2020年最新高二下册期中考试数学试题(理)有答案
2023-2024学年四川省成都市高二下册期中考试数学(理)试题(含解析)
2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。
2020年高二下册期中考试数学试题(理)有答案
第二学期其中考试试卷高二数学理科第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、计算复数2(ii i-是虚数单位) A .12i + B .12i -+ C .12i -- D .12i -2、函数21y x =-的图象上一点(1,0)处的切线的斜率为A .1B .2C .0D .-13、由①上行的对角线互相垂直;②菱形的对角线互相垂直;③正方形是菱形,写出一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为A .②①③B .③①②C .①②③D .②③① 4、设()ln f x x x =,若0(3)f x '=,则0x = A .2e B .e C .ln 22D .ln 2 5、20cos xdx π⎰等于A .3-B .12C .3D .12- 6、若()sin cos f x x α=-,则()f α'等于A .sin αB .cos αC .sin cos αα+D .2sin α 7、函数()(3)x f x x e =-的单调区间是A .(,2)-∞B .(2,)+∞C .()1,4D .()0,38、设函数()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是9、函数3239(04)y x x x x =--<<有A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值 10、已知函数()f x 在R 上满足()122(2)x f x f x e x -=-++,则()1f '=A .2B .3C .-1D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
. 11、核黄素()sin 2f x x =,则函数的导函数为()f x '= 12、复数12,z i z =-=13、在ABC ∆中,不等式1119A B C π++≥成立,在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,猜想在n 边形12n A A A L 中,有 不等式成立。
2020年高二下学期期中数学试卷(理科)(I)卷
2020年高二下学期期中数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知函数的导数为,则数列的前n项和是()A .B .C .D .2. (2分)()A . 3+iB . -3-iC . -3+iD . 3-i3. (2分) (2015高三上·潮州期末) 已知函数f(x)=﹣ x3+2ax2+3x(a>0)的导数f′(x)的最大值为5,则在函数f(x)图象上的点(1,f(1))处的切线方程是()A . 3x﹣15y+4=0B . 15x﹣3y﹣2=0C . 15x﹣3y+2=0D . 3x﹣y+1=04. (2分) (2017高二下·湖北期中) 直线x=a分别与曲线y=2(x+1),y=x+lnx交于A、B两点,则|AB|的最小值为()A . 3B . 2C .D .5. (2分)用秦九韶算法求多项式f(x)=7x6+6x4+3x2+2当x=4时的值时,先算的是()A . 4×4=16B . 4×4×4×4×4×4=4096C . 7×4+6=34D . 7×4+0=286. (2分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,第6幅图的蜂巢总数为()A . 61B . 90C . 91D . 1277. (2分)直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形面积为()A .B .C .D .8. (2分) (2016高二下·漯河期末) 二次函数f(x)的图象经过点(0,),且f′(x)=﹣x﹣1,则不等式f(10x)>0的解集为()A . (﹣3,1)B . (﹣lg3,0)C . (,1)D . (﹣∞,0)9. (2分)计算的结果是()A . 4πB . 2πC . πD .10. (2分)(2013·浙江理) 已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A . 当k=1时,f(x)在x=1处取得极小值B . 当k=1时,f(x)在x=1处取得极大值C . 当k=2时,f(x)在x=1处取得极小值D . 当k=2时,f(x)在x=1处取得极大值11. (2分) (2018高二上·黑龙江期末) 已知,,若对任意的,存在,使得成立,则的取值范围是()A .B .C .D .12. (2分) (2015高二下·上饶期中) 已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)≥ ,则f(x)< + 的解集为()A . {x|x<1}B . {x|x>1}C . {x|x<﹣1}D . {x|x>﹣1}二、填空题: (共4题;共4分)13. (1分) (2016高一下·黄冈期末) 在平面直角坐标系中,设三角形ABC的顶点分别为A(0,a),B(b,0),C(c,0),点P(0,p)在线段AO上(异于端点),设a,b,c,p均为非零实数,直线BP,CP分别交AC,AB 于点E,F,一同学已正确算的OE的方程:(﹣)x+(﹣)y=0,请你求OF的方程:(________)x+(﹣)y=0.14. (1分) (2018高二下·辽宁期末) 复数满足 ,则 ________.15. (1分) (2016高二上·桓台期中) 已知正数x、y满足 =1,则x+2y的最小值是________.16. (1分) (2016高三上·连城期中) 已知a,b∈R,且,则数列{an+b}前100项的和为________.三、解答题: (共6题;共40分)17. (5分)用数学归纳法证明不等式 + +…+ ≥ 对一切正整数n都成立.18. (10分) (2016高二下·吉林期中) 已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率为﹣3,求a,b的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.19. (5分) (2018高三上·福建期中) 函数 .