常见的数学建模方法

合集下载

数学建模的常用方法上

数学建模的常用方法上

VS
积分方程建模是利用积分性质和积分方程研究实际问题的方法。
详细描述
积分方程建模是通过建立积分方程来描述实际问题中量的累积关系。积分方程能够反映自变量和因变量之间的整体关系,适用于研究具有累积效应的量之间的关系。例如,物理学中的波动、统计学中的概率分布等都可以通过积分方程建模来描述。
总结词
积分方程建模
02
CHAPTER
线性代数建模法
矩阵是数学建模中的重要工具,用于表示和操作线性关系。
矩阵建模主要用于解决线性关系的问题,如线性方程组、线性变换等。通过矩阵的运算,可以方便地描述和求解线性问题,简化计算过程。
矩阵建模
详细描述
总结词
总结词
向量是一维数组,用于表示具有方向和大小的量。
详细描述
向量建模常用于描述物理现象和工程问题,如力、速度、加速度等。通过向量的运算,可以方便地描述和求解与方向和大小有关的量。
详细描述
非线性规划建模是线性规划建模的扩展,用于解决目标函数或约束条件为非线性的优化问题。
非线性规划建模涉及的函数形式更为复杂,可能包含平方、立方、对数等非线性项。求解非线性规划问题的方法包括梯度法、牛顿法、拟牛顿法等,这些方法通过迭代的方式逐步逼近最优解。
总结词
详细描述
非线性规划建模
总结词
动态规划建模是一种数学方法,用于解决具有重叠子问题和最优子结构特性的优化问题。
数学建模的常用方法
目录
微积分建模法 线性代数建模法 概率论与数理统计建模法 离散数学建模法 优化建模法
01
CHAPTER
微积分建模法
总结词
导数建模是利用导数性质和函数变化率研究实际问题的方法。
详细描述
导数建模是通过分析函数在某一点的切线斜率或函数在某区间的变化率来描述实际问题中量的变化和相互关系。例如,经济学中的边际分析、物理学中的速度和加速度等都可以通过导数建模来描述。

