5放射性核素显像概论(新)

合集下载

放射性核素显像

放射性核素显像

05
CHAPTER
放射性核素显像在环境科学中应用
利用放射性核素的特性,将其作为大气污染物的示踪剂,通过测量大气中的放射性活度,可以追踪污染物的来源、分布和迁移转化过程。
放射性核素作为示踪剂
建立基于放射性核素的大气污染监测网,实现对大气污染物的实时监测和预警,为大气污染治理提供科学依据。
大气污染监测网
智能化技术的助力提升
加强国际合作与交流,共同应对技术、法规和伦理等方面的挑战;加大科研投入,推动技术创新与转化应用;加强医学影像技术人才的培养与引进,提高放射性核素显像技术的临床应用水平。
应对挑战的策略措施
THANKS
感谢您的观看。
正电子发射断层扫描仪(PET)
利用正电子发射核素(如18F、11C等)衰变产生的正电子与电子湮灭产生的一对方向相反的511 keV伽马光子进行成像。PET具有高分辨率和高灵敏度的优点。
图像获取
01
患者注射放射性示踪剂后,在特定时间内使用显像仪器进行扫描,获取放射性分布数据。扫描过程中需注意患者的体位、呼吸等因素对图像质量的影响。
通过比较治理前后大气中放射性活度的变化,可以评估治理措施的效果,为进一步优化治理方案提供数据支持。
治理效果评估
03
治理效果评估
通过分析治理前后水体中放射性核素的浓度变化,可以评估治理措施的效果,为水体污染治理提供科学依据。
01
放射性核素在水体中的行为
研究放射性核素在水体中的吸附、解吸、沉淀、溶解等行为,揭示其在水体中的迁移转化规律。
神经系统疾病诊断
1
2
3
通过放射性核素显像技术,可以预测肿瘤患者的预后情况,为制定个性化治疗方案提供依据。
肿瘤预后判断

放射性核素成像

放射性核素成像
检测器所得数据要输入计算机,γ照相可 以对图像作后处理。能把形态学和功能性 信息显示结合起来。
伽玛照相机的组成
探头支架
数操 据作 处及控 理制 装台 置
探头 病床
伽玛照相机电路结构


显示



定位电路


光电倍增管(PMT)

NaI(Tl)晶体

准直器

PMT的排列方式
每一个边排列3个,总 共19个 ; 每一个边排列4个,总 共37个; 每一个边排列5个,总 共61个; 每一个边排列6个,总 共91个; 每一个边排列7个,总 共127个。
原子核即使没有任何外来因素作用下 ,也会自发地放出射线而转变为另一种核 素,这类核素称为放射性核素。
核衰变
放射性核素特点
特定的半衰期
物理半衰期( physical half life )
符号T1/2 , 在单一的放射性核素衰变过 程中,放射性活度降至原有值一半时所需 要的时间,称为物理半衰期,简称半衰期 ( T1/2 )。
SPECT的衰减校正
SPECT是通过γ 射线的体外计数来标定 体内放射性活度,不希望穿出人体的γ 射 线有衰减,在无衰减情况下,计数大小正 比于放射性话度。但是衰减是不可避免的, 它的存在严重影响了活度的精度。
SPECT的特点
可提供任意方位角的断层图像及三维 立体图的成像数据;提供功能性测量 的量化信息,较γ照相机大大提高了肿 瘤及脏器的功能性诊断效率。
核素的活度。
SPECT原理
SPECT原理
SPECT的放射性制剂都是发生γ 衰变的同位素,体外进行的是单个 光子数量的探测。
SPECT的成像原理

放射性核素显像

放射性核素显像

第一节 放射性药物
4、放射性药物的质量控制 (1)物理鉴定 外观,比活度,放射性核纯度,放射性活度 (2)化学鉴定 pH值,化学纯度,放射化学纯度 (3)生物学纯度 无菌,无热原,毒性,生物分布,辐射安全性
四、常用的放射性药物 1、诊断用:125I,99Tcm,18F 2、治疗用:131I,89Sr,90Sr,32P,
二、放射性核素来源 1、核反应堆 可控重核裂变链式反应装置-中子流,32P,89Sr,131I,125I 2、加速器 多为回旋加速器-加速带电粒子,18F,15O,13N,67Ga, 3、放射性核素发生器 (1)概念:是一种定期从较长半衰期的放射性母体核素中分离出衰变产生 的较短半衰期的子体放射性核素的装置,是医用放射性核素的主要来源之 一,母体不断衰变,子体分离过程可反复进行,可在一段时间内反复使用, 如同母牛挤奶,故亦称为“母牛发生器”。 (2)最常用:99Mo-99Tcm ,母体99Mo半衰期66h, β-衰变,子体99Tcm半衰 期6.02h,洗脱平衡峰值24h
1、 分类:Ⅰ放射性核素:简单的放射性核素的无机化合物,如Na131I Ⅱ显像剂:由放射性核素及其标记化合物两部分组成,用于脏器、 组织或病变显像,如骨显像剂99Tcm-MDP
2、 特点: (1)具有放射性 α、β、γ (2)不稳定性 T1/2 (3)辐射自分解 作用到自身 (4)引入量很少
第一节 放射性药物
第二节 放射性核素显像
一、放射性核素示踪技术 1、概念 放射性核素示踪技术是以放射性核素或其标记化合物为示
踪剂,应用射线探测方法来检测它的行踪 2、基本性质 放射性示踪剂与被研究物质的统一性和放射性核素的
可测性 3、基本类型 (1)体内示踪技术 物质吸收、分布、排泄、转化

