的作用: 作为汽车上是主要的供电电源,给全车除起动机外的所有电器设备提供电能,
并将多余的电能向蓄电池充电,使蓄电池始终保持良好状态。
• 选择发电机功率的步骤: a) 确定整车所有电器的总负载
整车所有电器所消耗的电流总和是选择汽车发电机功率大小的主要依据。
FUSE容量的选择
•保险丝选择的依据是电器负载的电流特性.
•保险丝容量大小也受到安装位置、负载的 工作特性(是连续负载,还是间歇负载) 的影响。
•举个例子: 前大灯(近光灯、远光灯)的保险丝的选择
〖(55+60)÷12 〗 ÷60% ≈ 16 A 所以通过查表:选择20A的MINI保险丝
保险丝的选择(快熔、慢熔保险丝特性比较)
103 : 8=12.875 (不能确定,根据经验得到的) • 所谓汽车在极限温度起动,通常指汽车在-30℃ 时能够顺利启动。在该起动状态下,发动机所 需要的最小曲轴旋转速率为:50r/min。
发动机 缸数
2 4 6 8 12
每升排量所需 要的转矩 (N.m)
12.5
8.0
6.5
6.0
5.5
根据以上数据可以得到: P=8N.m×1.3L×2×Π×120r/min×12.875/(60×1000)=1.68(kw)
Q=I2RT
慢熔 SLOW BLOW FUSE
Average current
环境温度=24℃
额定电流 的倍数
熔断时间 MIN
1.10
100H
1.35
60S
2.00
2S
3.50
0.2S
6.00
0.04S
MAX -
1800S 60S 7S 1S
快熔 MINI FUSE
汽车线束线径、材料、颜色、保护装置等的选择
f) 在特殊应用情况下(寒冷地带、酷热地带等等),考虑发电机的输出电流能否 满足电器需求,如在怠速情况下能否给空调系统和照明系统提供充足的 电流。
g)根据以上结果对发电机输出特性曲线选择相应的发电机,并确定传动比, 确定传动比时,必须考虑皮带包角是否合适,以避免皮带过早损坏。
4.线束、保险丝、继电器、接插件的选择
1.起动电机功率的确定
主要起动机功率大小考虑的因素: 起动系统的额定电压、起动机与飞轮之间的传动比、克服发动机的曲轴的阻
力、起动机和蓄电池的特征曲线、能起动发动机的最低曲轴转速、极限温度等等 GHCC起动机的功率是:1.0KW
起动电机选用及功率确定
• 对GB1轿车所使用的发动机是L13A3系列, 以此为例来分析就算起动电机的功率。