数学建模方法与分析

数学建模方法与分析

数学建模方法与分析
数学建模是利用数学方法解决实际问题的过程。

数学建模的一般步骤包括问题定义、建立数学模型、模型求解和结果分析等阶段。

数学建模方法可以分为多种,常见的方法包括:
1. 数据分析:通过统计分析和数据挖掘等方法,对问题中的数据进行处理和分析,找出其中的规律和趋势。

2. 最优化方法:根据问题的要求,建立相应的数学规划模型,通过求解最优化问题,得到最优解。

3. 随机模型:将问题建立为随机过程或概率模型,通过概率统计的方法进行分析和求解。

4. 系统动力学模型:将问题建立为动态系统模型,通过系统动力学的方法分析系统的行为和演化规律。

5. 图论和网络分析:将问题建立为图模型或网络模型,通过图论和网络分析的方法研究其结构和性质。

6. 分数阶模型:将问题建立为分数阶微分方程或分数阶差分方程,通过分数阶
微积分的方法进行分析和求解。

数学建模的分析阶段是对模型求解结果进行解释和评估。

分析结果可以包括对模型的可行性和有效性进行验证,对模型的优化方向进行探讨,以及对问题的解释和解决方案的提出等。

总的来说,数学建模方法与分析是数学建模过程中重要的环节,通过合理选择建模方法和深入分析模型结果,可以得到对实际问题有价值的解决方案。

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

数学建模10种常用算法

数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。

参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。

在数学建模中常用的方法

在数学建模中常用的方法

在数学建模中常用的方法数学建模是一种利用数学模型来描述和解决实际问题的方法。

它在科学研究、工程技术和经济管理等领域具有广泛的应用。

在数学建模中,常用的方法包括线性规划、非线性规划、动态规划、离散事件模拟、蒙特卡洛方法等。

下面将对这些方法进行详细介绍。

1.线性规划:线性规划是一种在给定的约束条件下最大化或最小化线性目标函数的方法。

它适用于有着线性关系的问题,包括生产计划、资源分配、运输问题等。

线性规划的主要方法是使用线性规划模型将问题转化为数学形式,并通过线性规划算法求解最优解。

2.非线性规划:非线性规划是一种在给定的约束条件下最大化或最小化非线性目标函数的方法。

它适用于有着非线性关系的问题,包括优化设计、模式识别、经济决策等。

非线性规划的主要方法是使用非线性规划模型将问题转化为数学形式,并通过非线性规划算法求解最优解。

3.动态规划:动态规划是一种通过将复杂问题分解为子问题,并利用最优子结构的性质求解问题的方法。

它适用于有着重叠子问题的问题,包括最短路径问题、背包问题、机器调度问题等。

动态规划的主要方法是建立递推关系,通过填表或递归的方式求解最优解。

4.离散事件模拟:离散事件模拟是一种通过模拟系统状态的变化,以评估系统性能的方法。

它适用于有着离散事件发生和连续状态变化的问题,包括排队论、制造过程优化、金融风险评估等。

离散事件模拟的主要方法是建立事件驱动的模拟模型,并通过统计分析得到系统性能的估计。

5.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的模拟方法,通过生成随机样本来估计问题的解。

它适用于有着随机性质的问题,包括随机优化、风险分析、可靠性评估等。

蒙特卡洛方法的主要思想是基于大数定律,通过大量的随机模拟次数来逼近问题的解。

除了上述方法外,在数学建模中还可以使用图论、拟合分析、概率论和统计方法等。

图论可用于描述网络结构和路径问题;拟合分析可用于对实际数据进行曲线或曲面拟合;概率论和统计方法可用于建立概率模型和对数据进行统计分析。

数学建模有哪些方法

数学建模有哪些方法

数学建模有哪些方法
数学建模是指将实际问题用数学的方法进行描述和分析的过程。

常见的数学建模方法有以下几种:
1. 形式化建模:将实际问题抽象成数学模型,通过符号和公式的形式进行描述和求解。

2. 统计建模:利用统计学的方法对数据进行收集、整理和分析,从中提取规律和模式,对未知的情况进行预测和决策。

3. 数值模拟:利用计算机和数值方法对问题进行模拟和求解,通过近似计算得到结果。

4. 最优化建模:通过建立优化模型,寻找使目标函数达到最大或最小值的最优解。

5. 离散建模:将连续的问题离散化,转化为离散的数学模型进行分析和求解。

6. 动态建模:对问题进行时间序列的分析和建模,预测未来的变化和趋势。

7. 图论建模:将问题抽象成图的形式,利用图的相关理论和算法进行分析和求解。

8. 概率建模:利用概率论的方法对问题进行建模和分析,从中推断出一些未知的情况。

以上是一些常见的数学建模方法,具体的方法选择要根据实际问题的特点和要求进行判断和决策。

常用数学建模方法

常用数学建模方法

数学建模常用方法以及常见题型核心提示:数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型 1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型1.比例分析法--建立变量之间函数关系的最基本最常用的方法。

2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。

3. 逻辑方法--是数学理论研的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。

4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。

5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。

二、数据分析法从大量的观测数据利用统计方法建立数学模型1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。

2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

3.回归分析法--用于对函数f(x)的一组观测值(xi,fi)I=1,2,…,n,确定函数的表达式,于处理的是静态的独立数据,故称为数理统计方法。

4.时序分析法--处理的是动态的相关数据,又称为过程统计方法。

三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。

①离散系统仿真--有一组状态变量。

②连续系统仿真--有解析达式或系统结构图。

2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法在数学建模中,常使用的三种最常用算法是回归分析法、最优化算法和机器学习算法。