放射性核素示踪技术与显像课件

放射性核素示踪技术与显像课件
用可旋转的或环形的放射性探测器在体表连续或间断采集多 体位平面影像数据,再由计算机重建成为各种断层影像的显像 方法称为断层显像
平面显像 (planar imaging) 断层显像 (tomographic imaging )
心肌平面显像
脑血流灌注断层显像 (横断面) 心肌断层显像 (短轴切面)
4. 根据影像获取的时间分为
延迟显像 (delay imaging )
骨三时相显像 (血流相)
分化型甲癌患者服131I后72h全身显像
5. 根据显像剂对病变组织的亲和力分为
阳性显像 (positive imaging) 又称热区显像 (hotspotimaging) ,指显像剂主要被病变组织
摄取,而正常组织一般不摄取或摄取很少,在静态影像上病灶 组织的放射性比正常组织高而呈热区改变的显像。分为特异性 与非特异性两种 阴性显像 ( negative imaging)
G0期
death
体外示踪技术 (in vitro)
3.活化分析
通过使用适当能量的射线或粒子照射待测样品, 使待测样品中某些稳定的核素通过核反应变成放射 性核素 (活化) ,然后进行放射性测量和能谱分析 , 获得待测样品中稳定性核素的种类与含量的超微 量 分析技术。是各种痕量分析法中灵敏度最高的方 法 之一
体内示踪技术 (in vivo)
4.放射性核素功能测定
放射性药物引入机体后,根据其理化 及生物学性质参与机体特定的代谢过程, 并动态地分布于有关脏器和组织,通过检 测仪器可观察其在有关脏器中的代谢过程, 从而了解相应脏器的功能状况 如甲状腺吸131I功能测定、肾功能测定等
放射性核素功能测定
甲状腺吸 131I功能测定
什么是放射性示踪技术?

医学影像学课件_放射性核素显像

医学影像学课件_放射性核素显像

四、放射平衡
放射平衡 各代核的数量比与时间无关
1.暂时平衡 1 2 且 e(2 1)t 1
N2 (t)
1 2 1
N1(t) 1 e(2 1)t
1 2 1
N1 (t )
1 2
1
N1 (0)e 1t
子核数量按母核衰变规律变化两者数目保持与t无 关的暂时固定的比例。
第六章 放射性核素显像
18
一、射线能谱 二、闪烁计数器 三、脉冲幅度分析器
第六章 放射性核素显像
39
一、射线能谱
第二节 原子核的放射性
每一种放射性核素都有自己特有的辐射能谱
测出射线能谱鉴定和分析放射性同位素
射线能谱
射线射在NaI(Tl)晶体上,产生光电子、康普顿 散 射电子等次级电子,这些电子在闪烁能谱仪 中形成 计数,得到脉冲高度分布曲线(脉冲高度谱)
氟[l8F]脱氧葡萄糖
仅有示踪和辐射粒子作用 性质由其标记物决定
第六章 放射性核素显像
10
第二节 原子核的放射性
一、放射性衰变规律 二、放射性活度 (radioactivity) 三、递次衰变 四、放射平衡 五、放射性核素发生器基本原理 六、放射性计数统计规律
第六章 放射性核素显像
11
一、放射性衰变规律
第六章 放射性核素显像
33
二、中子及分类
中子性质
不带电 穿透强 易衰变(T=12min)
分类
➢快中子(E>0.1MeV) ➢中能中子(1eV<E<0.1MeV)
➢ 热中子(E<1eV)
快中子可由易裂变核素 如233U、235U、239Pu 、 241Pu等产生。
快中子同含有一定量轻原子核(1H、2H、12C、9Be)的物质 中的轻原子核碰撞,通过能量传递、速度减慢,直至与周 围介质分子热运动达到平衡。

医学影像学放射性核素显像

医学影像学放射性核素显像

X线与超声
优势
核医学影像技术是一种利用放射性核素示踪技术来显示人体内部结构和功能的医学影像技术。它具有高特异性、高灵敏度、无创性等优点,能够提供关于疾病发病机制、代谢异常等方面的信息,有助于疾病的早期诊断和治疗。
局限性
核医学影像技术的图像质量通常不如CT和MRI等其他医学影像技术,且存在辐射暴露的风险。此外,核医学影像技术的设备和操作成本也较高,限制了其在临床的广泛应用。
图像融合与多模态成像
将不同模态的医学影像(如CT、MRI、PET等)进行融合,实现多维度、多参数的综合性医学影像分析。
临床医学合作
01
与临床医学紧密合作,推动放射性核素显像在疾病诊断和治疗中的应用,提高医疗服务质物学与化学结合
02
利用生物学和化学技术,研发新的放射性药物和治疗方案,揭示生物体内的分子和细胞活动与功能。
优势
放射性核素显像技术
02
常用核素
临床上最常使用的核素包括99mTc、111In、123I、131I和201Tl等。这些核素具有不同的物理和化学特性,适用于不同的检查目的。
选择依据
选择核素的主要依据是目标器官的功能特点、病变类型和疾病进程。例如,99mTc-MDP常用于骨骼显像,111In-DTPA常用于肾动态显像。
定义
通过口服或注射等方式将含有放射性核素标记的药物导入人体,然后利用γ相机等设备捕捉体内放射性核素发出的γ射线,从而得到人体各部位的放射性分布图像。
原理
定义与原理
发展历程
自20世纪50年代初,人们开始利用放射性核素显像技术进行疾病诊断,经历了从简单到复杂、从粗略到精确的发展过程。
重要性
放射性核素显像在临床医学中具有重要地位,尤其在肿瘤、心血管和神经系统疾病的诊断和治疗方面具有不可替代的作用。