(I)求的单调区间;(II)若,求证: .20. (10分) (2019高三上·烟台期中) 随着创新驱动发展战略的不断深入实施,高新技术企业在科技创新和经济发展中的带动作用日益凸显,某能源科学技术开发中心拟投资开发某新型能源产品,估计能获得万元的投资收益,现准备制定一个对科研课题组的奖励议案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,奖金不超过万元,同时奖金不超过投资收益的 .(即:设奖励方案函数模拟为时,则公司对函数模型的基本要求是:当时,① 是增函数;② 恒成立;③ 恒成立.)(1)现有两个奖励函数模型:(I);(II) .试分析这两个函数模型是否符合公司要求?(2)已知函数符合公司奖励方案函数模型要求,求实数的取值范围.21. (5分)设函数f(x)=ax2+lnx.(Ⅰ)当a=﹣1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1 ,x2 ,x3…xk ,使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.22. (5分)已知关于x的函数.(1)如果函数f(x)在x=1处有极值-,求b、c;(2)设当x∈(, 3)时,函数y=f(x)﹣c(x+b)的图象上任一点P处的切线斜率为k,若k≤2,求实数b的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12、答案:略二、填空题: (共4题;共4分)13-1、14-1、15、答案:略16-1、三、解答题: (共6题;共40分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、22-1、第11 页共11 页。
2020年江苏省苏州市高二(下)期中数学试卷解析版
期中数学试卷(理科)题号一二总分得分一、填空题(本大题共14小题,共70.0分)1.计算:-=______.2.用反证法证明“a,b∈R,若a3≥b3,则a≥b”时,应假设______.3.已知空间向量=(1,3,2),=(1,0,1),=k-2,=3+4,若∥,则实数k=______.4.已知(i为虚数单位),则复数z的共轭复数是______ .5.把4封不同的信投入3个不同的信箱,不同的投法种数共有______种.6.已知向量=(3,2,0),=(2,1,2),若(k+)⊥(-),则实数k的值为______.7.若,则x=______.8.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1),则当n=k+1时左端应在n=k的基础上加上的项为______.9.已知复数z=(m-2)+(m2-9)i在复平面内对应的点位于第三象限,则实数m的取值范围是______.10.上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有______ 种不同的排法.11.观察下列式子:,,,…,根据以上式子可以猜想:______.12.一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至少选择2题,则考生有______种不同的选答方法.13.由0,1,2,3,4,5这六个数字,组成无重复数字的四位数中比3042大的数有______个.14.已知数列{a n}满足a1=1,(n∈N*,n≥2),令,类比课本中推导等比数列前n项和公式的方法,可求得= ______ .二、解答题(本大题共6小题,共90.0分)15.设实部为正数的复数z,满足|z|=,且复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.(1)求复数z;(2)若+(m∈R)为纯虚数,求实数m的值.16.4个男同学,3个女同学站成一排.(1)男生甲必须排在正中间,有多少种不同的排法?(2)3个女同学必须排在一起,有多少种不同的排法?(3)任何两个女同学彼此不相邻,有多少种不同的排法?(4)其中甲、乙两名同学之间必须有3人,有多少种不同的排法?17.在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且异面直线A1B与B1C1所成的角等于60°,设AA1=a.(1)求a的值;(2)求平面A1BC1与平面B1BC1所成的锐二面角的大小.18.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现以下结果:(1)4只鞋子没有成双的;(2)4只恰好成两双;(3)4只鞋子中有2只成双,另2只不成双.19.如图,在三棱柱ABC-A1B1C1中,底面△ABC为直角三角形,,顶点C1在底面△ABC内的射影是点B,且AC=BC=BC1=3,点T是平面ABC1内一点.(1)若T是△ABC1的重心,求直线A1T与平面ABC1所成角;(2)是否存在点T,使TB1=TC且平面TA1C1⊥平面ACC1A1,若存在,求出线段TC的长度,若不存在,说明理由.20.已知a i>0(i=1,2,…,n),考查①;②;③.归纳出对a1,a2,…,a n都成立的类似不等式,并用数学归纳法加以证明.答案和解析1.【答案】110【解析】解:-=5×4×3×2-=120-10=110故答案为:110由排列组合数的运算法则,化简即可.本题考查排列组合数的基本运算,属基础题.2.【答案】a<b【解析】解:反证法证明“a,b∈R,若a3≥b3,则a≥b”时,应假设a<b.故答案为:a<b.利用反证法的定义即可得出结论.本题考查了反证法证明的定义、否定的方法,考查了推理能力与计算能力,属于基础题.3.【答案】-【解析】解:∵空间向量=(1,3,2),=(1,0,1),∴=k-2=(k-2,3k,2k-2),=3+4=(7,9,10),∵∥,∴,解得实数k=-.故答案为:-.利用向量坐标运算法则求出=k-2=(k-2,3k,2k-2),=3+4=(7,9,10),再由∥,能求出实数k的值.本题考查实数值的求法,考查向量坐标运算法则、向量平行的性质等基础知识,考查运算求解能力,是基础题.4.【答案】-1-i【解析】解:由,得z=i(1+i)=-1+i.所以复数z的共轭复数是-1-i.故答案为-1-i.把给出的等式的分母乘到右边,然后采用单项式乘以多项式化简复数z,则z的共轭复数可求.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5.