这三种算法在预测、优化和模式识别等问题上有着广泛的应用。

下面将对这三种算法进行详细介绍。

1.回归分析法回归分析是一种用来建立因果关系的统计方法,它通过分析自变量和因变量之间的关系来预测未知的因变量。

回归分析可以通过构建一个数学模型来描述变量之间的关系,并利用已知的自变量值来预测未知的因变量值。

常用的回归分析方法有线性回归、非线性回归和多元回归等。

在回归分析中,我们需要首先收集自变量和因变量的样本数据,并通过数学统计方法来拟合一个最优的回归函数。

然后利用这个回归函数来预测未知的因变量值或者对已知数据进行拟合分析。

回归分析在实际问题中有着广泛的应用。

例如,我们可以利用回归分析来预测商品销售量、股票价格等。

此外,回归分析还可以用于风险评估、财务分析和市场调研等。

2.最优化算法最优化算法是一种用来寻找函数极值或最优解的方法。

最优化算法可以用来解决各种优化问题,例如线性规划、非线性规划和整数规划等。

最优化算法通常分为无约束优化和有约束优化两种。

无约束优化是指在目标函数没有约束条件的情况下寻找函数的最优解。

常用的无约束优化算法有梯度下降法、共轭梯度法和牛顿法等。

这些算法通过迭代计算来逐步优化目标函数,直到找到最优解。

有约束优化是指在目标函数存在约束条件的情况下寻找满足约束条件的最优解。

常用的有约束优化算法有线性规划、非线性规划和混合整数规划等。

这些算法通过引入拉格朗日乘子、KKT条件等来处理约束条件,从而求解最优解。

最优化算法在现实问题中有着广泛的应用。

例如,在生产计划中,可以使用最优化算法来确定最优的生产数量和生产计划。

此外,最优化算法还可以应用于金融风险管理、制造工程和运输物流等领域。

3.机器学习算法机器学习算法是一种通过对数据进行学习和模式识别来进行决策和预测的方法。

机器学习算法可以根据已有的数据集合自动构建一个模型,并利用这个模型来预测未知的数据。

数学建模中常用的十种算法

数学建模中常用的十种算法

数学建模中常用的十种算法在数学建模中,常用的算法有很多种。

以下是数学建模常用的十种算法:1.线性回归算法:线性回归是一种用于建立变量之间线性关系的统计算法。

它通过最小化预测值与实际值之间的均方误差来确定最佳拟合直线。

2.非线性回归算法:非线性回归是一种用于建立变量之间非线性关系的统计算法。

它通过最小化预测值与实际值之间的均方误差来确定最佳拟合曲线。

3.最小二乘法算法:最小二乘法是一种用于估计模型参数的优化算法。

它通过最小化观测值与预测值之间的平方差来确定最佳参数值。

4.插值算法:插值是一种用于根据已知数据点推断未知数据点的技术。

其中常用的算法包括线性插值、拉格朗日插值和样条插值。

5.数值积分算法:数值积分是一种用于计算函数的定积分的技术。

其中常用的算法包括梯形法则、辛普森法则和龙贝格积分。

6.数值优化算法:数值优化是一种用于求解最优化问题的技术。

其中常用的算法包括梯度下降法、牛顿法和拟牛顿法。

7.图形算法:图形算法是一种用于处理图像和图形数据的技术。

其中常用的算法包括图像滤波、图像分割和图像识别。

8.聚类算法:聚类是一种用于将数据集分组为不同类别的技术。

其中常用的算法包括K均值聚类、层次聚类和DBSCAN。

9.分类算法:分类是一种用于将数据分为不同类别的技术。

其中常用的算法包括支持向量机、决策树和随机森林。

10.贝叶斯算法:贝叶斯算法是一种用于计算后验概率的统计推断方法。

其中常用的算法包括贝叶斯分类、朴素贝叶斯和马尔科夫链蒙特卡洛。

以上是数学建模中常用的十种算法,它们在不同的应用领域和问题中具有广泛的应用价值,并且常常可以相互结合以获得更好的建模结果。

数学建模常见方法

数学建模常见方法

数学建模是将实际问题抽象成数学模型,并通过数学方法进行求解和分析的过程。

以下是一些常见的数学建模方法:
1.数理统计:利用概率论和统计学方法来分析数据,建立统计模型并进行参数估计、假设
检验等,从而对问题进行量化和预测。

2.最优化方法:使用最优化理论和方法,在给定约束条件下寻找最优解,如线性规划、非
线性规划、整数规划等。

3.微分方程模型:通过建立微分方程或偏微分方程描述系统的动态行为,包括常微分方程
和偏微分方程模型。

4.离散事件模拟:通过离散事件模拟方法模拟系统的运作过程,包括随机过程、排队论等。

5.图论与网络流模型:使用图论和网络流算法对复杂的关系和网络结构进行建模和分析,
如最短路径、最小生成树等。

6.时间序列分析:对时间序列数据进行建模和预测,涉及自相关函数、谱分析、回归分析
等方法。

7.近似方法:如插值、拟合、逼近等方法,通过寻找适当的函数形式来近似真实问题。

8.随机过程:通过建立随机过程来描述系统的不确定性和随机性,包括马尔可夫链、布朗
运动等。

9.图像处理与模式识别:利用数学方法和算法对图像和模式进行处理和识别,如图像滤波、
边缘检测、模式匹配等。

10.数据挖掘与机器学习:利用统计学和机器学习算法对大规模数据进行分析和挖掘,发现
隐藏的模式和关联规律。

这些方法只是数学建模中的一部分,实际应用还需根据具体问题进行选择和组合。

在数学建模过程中,常常需要结合领域知识和实际情况,并使用计算机软件和工具进行模型求解和结果分析。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。