医学影像学课件放射性核素显像PPT课件

医学影像学课件放射性核素显像PPT课件

实验操作流程及注意事项
注意事项
定期对实验设备和仪器进行 维护和校准,确保实验结果 的准确性和可靠性
严格遵守放射性安全操作规 程,确保人员和环境安全
合理安排实验时间和进度, 避免实验过程中的浪费和延 误
实验结果分析与解读方法
图像分析
1
2
对采集的图像进行定性和定量分析,包括放射性 分布、病灶定位和大小等
ቤተ መጻሕፍቲ ባይዱ
05 放射性核素显像 质量控制与安全 防护
质量控制体系建设及实施情况介绍
质量控制体系框架
建立包括组织管理、技术操作、设备维护、影像评价 等方面的质量控制体系。
质量控制标准
参照国际和国内相关标准,制定适用于本机构的质量 控制标准。
质量控制实施
通过定期质量检查、技术评估、影像质量评价等手段, 确保放射性核素显像质量符合标准要求。
疗方案。
价值
放射性核素显像在医学影像学中具有重要地位。它不仅可以提供直观的图像信息,帮助 医生进行疾病的诊断和治疗,还可以为医学研究提供重要的实验手段和依据。同时,随
着技术的不断发展和创新,放射性核素显像在未来医学领域的应用前景将更加广阔。
02 放射性核素显像 技术基础
放射性核素种类及特性
常用放射性核素
医学影像学课件放射性核素 显像PPT课件
目 录
• 放射性核素显像概述 • 放射性核素显像技术基础 • 放射性核素显像在临床应用 • 放射性核素显像实验操作规范 • 放射性核素显像质量控制与安全防护 • 放射性核素显像新技术发展趋势
01 放射性核素显像 概述
定义与原理
定义
放射性核素显像是利用放射性核素或其标记化合物在体内或体 外的分布来进行疾病诊断或研究的一种医学影像技术。