【答案】81【解析】解:每封信都有3种不同的投法由分步计数原理可得,4封信共有3×3×3×3=34=81故答案为81每封信都有3种不同的投法,由分步计数原理可得,4封信共有34种投法本题主要考查了分步计数原理的应用,要注意结论:m个物品放到n个不同的位置的方法有n m,属于基础试题6.【答案】【解析】解:∵k+=(3k+2,2k+1,2),-=(1,1,-2),∵(k+)⊥(-),∴(k+)•(-)=3k+2+2k+1-4=0,解得:k=.故答案为:.由(k+)⊥(-),可得(k+)•(-)=0,即可得出.本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.7.【答案】3或6【解析】解:利用组合数的性质易得若C18x=C183x-6,则:x=3x-6或x+3x-6=18,则x=3或6故答案为:3或6.由组合数公式,由C18x=C183x-6,找到其与x与3x-6的关系,即可得答案.本题考查组合数公式的运用,本题主要考查组合数的性质的运用,属于基础题,须准确记忆公式.8.【答案】(2k+2)+(2k+3)【解析】解:当n=k(k∈N*)时,1+2+3+…+(2k+1)=(k+1)(2k+1),要证n=k+1时,1+2+3+…+(2k+1)+(2k+2)+(2k+3)=(k+2)(2k+3),可得当n=k+1时左端应在n=k的基础上加上的项为(2k+2)+(2k+3),故答案为:(2k+2)+(2k+3).写出n=k时,假设成立的等式,n=k+1时,要证的等式,作差可得当n=k+1时左端应在n=k的基础上加上的项.本题考查数学归纳法的应用,主要考查由假设到要证的等式间的关系,考查运算能力和推理能力,属于基础题.9.【答案】(-3,2)【解析】解:由题意可得,,解可得,-3<m<2.故答案为:(-3,2)直接由已知的复数得到其在复平面内对应点的坐标的正负即可得答案.本题考查了复数的代数表示法及其几何意义,是基础题.10.【答案】12【解析】解:∵4节课中不能连上3节,∴分两类,第一类,上1,2,4节,有种不同的排法,第二类,上1,3,4节,有种不同的排法,∴共有=6+6=12种不同的排法.故答案为:12.因为不能3节连上,所以必定1,4节上,2,3节中在选一节,所以可分成两类,把每类的方法数求出,再相加即可.本意考查了分类计数原理在排列问题中的应用.11.【答案】【解析】解:观察下列式子:,,,…,可知不等式的左边各式分子是1,分母是自然数的平方和,右边分母与最后一项的分母相同,分子是以3为首项,2为公差的等差数列,故可得故答案为确定不等式的左边各式分子是1,分母是自然数的平方和,右边分母与最后一项的分母相同,分子是以3为首项,2为公差的等差数列,即可求得结论.本题考查归纳推理,考查学生分析解决问题的能力,属于基础题,12.【答案】200【解析】解:因为每组至少选择2题,所以分三类.第一类:A组选4道,B组选2道,共有C54C52=50种选法.第二类:A组选3道,B组选3道,共有C53C53=100种选法.第三类:A组选2道,B组选4道,共有C52C54=50种选法.所以,共有:50+100+50=200种选法.故答案为:200.可用分类法去解,因为分为A,B两组,每组5题,要求考生选择6题,且每组至少选择2题,所以可分成三类,第一类:A组选4道,B组选2道,第二类:A组选3道,B 组选3道,第三类:A组选2道,B组选4道,把三类的方法数求出再相加即可.本题考查了分类计数原理在排列组合问题中的应用,属于基础题,应该熟练掌握.13.【答案】64【解析】解:根据题意,用间接法分析:若四位数的千位数字为3或4或5,可以在剩下5个数字中任选3个,安排在后面3个数位,有3×A53=180种情况,其中比3042小的数有3012、3014、3015、3021、3024、3025、3041;共有7个,则比3042大的数有72-1-7=64个;故答案为:64根据题意,用间接法分析:先计算首位为3、4、5的四位数的数目,在列举排除其中3042小的数,据此分析可得答案.本题考查排列组合的应用,涉及分类计数原理的应用,可以用间接法分析,属于基础题.14.【答案】2n【解析】解:由T n=a1•2+a2•22+…+a n•2n①得2•T n=a1•22+a2•23+…+a n•2n+1②①+②得:3T n=2a1+22(a1+a2)+23•(a2+a3)+…+2n•(a n-1+a n)+a n•2n+1=2a1+22×++…++a n•2n+1=2+2+2+…+2+2n+1•a n=2n+2n+1•a n.所以3T n-a n•2n+1=2n.故答案为:2n.先对T n=a1•2+a2•22+…+a n•2n两边同乘以2,再相加,求出其和的表达式,整理即可求出3T n-a n•2n+1的表达式.本题主要考查了数列的求和,以及类比推理,是一道比较新颖的好题目,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握,属于基础题.15.【答案】解:(1)设Z=a+bi(a,b∈R且a>0),由得:a2+b2=10①.又复数(1+2i)z=(a-2b)+(2a+b)i在复平面上对应的点在第一、三象限的角平分线上,则a-2b=2a+b,即a=-3b②.由①②联立的方程组得a=3,b=-1;或a=-3,b=1.∵a>0,∴a=3,b=-1,则Z=3-i.(2)∵为纯虚数,∴,解得m=-5.【解析】(1)设Z=a+bi(a,b∈R且a>0),由条件可得a2+b2=10①,a=-3b②.由①②联立的方程组得a、b的值,即可得到z的值.(2)根据若+(m∈R)为纯虚数,可得,由此求得m的值.本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.16.【答案】解:(1)男生甲位置确定,只要让其余6人全排:;(2)(捆绑法)先让3个女生“捆绑”成一个整体,内部排序有种,然后把女生看成一个整体,与其余的男生排列有,共有(3)先把4个男生排练有种排法,然后把3个女生向5个空档插孔,有=1440(4)先把甲乙排好顺序有种排序,然后从余下的5人中选出3人站在甲乙中间,有种,然后把甲乙及中间的5人看成一个整体,和其余的2人看着3个整体进行排序,有,共有.【解析】(1)男生甲位置确定,只要让其余6人全排(2)(捆绑法)先让3个女生“捆绑”成一个整体,内部排序,然后把女生看成一个整体,与其余的男生排序(3)先把4个男生排列,然后把3个女生向5个空档插孔(4)先把甲乙排好顺序,然后从余下的5人中选出3人站在甲乙中间,然后把甲乙及中间的5人看成一个整体,和其余的2人看着3个整体进行排序本题主要考查了排练中常见方法:特殊元素优先安排法,不相邻元素插孔法,相邻元素捆绑法的应用.17.