在数学建模中,算法模型是解决问题的关键。

下面介绍一些常用的数学建模算法模型。

1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。

线性规划模型的目标函数和约束条件均为线性函数。

线性规划广泛应用于供需平衡、生产调度、资源配置等领域。

2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。

非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。

3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。

整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。

4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。

动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。

5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。

随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。

6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。

进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。

7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。

神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。

8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。

模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。

除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。

不同的问题需要选择合适的算法模型进行建模和求解。

数学建模算法模型的选择和应用需要根据具体的问题和要求进行。

数学建模方法

数学建模方法

数学建模方法引言数学建模是一种应用数学工具解决实际问题的方法。

它通过建立数学模型来描述和分析现实世界中的各种现象,从而为决策提供科学依据。

本文将介绍几种常见的数学建模方法,帮助初学者了解如何运用数学知识解决实际问题。

确定问题与收集数据在进行数学建模之前,首先需要明确要解决的问题,并收集相关的数据。

这一步骤是建模过程中至关重要的一环,因为数据的质量和完整性直接影响到模型的准确性和可靠性。

问题定义清晰地界定问题的范围和目标是成功建模的第一步。

这包括理解问题的背景、目的以及期望通过建模达到的效果。

数据收集根据问题的需求,收集必要的数据。

这些数据可能来自于实验测量、历史记录、统计报告等。

在收集数据时,要注意数据的有效性和代表性。

建立模型建立数学模型是将现实问题转化为数学问题的过程。

根据问题的性质,可以选择不同的建模方法。

确定变量和参数在模型中,需要区分哪些是变量,哪些是参数。

变量通常是我们想要预测或解释的量,而参数则是模型中的固定值,用于描述系统的特性。

选择数学工具根据问题的特点选择合适的数学工具。

例如,对于连续变化的问题可以使用微分方程;对于优化问题可以使用线性规划或非线性规划等。

求解模型模型建立后,下一步是通过数学方法求解模型,得到问题的解答。

解析解法如果模型简单,可以尝试找到解析解,即用公式直接表示的解。

数值解法对于复杂的模型,通常需要使用数值方法求解,如有限差分法、有限元法等。

模型验证与改进求解完成后,需要对模型进行验证,确保其准确性和适用性。

模型验证通过与实际数据对比,检验模型的预测能力。

如果模型的预测结果与实际数据吻合良好,说明模型是有效的。

模型改进如果模型的预测结果与实际数据有较大偏差,需要对模型进行调整和改进,以提高其准确性。

结论数学建模是一个迭代的过程,涉及到问题定义、数据收集、模型建立、求解以及验证和改进等多个步骤。

通过不断优化模型,我们可以更好地理解和解决实际问题。

希望本文能为初学者提供一个数学建模的基本框架和方法指导。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。

在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。

一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。

它的数学形式是以线性约束条件为基础的最优化问题。

线性规划的基本假设是目标函数和约束条件均为线性的。

线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。

线性规划的求解方法主要有两种:单纯形法和内点法。

单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。

内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。

整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。

整数规划的求解方法通常有两种:分支定界法和割平面法。

分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。

割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。

三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。

多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。

动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。

动态规划通常分为两种形式:无后效性和最优子结构。

无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。

最优子结构是指问题的最优解能够由子问题的最优解推导而来。

数学建模算法汇总

数学建模算法汇总

数学建模算法汇总数学建模常用的算法分类全国大学生数学建模竞赛中,常见的算法模型有以下30种:1.最小二乘法2.数值分析方法3.图论算法4.线性规划5.整数规划6.动态规划7.贪心算法8.分支定界法9.蒙特卡洛方法10.随机游走算法11.遗传算法12.粒子群算法13.神经网络算法14.人工智能算法15.模糊数学16.时间序列分析17.马尔可夫链18.决策树19.支持向量机20.朴素贝叶斯算法21.KNN算法22.AdaBoost算法23.集成学习算法24.梯度下降算法25.主成分分析26.回归分析27.聚类分析28.关联分析29.非线性优化30.深度学习算法一、线性回归:用于预测一个连续的输出变量。