2024年医学影像学课件放射性核素显像

2024年医学影像学课件放射性核素显像

医学影像学课件放射性核素显像一、引言医学影像学是一门研究医学成像技术的学科,其发展对疾病的诊断和治疗具有重要意义。

放射性核素显像作为医学影像学的一个重要分支,通过放射性核素在体内的分布和代谢,为疾病的诊断和治疗提供了重要的信息。

本文将对放射性核素显像的基本原理、应用及其在医学影像学中的重要地位进行详细阐述。

二、放射性核素显像的基本原理放射性核素显像是一种基于放射性核素发射的射线进行成像的技术。

放射性核素是指具有不稳定原子核的元素,它们通过放射性衰变释放射线,包括α粒子、β粒子和γ射线。

在医学影像学中,常用的放射性核素主要有γ射线发射型核素,如99mTc、131I等。

放射性核素显像的基本原理是将放射性核素标记在特定的分子或药物上,通过静脉注射或口服等方式引入体内。

这些放射性核素标记的分子或药物在体内的分布和代谢过程中,会发射γ射线。

通过在体外使用γ相机等探测器对这些γ射线进行探测和成像,可以得到放射性核素在体内的分布图像,从而了解器官和组织的功能和代谢情况。

三、放射性核素显像的应用1.心血管系统:放射性核素显像可以用于评估心脏功能和心肌缺血情况,如心肌灌注显像和心脏功能显像。

2.呼吸系统:放射性核素显像可以用于评估肺部功能和肺血管疾病,如肺通气显像和肺灌注显像。

3.消化系统:放射性核素显像可以用于评估肝脏、胆囊、胃肠道等器官的功能和疾病,如肝功能显像和胃肠道出血显像。

4.骨骼系统:放射性核素显像可以用于评估骨骼代谢和疾病,如骨显像和骨转移瘤显像。

5.内分泌系统:放射性核素显像可以用于评估甲状腺、肾上腺等内分泌器官的功能和疾病,如甲状腺显像和肾上腺显像。

6.肿瘤学:放射性核素显像可以用于肿瘤的诊断、分期和疗效评估,如肿瘤显像和放射性核素治疗。

四、放射性核素显像在医学影像学中的重要地位1.早期诊断:放射性核素显像可以早期发现和诊断疾病,如肿瘤的早期诊断和心血管疾病的早期检测。

2.定量分析:放射性核素显像可以提供定量的功能参数,如心脏功能参数、肺部通气功能参数等,为疾病的评估和治疗提供重要依据。

放射性核素显像技术ppt课件

放射性核素显像技术ppt课件
2、动态显像 (随时间变化的动态采集)
显像剂引入机体后以一定的速率连续采集 组织或脏器的多帧图像
2024/1/16
22
放射性核素显像技术
显像类型
3、局部显像
仅限于机体某一局部或某一脏器的显像
4、全身显像
一次成像完成采集、显示全身各部位的 放射性分布,形成一帧完整影像
2024/1/16
23
放射性核素显像技术
非显像检查法
粒子介入治疗
甲状腺吸碘等
云克治疗
肾图
放射性核素显像技术
国际原子能机构指出
“从对技术影响的广度而 论,可能只有现代电子学和 数据处理才能与同位素相比 ”
2024/1/16
总部设在奥地利维也纳的国际原子能机构
4
放射性核素显像技术
Hevesy (示踪法之父)
赫维西(Georg de ,Hevesy)匈牙利化学家 (1885--1966)
2024/1/16
10
放射性核素显像技术
1、合成代谢
显像机制
如: 甲状腺──碘(131I-NaI) 心 肌──脂肪酸(11C-PA) 脑细胞──葡萄糖(18F-FDG)
2024/1/16
11
放射性核素显像技术
2、细胞吞噬
显像机制
如:肝胶体显像 胶体颗粒 ﹤20nm─骨髓 30~100nm─肝枯否细胞 500~1000nm─脾脏 标记白细胞─脓疡部位
放射性核素显像技术是将放射性药物引入体内, 选择性地分布于特定的器官或组织,在体外获取放 射性药物在体内分布情况及量变规律,从而了解器 官或组织的形态、位置、大小和功能状态,用于诊 断疾病的方法。
2024/1/16
8
放射性核素显像技术

第五章放射性核素显像_习题与解答_课程资源_精品课程--医学影像物理学

第五章放射性核素显像_习题与解答_课程资源_精品课程--医学影像物理学

第五章放射性核素显像习题(一)单项选择题1.放射性核素显像常用的半衰期是A.6.06小时 B.3小时 C.12小时 D.2.7天 E.8.1天2.核技术是研究A.核技术在医学中的应用及其理论 B.核技术的应用范畴 C.核技术的发展史D.核技术的发展前景E.以上都是3.目前核医学常用的治疗方法是A.内照射治疗B.敷帖治疗 C.外照射治疗 D.深部X线 E.加速器4.1896年法国的贝克勒尔发现了哪种元素的放射性,第一次认识到放射现象A.镭B.铀 C.钴D.锶E.钙5.居里夫妇发现的具有放射性的物质是A.镭B.铀 C.钴D.锶E.钙6.测定全身血容量采用的示踪技术为A.动态平衡法B.物质转换法 C.外照射法D.直接排泄法E.核素稀释法 F.以上都不是7.下面关于放射性显像的叙述不正确的是A.药物能自发地发射出射线 B.放射性药物可引入体内 C.药物可被组织器官吸收 D.药物能参与体内代谢过程E.射线可全部被仪器测量8.带电粒子靠近原子核时,因库仑电场的作用而改变运动方向与能量,若仅改变方向而不改变能量则称为A.韧致辐射 B.湮没辐射C.弹性散射D.电离辐射E.内转换 F.以上都不是9.湮没辐射见于下列哪种射线与物质的作用A.射线 B.正射线 C.射线 D.负射线 E.内转换 F.标志X射线10.核医学治疗中,主要通过探测体内的哪种射线,获得断层图像A.射线B.正射线 C.射线D.负射线 E.内转换放出光子 F.标志X射线11.在元素周期表中,位置相同,原子序数相同而中子数不同的是A.核素B.同位素 c.核子D.光子E.同质异能素F.放射性核素12.质子数相同,并且中子数也相同,因而质量数相同,并处于同一能量状态的原子,称为A.核素B.同位素C.核子D.原子核E.同质异能素F.放射性核素13.质子和中子统称为A.核素B.同位素 C.核子D.原子核 E.同质异能素 F.放射性核素14.下列哪种为同位素A.和 B.和 C.和 D.和 E.和 F.以上都不是15.放射性核素示踪技术所采用的示踪剂是A.蛋白质B.化合物 C.多肽 D.糖 E.放射性核素或由其标记的化合物 F.以上都不对16.在ECT的显像中,最常用最理想的核素是A. B. C. D. E. F.17.PET显像使用的射线及其能量是A.511KeV的X射线 B.511KeV的射线 C.511KeV的单光子 D.511KeV的一对光子E.140KeV的双光子18.当SPECT显像时,若射线的能量过高,则图像的分辨率会A.无影响B.增高C.降低D.增高或降低E.以上都不对19.当SPECT显像时,若射线的能量过高,则图像的灵敏度会.A.无影响B.增高C.降低D.增高或降低E.以上都不对20.PET显像的空间分辨率明显优于ECT,一般可达到A.0.1~0.5 mm B.1~2 mm增高C.0.1-0.2 mm D.3~4 mm增高或降低E.4-5 mm21.SPECT断层显像时,为了获得高质量的图像,下列哪项正确A.尽量大的探头旋转半径B.尽量多的探头采集帧数C.尽量减少采集矩阵D.尽量缩短采集时间 E.尽量大的药物剂量F.以上都不对22.放射性样品计数统计误差的原因是A.仪器质量不稳定 B.环境温度的改变 C.放射性核衰变数目的统计涨落 D.操作者个人误差 E.药物剂量过大F.以上都不对23.核素成像与CT、超声和MR的主要区别是A.CT和超声提供的是解剖学和结构变化的资料B.核素成像一般是提供功能变化的资料C.近年来螺旋CT动态扫描和动态MR可以反映不同病变造影剂增强 D.CT提供功能显像E.ABC说法正确24.放射性核素衰变快慢与下列哪些因素有关A.温度B.放射性物质本身性质 C.压强 D.放射性核素的数量25.放射性核素单位时间内衰变的核数目与下列哪些因素有关A.与初始的核数目成正比 B.与记数时尚存的核数N成正比 C.与衰变时间成正比 D.与衰变常数成反比26.关于辐射剂量,下面哪些说法不正确A.小剂量辐射可以潜伏几年或十几年B.辐射剂量可以积累 C.中剂量辐射可以在几天后发作D.我国最大容许剂量为90 mSV27.单光子发射型计算机断层主要是在体外探测A.射线B.射线 C.电子对湮灭时产生的双光子D.射线28.在放射性核素显像技术中,被誉为活体的分子断层图像的技术是A.SPECT B.ECT C.PET D.照相 E.SPECT和ECT29.单光子发射型计算机断层SPECT和正电子发射型计算机断层PET的共同特点是A.都是在体外探测射线 B.都是在体内探测射线 C.都是在体外探测射线 D.都是在体外探测双光子30.正电子发射型计算机断层PET通过探测一对光子来表征哪种衰变的发生情况A.衰变B.衰变C.衰变D.内转换31.用来作为放射性制剂的核素最好选用A.长寿命放射性同位素B.短寿命放射性同位素C.一般核素都可以 D.放射性同位素32.在各种医学影像设备中,就技术水平和应用价值来说,顶尖的当属。