【答案】解:(1)∵BC∥B1C1,∴∠A1BC就是异面直线A1B与B1C1所成的角,即∠A1BC=60°,(2分)连接A1C,又AB=AC,则A1B=A1C∴△A1BC为等边三角形,(4分)由AB=AC=1,∠BAC=90°,∴;(6分)(2)取A1B的中点E,连接B1E,过E作EF⊥BC1于F,连接B1F,B1E⊥A1B,A1C1⊥B1E⇒B1E⊥平面A1BC1⇒B1E⊥BC1又EF⊥BC1,所以BC1⊥平面B1EF,即B1F⊥BC1,所以∠B1FE就是平面A1BC1与平面B1BC1所成的锐二面角的平面角.(8分)在△B1EF中,∠B1EF=90°,,,∴⇒∠B1FE=60°,(10分)因此平面A1BC1与平面B1BC1所成的锐二面角的大小为60°.【解析】(1)将B1C1平移到BC,∠A1BC就是异面直线A1B与B1C1所成的角,在三角形A1BA内建立等式,解之即可;(2)取A1B的中点E,连接B1E,过E作EF⊥BC1于F,连接B1F,B1E⊥A1B,A1C1⊥B1E ,得到∠B1FE就是平面A1BC1与平面B1BC1所成的锐二面角的平面角,在△B1EF中解出此角即可.本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.18.【答案】解:(1)先从10双中取出4双,然后再从每双中取出一只,结果就是取出的4只鞋子,任何两只都不能配成1双,根据分布计数原理得:C104×2×2×2×2=3360,(2)4只恰好成两双,从10双中取出2双,故有C102=45,(3)先从10双中取出1双,再从9双中取出2双,然后再从每双中取出一只,结果就是4只鞋子中有2只成双,另2只不成双,根据分布计数原理得:C101×C92×2×2=1440.【解析】本题考查排列、组合及简单计数问题,解题的关键是审清题意,本题考查了推理判断的能力及计数的技巧.(1)先从10双中取出4双,然后再从每双中取出一只,结果就是取出的4只鞋子,任何两只都不能配成1双,根据分布计数原理得,(2)4只恰好成两双,从10双中取出2双,问题得以解决(3)先从10双中取出1双,再从9双中取出2双,然后再从每双中取出一只,结果就是4只鞋子中有2只成双,另2只不成双,根据分布计数原理得.19.【答案】解:如图以CB、CA分别为x,y轴,过C作直线Cz∥BC1,以Cz为z轴建立空间坐标系,则B(3,0,0),C(0,0,0),A(0,3,3),C1(3,0,3),∵=+=(6,0,3),∴B1(6,0,3),∵=+=(3,3,3),∴A1(3,3,3),(1)∵T是△ABC1重心,∴T(2,1,1),∴=(1,2,2),设面ABC1的法向量为=(x,y,z),由=(3,-3,0),及得:令x=1,则=(1,1,0),设直线A1T与平面ABC1所成角为θ,则cosθ===,故θ=,故直线A1T与平面ABC1所成角为.(2)T在面ABC1内,=+=+m+n=(3-3n,3n,3m),即T(3-3n,3n,3m).由TB1=TC得:(3-3n)2+(3n)2+(3m)2=(3n+3)2+(3n)2+(3m-3)2,即-2m+4n=-1…①设面CAA1C1法向量为=(a,b,c),由=(0,3,0),=(3,0,3)得:,取a=1,则=(1,0,-1),设面TA1C1法向量为=(x,y,z),由=(0,3,0),=(-3n,3n,3m-3),得:取x=m-1,则=(m-1,0,n),由平面TA1C1⊥平面ACC1A1,得:cos<,>==0,即m=n+1…②由①②解得,n=,m=,∴存在点T(,,)满足条件,此时TC=.…10分【解析】(1)以CB、CA分别为x,y轴,过C作直线Cz∥BC1,以Cz为z轴建立空间坐标系,求出直线A1T的方向向量和平面ABC1的法向量,代入向量夹角公式,可得直线A1T与平面ABC1所成角;(2)T在面ABC1内,=+=+m+n,由TB1=TC得,-2m+4n=-1…①;求出面CAA1C1法向量和面TA1C1法向量,由平面TA1C1⊥平面ACC1A1,得:m=n+1…②,解方程组求出m,n的值,进而可得TC的长度.本题考查的知识点是平面与平面垂直的性质,二面角的平面角及求法,直线与平面的夹角,其中建立空间直角坐标系,将问题转化为向量夹角问题是解答的关键.20.【答案】结论:(a1+a2+…+a n)(++…+)≥n2证明:①当n=1时,显然成立;②假设当n=k时,不等式成立,即:(a1+a2+…+a k)(++…+)≥k2那么,当n=k+1时,(a1+a2+…+a k+a k+1)(++…++)=(a1+a2+…+a k)(++…+)+a k+1(++…+)+(a1+a2+…+a k)+1≥k2+(+)+(+)+…+(+)+1≥k2+2k+1=(k+1)2即n=k+1时,不等式也成立.由①②知,不等式对任意正整数n成立.【解析】依题意可归纳出:(a1+a2+…+a n)(++…+)≥n2;下面用数学归纳法证明:①当n=1时易证;②假设当n=k时,不等式成立,去证明当n=k+1时,不等式也成立即可,需注意归纳假设的利用与基本不等式的应用.本题考查归纳推理与数学归纳法,着重考查归纳假设的利用与基本不等式的应用,考查推理证明的能力,属于难题.第11页,共11页。
2020广东省高二下学期期中考试数学(理)试题含答案
( 1)证明: an n 是等比数列;
( 2)数列 cn 满足 cn
bn
an n
,求数列
1 bn 1 1
cn 的前 n 项的和 Tn .
20. (本小题满分 12 分)
已知四棱锥 P ABCD ,底面 ABCD 为菱形, PD PB, H 为 PC 上的点, 过 AH 的平面分别交 PB, PD
于点 M , N ,且 BD / / 平面 AMHN . ( 1)证明: MN PC ;
g ' x 2 xf x x2 f ' x x 2 f x xf ' x , 可 得 x 1 时 ,
g ' x 0, 0 x 1 时, g ' x 0 ,可得函数 g x 在 x 1 处取得极值, g ' 1 2 f 1 f ' 1 0, ,
1
1
f1
f '1
,故选 C.
2
2
17、【解析】 (1)由 b cosC 2a c cos B ,得 sinB cosC
5
AC ,且 O 为
因为 AC I PO O 且 AC、PO 平面 PAC ,所以 BD 平面 PAC ,
因为 PC 平面 PAC ,所以 BD PC .
因为 BD / / 平面 AMHN , BD 平面 PBD ,且平面 AMHN I 平面 PBD MN ,
所以 BD / /MN ,所以 MN PC .