线性回归是一种基本的统计学方法,用于建立一个自变量(或多个自变量)和一个因变量之间的线性关系模型,以预测一个连续的输出变量。

这个模型的形式可以表示为:y = β0 + β1x1 + β2x2 + ... + βpxp + ε其中,y 是因变量(也称为响应变量),x1, x2, ..., xp 是自变量(也称为特征变量),β0,β1,β2, ...,βp 是线性回归模型的系数,ε 是误差项线性回归的目标是找到最优的系数β0, β1, β2, ...,βp,使得模型预测的值与真实值之间的误差最小。

这个误差通常用残差平方和来表示:RSS = Σ (yi - ŷi)^2其中,yi 是真实的因变量值,ŷi 是通过线性回归模型预测的因变量值。

线性回归模型的最小二乘估计法就是要找到一组系数,使得残差平方和最小。

线性回归可以通过多种方法来求解,其中最常用的方法是最小二乘法。

最小二乘法就是要找到一组系数,使得残差平方和最小。

最小二乘法可以通过矩阵运算来实现,具体地,系数的解可以表示为:β = (X'X)^(-1)X'y其中,X 是自变量的矩阵,包括一个截距项和所有自变量的值,y 是因变量的向量。

线性回归在实际中的应用非常广泛,比如在金融、医学、工程、社会科学等领域中,都可以使用线性回归来预测和分析数据。

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。

数学建模中常用的方法

数学建模中常用的方法

1:蒙特卡罗算法; 2:数据拟合、参数估计、插值等数据处理算法 (常用matlab实现); 3:线性规划、整数规划、多元规划、二次规划(用 lingo、lingdo、matlab即可实现); 4:图论算法(包括最短路、网络流、二分图); 5:动态规划、回溯搜索、分治算法、分支界定; 6:最优化理论的三大经典算法(模拟退火算法、 神经网络算法、遗传算法); 7:网格算法和穷举法; 8:连续数据离散化; 9:数值分析算法; 10:图象处理算法(常用matlab来实现)。



摘要 关键词 (1)问题重述 (2)模型假设与约定 (3)符号说明及名词定义 (4)问题分析 (5)模型建立(问题分析,公式推导,基本模型,最终或 简化模型等)与求解(包括设计或选择合适的计算方法和算 法,设计算法的实现步骤和计算框图;所采用的软件名称; 引用或建立必要的数学命题和定理; 求解方案及流程 ) (6)进一步讨论 (7)模型检验 (8)模型优缺点 (9)附录 (10)参考文献
在优化方法中,决策变量、目标函数(尽量简
单、光滑)、约束条件、求解方法是四个关键 因素。其中包括无约束规则(用fminserch、 fminbnd实现)线性规则(用linprog实现)非 线性规则、( 用fmincon实现)多目标规划 (有目标加权、效用函数)动态规划(倒向和 正向)整数规划。
时间序列是按时间顺序排列的、随时间变化且
相互关联的数据序列—通过对预测目标自身时 间序列的处理,来研究其变化趋势(长期趋势 变动、季节变动、循环变动、不规则变动)



时间序列建模的基本步骤 数据的预处理:数据的剔取及提取趋势项 取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型 n=n+1,拟合ARMA(2n,2n-1)模型 用F准则检验模型的适用性。若检验显著,则转入第2步。 若检验不显著,转入第5步。 检查远端时刻的系数值的值是否很小,其置信区间是否 包含零。若不是,则适用的模型就是ARMA(2n,2n-1) 。 若很小,且其置信区间包含零,则拟合ARMA(2n-1,2n2) 。 利用F准则检验模型ARMA(2n,2n-1)和ARMA(2n-1,2n-2) , 若F值不显著,转入第7步;若F值显著,转入第8步。 舍弃小的MA参数,拟合m<2n-2的模型ARMA(2n-1,m) , 并用F准则进行检验。重复这一过程,直到得出具有最 小参数的适用模型为止 舍弃小的MA参数,拟合m<2n-1的模型ARMA(2n,m) , 并用F准则进行检验。重复这一过程,直到得出具有最 小参数的适用模型为止。