医学影像学课件放射性核素显像

医学影像学课件放射性核素显像

图像获取与处理
图像获取
通过显像仪器获取放射性核素 的分布图像。
图像处理
对图像进行校正、重建、滤波等 处理,以提高图像质量和清晰度 。
定量分析
通过图像处理技术,对放射性核素 分布进行定量分析,评估病变的范 围、大小和活性。
03
常见疾病的放射性核素显像
肿瘤显像
肿瘤诊断
放射性核素显像可以通过对肿瘤 细胞对放射性物质的摄取和分布 进行成像,从而帮助医生诊断肿 瘤,并对其良恶性进行鉴别。
医学影像学课件放射性核素显像
xx年xx月xx日
contents
目录
• 放射性核素显像概述 • 放射性核素显像技术 • 常见疾病的放射性核素显像 • 放射性核素显像的优缺点 • 放射性核素显像的临床应用价值 • 放射性核素显像案例分享
01
放射性核素显像概述
定义与原理
定义
放射性核素显像是利用放射性核素及其标记化合物对疾病进 行诊断和研究的一类方法。
标记化合物
将放射性核素标记在特定的化合物上,以便更好地反映生物分布和功能。
显像仪器与设备
1
发射型计算机断层扫描(ECT):利用γ射线进 行断层扫描,可获得全身或局部的平面图像。
2
单光子发射计算机断层扫描(SPECT):利用γ 射线进行旋转扫描,可获得三维图像。
3
正电子发射断层扫描(PET):利用正电子发射 核素进行断层扫描,可获得高分辨率、高灵敏 度的图像。
需要专业人员操作
放射性核素显像需要专业人员操作和维护,对操 作人员的技能和经验要求较高。
成本高
放射性核素显像所需的设备和试剂价格较高,因 此检查成本也相对较高。
患者接受度
由于放射性核素显像需要使用放射性物质,一些 患者可能会对此产生恐惧和不安,影响检查的进 行。

医学影像学课件放射性核素显像

医学影像学课件放射性核素显像

放射性核素显像的操作流程
患者准备
了解病史、过敏史及实验室检查等;
显像剂准备
选择适当的显像剂,并进行标记、过滤、干燥等处理;
仪器校准
确保仪器处于最佳工作状态;
注射显像剂
将显像剂通过静脉注入患者体内;
显像与观察
在规定的时间内进行显像,观察放射性核素在体内的分 布及代谢情况;
结果分析与报告
对图像进行分析,结合临床作出诊断报告。
05
放射性核素显像的实际操作 训练
放射性核素显像的阅片技巧
阅片顺序
按照一定的顺序和步骤进行阅片,以便不遗漏任 何重要信息。
阅片技巧
通过观察图像的细节和特征,结合临床病史和其 他检查结果,做出准确的诊断。
病例分析
针对具体病例,运用阅片技巧进行分析和讨论, 提高诊断水平。
放射性核素显像的实践操作步骤
放射性核素显像的发展趋势
技术创新
随着医学影像技术的不断发展,放射性核素显像将会与其他影像 技术结合,如MRI、CT等,提高诊断的准确性和精度。
分子成像
放射性核素显像将会在分子成像领域发挥重要作用,有助于在分 子水平上揭示疾病的发生和发展过程。
个体化治疗
放射性核素显像将会与个体化治疗相结合,为患者提供更加精准和 个性化的治疗方案。
肺癌诊断
肺癌是常见的呼吸系统肿瘤之一,放射性核素显像可以显示肺癌的病变部位、大小、侵犯 范围和转移情况,有助于肺癌的诊断和分期。
放射性核素显像在心血管疾病诊断中的应用
01
冠心病诊断
冠心病是常见的心血管疾病之一,放射性核素显像可以显示心肌缺血
和心肌梗死的部位、范围和程度,有助于冠心病的诊断和预后判断。
全身显像