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
x y1 0
6.设实数 x, y 满足约束条件 y 1 0 ,则 z 2x y 的最大值为(
)
x y10
黑龙江省2020学年高二数学下学期期中试题理(含解析)
高二数学下学期期中试题 理(含解析)第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设命题2:,2nP n N n ∃∈>,则P ⌝为( ) A. 2,2nn N n ∀∈> B. 2,2nn N n ∃∈≤ C. 2,2nn N n ∀∈≤ D. 2,2nn N n ∃∈=【答案】C 【解析】试题分析:根据否命题的定义,即既否定原命题的条件,又否定原命题的结论,存在的否定为任意,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C.考点:原命题与否命题.2. “1<x <2”是“x<2”成立的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】试题分析:因为“若12x <<,则2x <”是真命题,“若2x <,则12x <<”是假命题,所以“12x <<”是“2x <”成立的充分不必要条件.选A . 考点:充分必要条件的判断.【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题. 对于命题“若A ,则B”是真命题,我们说A ⇒B ,并且说A 是B 的充分条件,B 是A 的必要条件,命题“若A ,则B ”是假命题,我们说A ≠>B ,由充分条件,必要条件的定义,可以判断出“12x <<”是“2x <”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键.3.复数2256)(3)m m m m i -++-(是纯虚数,其中i 是虚数单位,则实数m 的值是( ) A. 3 B. 2 C. 2或3 D. 0或2或3【答案】B 【解析】 【分析】本题首先可根据题意得出复数()2256(3)m m m m i -++-是纯虚数,然后根据纯虚数的定义即可得出复数的实部与虚部的取值范围,最后通过计算即可得出结果。
2020年辽宁省高二(下)期中数学试卷解析版
期中数学试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.若全集U=R,集合A={x|0<x<2},B={x|x-1>0},则A∩∁U B=( )A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}2.若复数z满足z(i-1)=2i(i为虚数单位),则为( )A. 1+iB. 1-iC. -1+iD. -1-i3.函数y=e|x|-4cos x(e为自然对数的底数)的图象可能是( )A. B.C. D.4.在菱形ABCD中,若,则•等于( )A. 2B. -2C. ||cos AD. 与菱形的边长有关5.已知F为抛物线y2=4x的焦点,O为原点,点P是抛物线准线上一动点,若点A在抛物线上,且|AF|=5,则|PA|+|PO|的最小值为( )A. B.2 C. D. 26.已知x,y∈R且x-2y-4=0,则2x+的最小值为( )A. 4B. 8C. 16D. 2567.命题“∀x∈N,x2>1”的否定为( )A. ∀x∈N,x2≤1B. ∃x0∈N,x2≤1C. ∀x∈N,x2<1D. ∃x0∈N,x2<18.在区间(0,6)中任取一个实数a,使函数f(x)=,在R上是增函数的概率为( )A. B. C. D.9.在正方体ABCD-A1B1C1D1中,若点M为正方形ABCD的中心,则异面直线AB1与D1M所成角的余弦值为( )A. B. C. D.10.在△ABC中,角A,B,C的对边分别是a,b,c,a=4,b=2,c cos B=(2a-b)cos C,则△ABC的面积为( )A. B. C. 6 D. 1211.已知函数f(x)=e x(x-ae x)恰有两个极值点x1,x2(x1<x2),则a的取值范围是( )A. (0,)B. (1,3)C. (,3)D. (,1)12.过双曲线C:=1(a>0,b>0)左焦点F的直线l与C交于M,N两点,且=3,若OM⊥FN,则C的离心率为( )A.2 B. C.3 D.二、填空题(本大题共4小题,共20.0分)13.设曲线y=x-a ln(x+1)在点(0,0)处的切线方程为y=2x,则a=______.14.若x,y满足约束条件,则z=3x-2y的最小值为______.15.如图,半圆O的直径为2,A为直径延长线上一点,OA=2,B为半圆上任意一点,以线段AB为腰作等腰直角△ABC(C、O两点在直线AB的两侧),当∠AOB变化时,OC≤m恒成立,则m的最小值为______.16.已知点A,B,C在半径为2的球O的球面上,且OA,OB,OC两两所成的角相等,则当三棱锥O-ABC的体积最大时,平面ABC截球O所得的截面圆的面积为______.三、解答题(本大题共7小题,共82.0分)17.已知等差数列{a n}的前n项和为S n,a3+a5=18,S3+S5=50.数列{b n}为等比数列,且b1=a1,3b2=a1a4.(1)求数列{a n}和{b n}的通项公式;(2)记,其前n项和T n,证明:.18.某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如表(假设该区域空气质量指数不会超过300):空气质量指数(0,50](50,100](100,150](150,200](200,250](250,300]空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染该社团将该校区在2018年11月中10天的空气质量指数监测数据作为样本,绘制的频率分布直方图如图,把该直方图所得频率估计为概率.(1)以这10天的空气质量指数监测数据作为估计2018年11月的空气质量情况,则2018年11月中有多少天的空气质量达到优良?(2)从这10天的空气质量指数监测数据中,随机抽取三天,求恰好有一天空气质量良的概率;(3)从这10天的数据中任取三天数据,记ξ表示抽取空气质量良的天数,求ξ的分布列和期望.19.如图,三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=,D为BC的中点,过点D作DQ平行于AP,且DQ=1.连接QB,QC,QP.(1)证明:AQ⊥平面PBC;(2)求直线BC与平面ABQ所成角的余弦值.