常用数学建模方法及实例

常用数学建模方法及实例

常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。

常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。

一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。

它常用于资源分配、生产计划、供应链管理等领域。

例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。

产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。

工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。

公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。

二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。

整数规划常用于离散决策问题。

例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。

公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。

它广泛应用于经济、金融和工程等领域。

例3:公司通过降低售价和增加广告费用来提高销售额。

已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。

已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。

四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。

例4:求解最短路径问题。

已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。

求从起始城市到目标城市的最短路径。

五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。

数学建模各题型的算法

数学建模各题型的算法

数学建模各题型的算法数学建模的题型很多,对应的算法也有多种。

以下是数学建模常见题型以及相应的算法:1. 线性规划(Linear Programming):常用的线性规划算法包括单纯形法(Simplex Algorithm)、内点法(Interior Point Method)等。

2. 整数规划(Integer Programming):常用的整数规划算法包括分支定界法(Branch and Bound)、动态规划法(Dynamic Programming)、割平面法(Cutting Plane Method)等。

3. 非线性规划(Nonlinear Programming):常用的非线性规划算法包括梯度下降法(Gradient Descent)、牛顿法(Newton's Method)、拟牛顿法(Quasi-Newton Method)、遗传算法(Genetic Algorithm)等。

4. 图论(Graph Theory):常用的图论算法包括最短路径算法(Dijkstra Algorithm、Floyd-Warshall Algorithm)、最小生成树算法(Prim Algorithm、Kruskal Algorithm)、最大流算法(Ford-Fulkerson Algorithm、Edmonds-Karp Algorithm)等。

5. 动态规划(Dynamic Programming):动态规划算法用于求解具有重叠子问题性质的最优化问题,常用的算法有钢条切割问题、背包问题、旅行商问题等。

6. 模拟退火算法(Simulated Annealing):模拟退火算法是一种全局优化算法,常用于求解复杂的组合优化问题,如旅行商问题、装箱问题等。

7. 神经网络(Neural Network):神经网络算法常用于函数拟合、分类、聚类等问题,其中包括前馈神经网络(Feedforward Neural Network)、卷积神经网络(Convolutional Neural Network)、循环神经网络(Recurrent Neural Network)等。