医学影像学放射性核素显像

医学影像学放射性核素显像
显像方法
根据检查目的和病变部位选择合适的显 像方法,如平面显像、断层显像、动态 显像等。
图像采集与处理
图像采集
在合适的采集条件下,使用显像设备对病变部位进行放射性核素显像剂的摄取和分 布情况进行采集。
图像处理
通过计算机图像处理技术,对采集到的图像进行重建、滤波、降噪等处理,提高图 像质量和分辨率,以便更好地观察和分析病变情况。
现状
目前,放射性核素显像技术已经成为医学影像学领域的重要分支之一,广泛应 用于临床诊断和治疗。同时,随着技术的不断创新和发展,其在医学领域的应 用前景将3
04
05
应用领域:放射性核素 价值:放射性核素显像 显像技术广泛应用于多 技术具有以下价值 个医学领域,如心血管 系统、神经系统、肿瘤 学、内分泌系统等。通 过放射性核素显像技术, 可以对这些系统的疾病 进行早期诊断、治疗监 测和预后评估。
成像原理
放射性核素显像是通过引入放射 性核素或其标记物,利用核素发 射的射线进行成像;而X线和CT 则是利用X射线穿透人体后的吸
收差异进行成像。
分辨率
放射性核素显像的空间分辨率相 对较低,但可以提供功能性和代 谢性信息;而X线和CT的空间分 辨率较高,更适用于解剖结构的
显示。
辐射剂量
放射性核素显像通常涉及较高的 辐射剂量,需要严格控制和管理; 而X线和CT的辐射剂量相对较低,
未来医学影像学将更加注重个体化诊疗 的实现,通过利用大数据、人工智能等 技术,对个体的基因组、蛋白质组、代 谢组等进行全面分析,为个体提供更加 精准的诊断和治疗方案。
未来医学影像学将更加注重放射性核素 显像技术的创新和应用拓展,例如开发 新的放射性核素、新的标记技术、新的 成像方法等,以满足不断增长的医疗需 求和提高医疗质量的要求。同时,也需 要关注放射性核素显像技术的安全性和 环保性等问题,确保其在医学领域的应 用符合相关法规和标准的要求。

最新医学影像物理学放射性核素显像精品课件

最新医学影像物理学放射性核素显像精品课件

最新医学影像物理学放射性核素显像精品课件一、教学内容本节课的教学内容选自最新医学影像物理学教材,主要涉及放射性核素显像的基本原理、技术和应用。

具体包括:放射性核素的基本概念、放射性核素显像的原理、放射性核素显像机的结构与工作原理、放射性核素显像在医学诊断中的应用以及放射性核素显像的临床应用案例。

二、教学目标1. 让学生了解放射性核素显像的基本原理、技术和应用。

2. 使学生掌握放射性核素显像机的结构与工作原理。

3. 培养学生对放射性核素显像在医学诊断中应用的认识,提高其临床诊断能力。

三、教学难点与重点重点:放射性核素显像的基本原理、技术和应用。

难点:放射性核素显像机的结构与工作原理。

四、教具与学具准备教具:多媒体课件、放射性核素显像设备模型、教学图标等。

学具:笔记本、彩笔、课本、学习资料等。

五、教学过程1. 实践情景引入:通过展示一些医学影像学图片,让学生初步了解放射性核素显像在医学诊断中的应用。

2. 放射性核素显像的基本原理:介绍放射性核素的基本概念,解释放射性核素显像的原理。

3. 放射性核素显像机的结构与工作原理:详细讲解放射性核素显像机的各个组成部分及其作用。

4. 放射性核素显像在医学诊断中的应用:介绍放射性核素显像在心血管疾病、神经系统疾病、肿瘤等领域的应用。

5. 临床应用案例分析:分析几个典型的放射性核素显像临床应用案例,让学生更好地理解放射性核素显像的实际应用。

6. 随堂练习:让学生结合所学内容,回答一些关于放射性核素显像的问题。

六、板书设计板书内容主要包括:放射性核素显像的基本原理、放射性核素显像机的结构与工作原理、放射性核素显像在医学诊断中的应用。

七、作业设计作业题目:1. 简述放射性核素显像的基本原理。

2. 列举放射性核素显像在医学诊断中的一些应用。

3. 描述放射性核素显像机的工作原理。

答案:1. 放射性核素显像的基本原理是利用放射性核素的发射的射线(γ射线、β射线)在生物体内的分布特性,通过体外探测设备检测射线分布,从而获得生物体内的功能代谢信息。

2024版医学影像学放射性核素显像课件

2024版医学影像学放射性核素显像课件

医学影像学放射性核素显像课件目录•放射性核素显像概述•放射性核素显像技术基础•放射性核素显像在医学影像学中的应用•放射性核素显像技术进展与挑战•放射性核素显像安全与防护•总结与展望PART01放射性核素显像概述定义与原理定义放射性核素显像是利用放射性核素或其标记化合物作为显像剂,在医学影像学设备下观察其在生物体内的分布和代谢情况,从而获取生物体内部结构和功能信息的一种技术。

原理放射性核素显像基于放射性核素的衰变特性,通过测量放射性核素在生物体内发出的射线,利用医学影像学设备进行图像重建,得到生物体内部结构和功能的可视化图像。

发展历程及现状发展历程放射性核素显像技术经历了从基础研究到临床应用的发展历程,随着医学影像学设备的不断更新和放射性核素标记技术的不断发展,其在医学领域的应用范围不断扩大。