(3)求二面角B-AQ-C的余弦值.20.已知椭圆C:=1(a>b>0)的离心率为,A1A2分别为椭圆C的左、右顶点,点P(2,-1)满足=1.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l经过点P且与C交于不同的两点M,N,试问:在x轴上是否存在点Q,使得QM与直线QN的斜率的和为定值?若存在,请求出点Q的坐标及定值;若不存在,请说明理由.21.已知函数f(x)=ax lnx-bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x-e.(1)求a,b的值及函数f(x)的极值;(2)若m∈Z.且f(x)-m(x-1)>0对任意的x>1恒成立,求m的最大值.22.已知曲线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()(1)求曲线C的直角坐标方程;(2)设P(2,1),直线l与曲线交于点A,B,求|PA|•|PB|的值.23.已知函数f(x)=|x+a|+|x-1|.(1)当a=2时,求不等式f(x)≤5的解集;(2)若∃x0∈R,f(x0)≤|2a-1|,求实数a的取值范围.答案和解析1.【答案】A【解析】解:∵全集U=R,集合A={x|0<x<2},B={x|x-1>0}={x|x>1},∴A∩∁U B={x|0<x<2}∩{x|x≤1}={x|0<x≤1}.故选:A.先求出集合B,进而求出C U B,由此能求出A∩∁U B.本题考查交集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.2.【答案】A【解析】解:Z(i-1)=2i(i为虚数单位),∴-Z(1-i)(1+i)=2i(1+i),∴-2z=2(i-1),解得z=1-i.则=1+i.故选:A.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.【答案】C【解析】解:∵y=e|x|-4cos x(e为自然对数的底数)是偶函数,∴函数y=e|x|-4cos x(e为自然对数的底数)的图象关于y轴对称,由此排除B和D,∴f(0)=e|0|-4cos0=1-4=-3<0,由此排除A.故选:C.y=e|x|-4cos x(e为自然对数的底数)是偶函数,由此排除B和D,f(0)=e|0|-4cos0=1-4=-3<0,由此排除A.由此能求出结果.本题考查函数的图象的判断,考查函数的奇偶性、特殖点的函数值的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.4.【答案】B【解析】解:∵ABCD为菱形,∴=,∵,∴,∴2,∴,∴===-2.故选:B.由菱形得AB=AD,进而把所给条件平方得到,所求数量积中把化为-()展开即可得解.此题考查了向量的模与数量积,难度适中.5.【答案】D【解析】解:∵|AF|=5,由抛物线的定义得点A到准线的距离为5,即A点的横坐标为4,又点A在抛物线上,∴从而点A的坐标为(4,±4);坐标原点关于准线的对称点的坐标为B(-2,0),则|PA|+|PO|的最小值为|AB|==2,故选:D.利用抛物线的定义由|AF|=5得到A到准线的距离为5,即可求出点A的坐标,根据:“|PA|+|PO|”相当于在准线上找一点,使得它到两个定点的距离之和最小,最后利用平面几何的方法即可求出距离之和的最小值.此题考查学生灵活运用抛物线的简单性质解决最小值问题,灵活运用点到点的距离、对称性化简求值,是一道中档题.6.【答案】B【解析】解:根据题意,x,y∈R且x-2y-4=0,则x=2y+4,2x+=22y+4+=16×4y+≥2=8,当且仅当x=2y时等号成立,即2x+的最小值为8;故选:B.根据题意,将x-2y-4=0变形可得x=2y+4,又由2x+=22y+4+=16×4y+,结合基本不等式分析可得答案.本题考查基本不等式的性质以及应用,注意分析xy的关系,属于基础题.7.【答案】B【解析】解:命题“∀x∈N,x2>1”的否定为“∃x0∈N,x02≤1”.故选:B.根据全称量词命题的否定是存在量词命题,写出即可.本题考查了全称量词命题的否定是存在量词命题的问题,是基础题.8.【答案】A【解析】解:∵函数f(x)=,在R上是增函数,∴,解得1<a≤2,∴由几何概型得从区间(0,6)中任取一个值a,则函数f(x)是增函数的概率为p==.故选:A.由函数f(x)=,在R是增函数,解得1<a≤2,由此利用几何概型能求出所求的概率.本题考查概率的求法,考查几何概型及分段函数单调性的应用,几何概型概率的值是常常通过长度、面积、或者体积的比值得到,本题属于中档题.9.【答案】C【解析】解:如图,以D为坐标原点,分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系,设棱长为2a,则A(2a,0,0),B1(2a,2a,2a),D1(0,0,2a),M(a,a,0),∴,,则cos<>=.∴异面直线AB1与D1M所成角的余弦值为.故选:C.以D为坐标原点,分别以DA,DC,DD1所在直线为x,y,z轴建立空间直角坐标系,求出与的坐标,由两向量所成角的余弦值可得异面直线AB1与D1M所成角的余弦值.本题考查异面直线及其所成角,考查利用空间向量求解空间角,是中档题.10.【答案】C【解析】(本题满分为10分)解:∵在△ABC中,由正弦定理知=2R,又∵(2a-b)•cos C=c•cos B,∴2sin A cos C=sin B cos C+cos B sin C,即2sin A cos C=sin A;………………(4分)∵0<A<π,∴sin A>0;∴cos C=;………………(6分)又0<C<π,∴C=;………………(8分)∴S△ABC=ab sin C=4×2×=6.………………(10分)故选:C.由正弦定理和三角恒等变换求得cos C与C的值,利用三角形的面积公式即可得解.本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.11.【答案】A【解析】解:∵函数f(x)=e x(x-ae x),∴f′(x)=(x+1-2a•e x)e x,由于函数f(x)的两个极值点为x1,x2,即x1,x2是方程f′(x)=0的两不等实根,即方程x+1-2ae x=0(a≠0)有两个不等实根,方法一:=e x;设y1=(a≠0),y2=e x,在同一坐标系内画出这两个函数的图象,如图所示;要使这两个函数有2个不同的交点,应满足,解得0<a<,所以a的取值范围是(0,).故选:A.