数学建模常用方法

数学建模常用方法

数学建模常用方法
1. 数学统计方法:用统计学方法分析大量数据,为研究对象提供信息和解释。

2. 形式化建模方法:将自然语言描述的问题转换为数学语言的形式,建立数学模型。

3. 最优化方法:通过标准化目标函数和制约条件寻找最优解。

4. 仿真方法:在计算机上实现模型,并用不同的参数测试模型。

5. 数据挖掘方法:通过大数据分析和模式识别寻找规律。

6. 神经网络方法:通过构建数学神经网络实现模式识别和分类。

7. 演化算法方法:用进化算法来解决多维问题。

8. 非线性优化方法:以非线性数学模型为基础,分析和寻找最优解。

9. 贝叶斯方法:用贝叶斯原理分析和推断某些未知参数。

10. 数值分析方法:用计算机来实现各种数学方法,如微积分和代数运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.0001
6
1.43
1.45
+0.02
0.0004
7
1.32
1.32
0
0
8
1.25
1.22
-0.03
0.0009
残差的平方和为: Σv2 = 0.0146 , 这个结果应该说也是较好的.
说明: 该例中的变量替换 方法运用,使得线性模型的最小二乘法公式 应用范围大 大扩大. 常见的 非线性模型的变换方式 如下表所列:
变量替换 :
Y = lny , X = lnx ,
即得线性模型:Y = A + bX , 其中 A = lna , 而 ( X , Y ) 的数据为:
(用ln最x小i ,二ln乘y 法i )算, (得i := 1a
,…,8 ) . = 17.2463 ,
b
=
-
0.6048
.
由此最后可得到
油的粘度 y 与温度 x 之间依赖关系的数学模型为:
检验该模型(经验公式) : y = 17.2463 x - 0.6048 .
i
y (测定值) y* (计算值) v = y -y*
v2
1
4.24
4.28
+0.04
0.0016
2
2.92
2.82
-0.10
0.01
3
2.20
2.20
0
0
4
1.81
1.85
+0.04
0.0016
5
1.61
1.62
+0.01
=xy’=1/x, y’x’==lney-x, y’=1/y
变换后的线性表示式 y’ = lna +bx’ y’ = lna +bx’ y’ = a + bx’
y’ = a + bx’ y’ = lna +bx’ y’ = a + bx’
实例. 找出基于下列数据的美国马萨诸塞州生产量、劳动力和投资之间变化的经 济增长模型(道格拉斯 Douglas 生产函数模型 )
曲线
变换
幂函数 y = axb 指数函数 y = aebx 双曲函数 y = x/ (ax+b)
对数函数 y = a + blnx 指数函数 y = aeb/x
S型函数y = 1 / ( a+be-x )
x’=lnx, y’x’==lnxy , y’ =
lxn’y =1/x, y’=
1/y x’ = lnx, y’
34
67
101 135 202 259 336 404 471
产量 15.1 21.3 25.7 32.2 34.0 39.4 43.1 43.4 40.8 30.7
8
6
2
9
3
5
5
635源自磷施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
施肥量 0
24 49 73 98 147 196
产量
33.46 32.47 36.06 37.96 41.04 40.09 41.26
式算出的理论值进行比较.
在决定经验公式的形式时, 大致思路是:
a) 利用所研究系统的有关问题在理论上已有的结论, 来 确定经 验公式的形式 . b) 在无现成理论情况下, 最简单的处理手段是用描图的方法, 将 数据点连成光滑曲线, 把它与已知函数曲线进行比较,找出与之比
较接近的曲线.
c) 如要考虑所建立的模型必要的逻辑性与理论价值,可利用合适
实例 3. 某研究所为了研究三种肥料氮, 磷, 钾对于土豆和生菜的作
用, 分别对每种作物进行了三组试验. 实验数据如下列表格所示, 其 中 ha 表示公顷 , t 表示吨 , kg 表示千克. 试建立反映施肥量与产量 关系的数学模型.
氮施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
施肥 0 量
组数据应服 从的数学模型,如记 l - 1000 = l’ , l0 – 1000 = b, al0 = k,
则有 l’ = b + kt . 可以算得: 4
4
(l 1000)
4
t 42.5,
t
2 i
8100,
l ' i1
i 1
4
0.705, tili' 34.6 i 1
根据最小二乘法公式,
n
til'i nt l '
k i1
0.0212 , b l 'kt 0.196
n
t
2 i
nt
2
i 1
可得: l = 999.804( 1 + 0.0000212t ).
最后检验该模型(经验公式):
t
l (测定值) l*(计算值) v = l - l*
v2
20
1000.22 1000.228 +0.008 0.000064
的数学方法, 对所研究系统的有关问题进行 定量化的机理分析 ,
导出较为严密的数学公式.
实例1. 找出基于下列数据的铜棒长度 l 与温度 t 之间关系的经验公
式.
温度 t ( 0C ) 20
40
50
60
对应长度 l (mm) 1000.2 1000.65 1000.90 1001.05
建模过程: 利用已有的物理学固体热胀冷缩定律: l = l0(1+at) 作为该
钾施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
施肥量 0
47
93
140 186 279 372
产量
18.98 27.35 34.86 38.52 38.44 37.73 38.43
245
42.17
465
43.87
294
40.36
558
42.77
342
42.73
651
46.22
氮施肥量(公斤/公顷)与生菜产量(吨/公顷)关系的实验数据
40
1000.65 1000.652 +0.002
0.00004
50
1000.9 1000.864 -0.036 0.001296
60
1001.05 1001.074 +0.024 0.000576
残差的平方和为: Σv2 = 0.00194 , 这个结果应该说是较好的.
实例2. 找出基于下列数据的油的粘度 y 与温度 x 之间关系的经验
公式 . 温度x 10 20 30 40 50 60 70 80
粘度y 4.24 2.92 2.2 1.81 1.6 1.43 1.32 1.25
建模过程: 无现成机理明确的公式,使用描点比较法 :
可以认为该光滑曲线相似于一条双曲线, 故设其数学模型为
y = axb ( b < 0 ) . 为了将它化为线性模型, 两边取对数,再作
线性模型下的最小二乘法法则是:如果一组数据为:( xi , yi ),
( i = 0,…, n ) , 它服从 线性函数 y = kx + b 模型 , 则
n
x i
y i
nx
y
k i1 n
, b y kx ,
x2 i
nx 2
i 1
n
n
其中
x i
y i
x i1
, y i1
.
n
n
(3)进行模型检验 .求得确定的经验公式后,将实际测定值与用公
相关文档
最新文档