现状目前,放射性核素显像技术已经成为医学影像学领域的重要分支之一,广泛应用于临床诊断和治疗监测。

同时,随着新技术的不断涌现和交叉学科的发展,放射性核素显像技术也在不断发展和完善。

•应用领域:放射性核素显像技术广泛应用于多个医学领域,如心血管系统、神经系统、肿瘤学、内分泌系统等。

通过放射性核素显像技术,医生可以更加准确地了解患者的病情和病变情况,为临床诊断和治疗提供更加可靠的依据。

放射性核素显像技术具有以下价值价值通过放射性核素显像技术,医生可以更加准确地了解患者的病情和病变情况,减少误诊和漏诊的可能性。

提高诊断准确性通过放射性核素显像技术,医生可以了解患者的病变部位、范围和程度等信息,为治疗决策提供更加可靠的依据。

指导治疗决策监测治疗效果通过放射性核素显像技术,医生可以实时监测患者的治疗效果和病情变化情况,及时调整治疗方案。

推动医学研究放射性核素显像技术不仅应用于临床诊断和治疗监测,还为医学研究提供了重要的手段和工具。

通过放射性核素显像技术,医学研究人员可以更加深入地了解疾病的发病机制和病理生理过程,为疾病的预防和治疗提供更加有效的手段和方法。

放射性核素显像

放射性核素显像
1.局部显像Regional Imaging:只显示身体 某一部位或某一脏器的影像,最为常用。 如:肺显像。
2.全身显像Whole Body Imaging:
ECT从头至足依次采集全身各部位 的放射性,称 为全身显像, 如:全身骨显像。
(三)采集影像的维线与层面分:
平面显像 断层显像
1.平面显像Planar Imaging:将ECT探头 置于体表的一定位置采集某一脏器或组 织的放射性影像。 缺点:器官组织图像有重叠现象,对深 部病灶、较小的病灶分辨率较差。
R 上腔静脉
肺动脉
右心相Leabharlann 右心室主动脉弓 R左心相
L 左心室 降主动脉
断层图像分析要点
1.横断面 2.矢状面 3.冠状面
心脏断层:
短轴(心尖向心底) 水平长轴 (膈面向上依次断层) 垂直长轴 (室间隔向左侧壁依次断层)
可同时提供脏器组织的功能和结构变化,有 助于疾病的早期诊断
可用于定量分析 具有较高的特异性
安全、无创
不同影像的比较
ECT主要反映脏器或组织的功能、血流与代谢,也反映其形 态,但分辨率较CT,MRI差。
CT,MRI主要反映解剖学形态变化,分辨率较好,有时也反 映其功能变化,但不如ECT。
2.动态显像Dynamic Imaging:
显像剂随血流流经和灌注脏器,或被脏器不 断摄取和排泄,或在脏器内反复充盈和排出 等过程,造成脏器内的放射性在数量上或位 置上随时间变化,如用ECT连续采集这一动态 过程,称为动态显像。 如:肾小球滤过率测定。
肝胆动态显像
(二)、影像采集的部位分
1.局部显像: 2.全身显像:
荷试验、生理负荷试验等。
通常做静息及负荷显像的对比分析,以利 于发现在静息状态下不易观察到的病变, 或用于评估脏器功能储备能力,以利于对 疾病进行早期、准确的诊断。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放射性核素显像
放射核素 引入人体
参与人体 新陈代谢
特定脏器 组织中聚集
以图像形式显示 (功能性显像)
放射性活度 分布的外部测量
核素数量少
半衰期短
灵敏度高
三、基本原理
放射性核素显像技术基础: ---放射性核素示踪技术

同一性和可区别性
基本原理: ①具有能够选择性聚集在特定脏器、组 织和病变的示踪剂,使该组织与邻近正 常组织之间的放射性浓度差达到一定程 度;


动态图像分析要点
A 显像顺序 B 时相变化

★在肝恶性病变时,其血供主要来自 肝A因此,在动脉相即可见到病变 局部有放射性积聚,我们称为肝A 灌注阳性
六、放射性核素显像的特点
1、不仅显示解剖结构,同时提供血流、 功能、代谢和引流等方面的信息,有助于 疾病的早期诊断。
例如: 脏器的血流灌注显像
本章重点
放射性核素显像的定义 放射性核素显像的原理 放射性核素显像的主要分类 放射性核素显像的特点

一、概述
四大医学影像手段
放射性核素显像 X射线与CT 核磁共振 B超

二、定义
放射性核素显像是根据放射性核素
示踪原理,利用放射性核素或其标 记化合物在体内代谢分布的特殊规 律,从体外获取脏器和组织功能、 结构影像的核医学技术。

举例:正常肺通气(133Xe) (后位)
7.离子交换和化学吸附

99mTc标记的磷酸盐 可以通过离子交换和 化学吸附作用吸附与 骨骼组织的羟基磷灰 石构架中。
四、放射性核素显像的分类

1、根据影像获取的状态分为静态显像和动态显像 静态显像(static imaging):当显像剂在脏器或病变 内部浓度处于稳定状态时进行的显像。 图像清晰、适合详细观察 动态显像(dynamic imaging):在显像剂进入人体后 迅速以设定的显像速度动态采集多帧连续影像。 可以反映脏器血流灌注和功能情况。

五、图像分析
1.图像质量: 图像清晰、轮廓完整 对比度适当 病变部位显示清楚 解剖标志准确 图像失真度小
2.正常图像的认识

实质脏器的位臵、形态、大小与该器官 的体表投影接近

放射性分布大致均匀
注意区分正常变异
3.异常图像分析
静态图像分析要点: A 位臵 B 形态大小 C 放射性分布 D 对称性
2、根据影像获取部位分为局部显像和全 身显像 局部显像(regional imaging) 全身显像(whole body imaging)