方法二:,设y1=2a,,,在(-∞,0)上,y2'>0,y2单调递增;在(0,+∞)上,y2'<0,y2单调递减;且x→+∞时,y2→0,在同一直角坐标系中画出这两个函数的图象,如图所示;要使这两个函数有2个不同的交点,只需满足0<2a<1即可,解得0<a<,所以a的取值范围是(0,).故选:A.根据题意,对函数f(x)求导数,得出导数f′(x)=0有两不等实根,转化为两函数有两个交点的问题,结合图象即可得出a的取值范围.本题考查了利用导数研究函数的单调性与极值的应用问题,也考查了转化思想与数形结合的应用问题,是综合性题目.12.【答案】B【解析】解:设M(x1,y1),N(x2,y2),F(-c,0),由=3,可得y2=3y1,设直线l的方程为x=my-c,联立双曲线方程可得(b2m2-a2)y2-2mcb2y+b2c2-a2b2=0,当时,可得y2+y1=,y2y1=,OM⊥FN,即为•=-1,即有y1=,y2=,可得m2=1+,=,化为c2=7a2,e==.故选:B.设M(x1,y1),N(x2,y2),F(-c,0),由向量的坐标表示可得y2=3y1,设直线l 的方程为x=my-c,联立双曲线方程,运用韦达定理,可得y2,y1的关系式,再由两直线垂直的条件:斜率之积为-1,化简整理可得a,b,c的等式,由离心率公式可得所求值.本题考查双曲线的方程和性质,主要是离心率的求法,以及向量的坐标表示,直线方程和双曲线方程联立,运用韦达定理,考查化简运算能力,属于难题.13.【答案】-1【解析】解:由y=x-a ln(x+1),得y′=1-,∴y′|x=0=1-a,又当x=0时,y=0,∴曲线y=x-a ln(x+1)在点(0,0)处的切线方程为y=(1-a)x=2x,则a=-1.故答案为:-1.求出原函数的导函数,得到y′|x=0,再求出x=0时的函数值,写出直线方程,则a值可求.本题考查利用导数研究过曲线上某点处的切线方程,考查导数的几何意义,是基础题.14.【答案】0【解析】解:由z=3x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x-,由图象可知当直线y=x-经过点O时,直线的截距最大,此时z最小,将O(0,0)代入目标函数z=3x-2y,得z=0.故答案为:0.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求出结果.本题考查线性规划中的最值问题,利用数形结合是解决问题的基本方法.15.【答案】2+1【解析】解:根据题意,以O为坐标原点,OA为x轴建立坐标系,如图:则A(2,0),设∠AOB=θ,(0≤θ≤π),则B的坐标为(cosθ,sinθ),则=(cosθ-2,sinθ),△ABC为等腰直角三角形,则AC⊥AB且|AC|=|AB|,又由C、O两点在直线AB的两侧,则=(sinθ,2-cosθ),则=+=(2+sinθ,2-cosθ),则||2=(2+sinθ)2+(2-cosθ)2=9+4(sinθ-cosθ)=9+4sin(θ-),分析可得:当θ=时,||2取得最大值9+4,则OC的最大值为2+1,若OC≤m恒成立,则m≥2+1,即m的最小值为2+1;故答案为:2+1.根据题意,以O为坐标原点,OA为x轴建立坐标系,设∠AOB=θ,分析A、B的坐标,可得向量的坐标,又由△ABC为等腰直角三角形,则AC⊥AB且|AC|=|AB|,分析可得向量的坐标,进而由向量坐标的加法可得向量的坐标,进而可得向量的模,分析其最大值,若OC≤m恒成立,分析可得答案.本题考查向量数量积的计算,涉及三角函数的恒等变形,属于综合题.16.【答案】【解析】解:依题意三角形ABC为等边三角形,设AB=x,则正三棱锥O-ABC的高h 为=,又S△ABC=x2,∴V O-ABC=hS△ABC=וx2=×2×≤×=,(当且仅当x2=12-x2,即x2=8时取等),∴三角形ABC的外接圆的半径r=×x=x,∴平面ABC截球O所得的截面圆的面积为π(x)2=.故答案为:.依题意三角形ABC为等边三角形,设AB=x,则正三棱锥O-ABC的高h为=,在求出三角形ABC的面积和正三棱锥的体积后用基本不等式求得最大值以及取最大值时x的值,从而可求得.本题考查了球的性质,属中档题.17.【答案】解:(1)等差数列{a n}的公差设为d,前n项和为S n,a3+a5=18,S3+S5=50,可得2a1+6d=18,3a1+3d+5a1+10d=50,化为a1+3d=9,8a1+13d=50,解得a1=3,d=2,即a n=2n+1;数列{b n}为等比数列,且b1=a1,3b2=a1a4.可得b1=3,3b2=a1a4=27,即b2=9,公比q=3,b n=3n;(2)证明:==2(-),即有前n项和T n=2(-+-+…+-)=2(-)<.【解析】(1)等差数列的公差设为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求;再由等比数列的通项公式,计算可得所求;(2)求得==2(-),由数列的求和方法:裂项相消求和,化简整理,结合不等式的性质,可得证明.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,化简整理的运算能力,以及方程思想,属于中档题.18.【答案】解:(1)由频率分布直方图知:这10天中1级优1天,2级良2天,3-6级共7天,由题意知,这10天中空气质量达到优良的概率P=,∴2018年11月中有:30×=9天的空气质量达到优良.(2)记“从10天的空气质量指标监测数据中,随机抽取三天,恰有一天空气质量优良”为事件A,则恰好有一天空气质量良的概率P(A)==.(3)依据条件,ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ0 1 2PE(ξ)==.【解析】(1)由频率分布直方图知这10天中1级优1天,2级良2天,3-6级共7天,这10天中空气质量达到优良的概率P=,由此能求出2018年11月中空气质量达到优良的天数.(2)记“从10天的空气质量指标监测数据中,随机抽取三天,恰有一天空气质量优良”为事件A,利用古典概型能求出恰好有一天空气质量良的概率.(3)依据条件,ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).本题考查概率的求法及应用,考查离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、古典概型、排列组合等基础知识,考查运算求解能力,是中档题.19.