3、根据影像获取时间分为早期显像和延迟显像 早期显像(early imaging):显像剂引入后2H以内


延迟显像(delayed imaging):显像剂引入2H以后
正常脑池显像图像

第一排左图为 3小时前位影 像,右图为后 位影像,皆呈 向上的三叉形
举例2:血流灌注

上肢静脉弹丸式注射放射性药物, 利用显像仪器拍摄显像剂依次通 过腔静脉、各心房心室的过程
举例3:微血管栓塞
99mTc标记
聚合人血清白蛋白(MAA), 经静脉注入后 栓塞在肺毛细血管床 从而使肺显影。



流经通道如消化道、脑池等 血管灌注 微血管暂时性栓塞 血池分布
举例:流经通道---脑池显像

显像剂:99mTc-DTPA 方法:无菌条件下行腰椎穿刺,以缓慢流 出的脑脊液将显像剂稀释至 2~3ml,再缓 慢推注到蛛网膜下腔。于注射显像剂后 1 、 3 、 6 、 24 小时分别行头部前、后、侧位 显像。


全身骨ECT检查原理是静脉注射趋骨性药物99mTc-MDP, 它进入人体后沉积在骨骼中,当骨骼有肿瘤侵犯时, 血流增加、代谢更新旺盛,在显像图上则表现为显像 剂分布增强的“热”区(如箭头所指),据此我们可 判断,该患者多处骨转移。

5、根据显像时机体的状态分为静息显像和负荷显像 静息显像(rest imaging) 负荷显像(stress imaging)
2、可用于定量分析。 例如:甲状腺功能测定
3、具有较高的特异性,可以在分子水平 上进行显像 分子核医学、分子影像学
4、基本上皆为静脉注射显像剂,属无创 性检查。

缺点:成像的信息量不是很充分,使影 像的清晰度较差,影响对细微结构的精 确显示 。 但PET/CT的出现很好的弥补了这个缺陷


4、根据显像剂对病变组织的亲和力分为

阳性显像(positive imaging) 又称热区 显像(hot spot imaging),指在静态影像 上主要以放射性比正常增高为异常的显 像。
阴性显像(negative imaging),又称冷区 显像(cold spot imaging)指在静态影像 上主要以放射性比正常减低为异常的显 像。
4.选择性摄取浓聚

病变组织对某些放射性药物有选择性摄取浓集作用。 例如某些放射性药物可渗入或结合于梗塞坏死的心肌组织中而

不被正常心肌所摄取,据此可进行心肌梗塞的定位诊断。
举例:亲肿瘤显像

利用亲肿瘤显像剂进行肿瘤显像
5、特异性结合

利用放射性核素标记化合物与病变组织某些特定分 子的特异性结合。 抗原------抗体---------放射免疫显像 受体------配体---------受体显像
1、组织代谢

显像剂是某脏器正常新陈代谢所需原料。 例如甲状腺对碘的摄取 18F-FDG用于心肌、脑和肿瘤的葡萄糖代谢显像

举例:甲状腺显像
显像剂:131I 空腹口服131I,24H后行颈部显像 适应症:了解甲状腺位臵、大小、形态 及功能;估算甲状腺重量;异位甲状腺 的诊断;甲状腺结节的诊断与鉴别诊断 等。

Байду номын сангаас
②利用核医学显像装臵可探测到这种放 射性浓度差,并以一定的方式显示
放射性核素显像与其他影像学技术的区别
(一) X射线与CT的成像原理:
射线的穿透性 人体对射线的衰减 射线的感光性 反映人体解剖结构
*显像剂
核素显像时需根据不同的脏器组织选择
不同的显像剂,为功能性显像
显像剂进入特定脏器的机理


举例:雌激素受体显像
6.选择性排泄

某些脏器对一些引入体内的放射性药物具有选择性排泄功能,这 类特定脏器的特定细胞具有选择性摄取代谢产物并将其排除体外 的功能,这样一方面可显示脏器的形态,另一方面又可观察分泌、 排泄功能和排泄通道。

主要见于肾脏、泌尿道和胆道的显像。
6.通透弥散

进人体内的某些放射性药物借助简单的通透弥散作用可使脏器 和组织显像。 例如,静脉注入放射性133Xe生理盐水后,放射性惰性气体 (133Xe)流经肺组织时从血液中弥散至肺泡内可进行肺灌注动 态显影。

2.细胞吞噬

单核-巨噬细胞将进入血流的放射性胶体作为机体的异物被单核巨噬细胞系统的巨噬细胞所吞噬,可以对含单核-巨噬细胞丰富 的组织如肝、脾和骨髓进行显像。 放射性胶体在脏器内外布的多少主要随胶体颗粒的大小而异,通 常小于20nm的颗粒在骨髓中的浓集较多;中等颗粒主要被肝的 枯否细胞吞噬;大颗粒(500~1000nm)主要浓集于脾。 常用的放射性胶体99mTc硫胶体、99mTc-植酸钠


举例:肝胶体显像
显像剂:99mTc-硫胶体、99mTc-锡胶体、 99mTc-植酸盐 方法:患者无需特殊准备,静脉注射 99mTc-硫胶体2~5mCi,15~20min后开 始显像。 适应症:幽闭恐惧症下不能施行CT、 MRI等检查时;肝脏肿块的鉴别诊断;

3.循环通路

利用放射性核素进入循环通路的过程,显示该通路和有关器官 的影像。
相关文档
最新文档