【答案】解:(Ⅰ)证明:连接AD,PD,由PA⊥平面ABC,得PA⊥AD,因为PA∥DQ且PA=DQ,即四边形ADQP为矩形,又AB=AC=,AB⊥AC,则AD=1=AP,所以四边形ADQP为正方形,AQ⊥PD且BC⊥AD,BC⊥DQ,则BC⊥平面ADQ,即BC⊥AQ,故AQ⊥平面PBC.(Ⅱ)解:以A为原点,AB为x轴,AC为y轴,AP为z轴,建立如图所示直角坐标系,则B(,0,0),C(0,,0),P(0,0,1),D(,,0),A(0,0,0),Q(,,1),则=(-,,0),=(,0,0),=(,,1),设平面ABQ的的法向量为=(x,y,z),则,取y=1,得=(0,1,-),设直线BC与平面ABQ所成角为θ则sinθ==,cosθ==,∴直线BC与平面ABQ所成角的余弦值为.(3)解:=(0,,0),设平面ABQ的法向量=(x,y,z),则,取y=2,得=(0,2,-),设平面ACQ的法向量=(a,b,c),则,取a=2,得=(2,0,-),设二面角B-AQ-C的平面角为θ,由图知θ为钝角,∴cosθ=-=-=-.∴二面角B-AQ-C的余弦值为.【解析】(Ⅰ)连接AD,PD,由PA⊥平面ABC,得PA⊥AD,推导出四边形ADQP为正方形,AQ⊥PD,且BC⊥AD,BC⊥DQ,则BC⊥平面ADQ,由此能证明AQ⊥平面PBC .(Ⅱ)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出直线BC与平面ABQ所成角的余弦值.(3)求出平面ABQ的法向量和平面ACQ的法向量,利用向量法能求出二面角B-AQ-C 的余弦值.本题考查线面垂直的证明,考查线面角的余弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】解:(Ⅰ)依题意,A1(-a,0)、A2(a,0),又P(2,-1),∴,,则由=(-a-2,1)•(a-2,1)=5-a2=1,解得a=±2,又a>0,得a=2,∵e=,∴c=,∴b2=a2-c2=1,故椭圆C的方程为;(Ⅱ)假设存在满足条件的点Q(t,0).当直线l与x轴垂直时,它与椭圆只有一个交点,不满足题意.因此直线l的斜率k存在,设l:y+1=k(x-2),由,消取y得,(1+4k2)x2-(16k2+8k)x+16k2+16=0,设M(x1,y1),N(x2,y2),则,,∵===,∴要使对任意实数k,k QM+k QN为定值,则只有t=2,此时,k QM+k QN=1.故在x轴上存在点Q(2,0),使得直线QM与直线QN的斜率的和为定值1.【解析】(Ⅰ)依题意求得与的坐标,利用=1求得a,再由离心率求得c,结合隐含条件求得b,则椭圆C的方程可求;(Ⅱ)假设存在满足条件的点Q(t,0).当直线l与x轴垂直时,它与椭圆只有一个交点,不满足题意.因此直线l的斜率k存在,设l:y+1=k(x-2),联立直线方程与椭圆方程,利用根与系数的关系及斜率公式求解k QM+k QN=,可得要使对任意实数k,k QM+k QN为定值,则只有t=2,此时,k QM+k QN=1.本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.【答案】解:(1)f(x)=ax lnx-bx,f′(x)=a ln x+a-b,∵函数f(x)在点(e,f(e))处的切线方程为y=3x-e,∴,解得a=1,b=-1.∴f(x)=x lnx+x,则f′(x)=ln x+2,由f′(x)=ln x+2=0,得.∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0.∴f(x)在(0,)上为减函数,在(,+∞)上为增函数,则当x=时,函数f(x)取得极小值为f()=;(2)当x>1时,由f(x)-m(x-1)>0,得m<.令g(x)==,则g′(x)=,设h(x)=x-2-ln x,则h′(x)=1->0,h(x)在(1,+∞)上为增函数,∵h(3)=1-ln3<0,h(4)=2-ln4>0,∴∃x0∈(3,4),且h(x0)=0,当x∈(1,x0)时,h(x)<0,g′(x)<0,g(x)在(1,x0)上单调递减;当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)在(x0,+∞)上单调递增.∴g(x)min=g(x0)=,∵h(x0)=x0-2-ln x0=0,∴x0-1=1+ln x0,g(x0)=x0,∴m<x0∈(3,4),∴m的最大值为3.【解析】(1)求出原函数的导函数,利用函数f(x)在点(e,f(e))处的切线方程为y=3x-e列关于a,b的方程组,求解可得a,b的值,再求出导函数的零点,得到原函数的单调区间,进一步求得极值;(2)把f(x)-m(x-1)>0变形,可得m<对任意x>1都成立,等价于m<,利用导数求得,即可得到m的最大值.本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题时合理构造函数是解题的关键,属难题.22.【答案】解(1)由ρ=4cos(θ-)得ρ2=4ρcosθ+4ρsinθ,∴ρ2=4ρcosθ+4ρsinθ,又x=ρcosθ,y=ρsinθ,∴x2+y2=4x+4y即曲线C的直角坐标方程为(x-2)2+(y-2)2=8.(2)将代入C的直角坐标方程,得t2+(-t-1)2=8,∴t2+t-7=0,设A,B两点对应的参数分别为t1,t2,∴t1t2=-7.则|PA||PB|=|t1t2|=7.【解析】(1)先将ρ=4cos(θ-)化为ρ2=4ρcosθ+4ρsinθ,进而可得出其直角坐标方程;(2)将直线参数方程代入(1)的结果,整理得到t2+t-7=0,再设A,B两点对应的参数分别为t1,t2,进而可得|PA||PB|=|t1t2|,即可求出结果本题主要考查极坐标方程与直角坐标的互化,以及参数方程的应用,熟记公式即可求解,属于中档题型.23.【答案】解:(1)当a=2时,f(x)=|x-1|+|x+2|,①当x≤-2时,f(x)=-2x-1≤5,解得-3≤x≤-2;②当-2<x<1时,f(x)=3,显然f(x)≤5成立,所以-2<x<1;③当x≥1时,f(x)=2x+1≤5,解得1≤x≤2;综上所述,不等式的解集为{x|-3≤x≤2};(2)f(x)=|x+a|+|x-1|≥|(x+a)-(x-1)|=|a+1|,因为∃x0∈R,有f(x0)≤|2a-1|成立,所以只需|a+1|≤|2a-1|,化简得a2-2a≥0,解得a≤0或a≥2,所以a的取值范围是(-∞,0]∪[2,+∞).【解析】本题考查了绝对值不等式的解法,属于中档题.(1)分3段去绝对值解不等式,再相并;(2)先用绝对值不等式的性质求出f(x)的最小值,再将问题转化为f(x)min≤|2a-1|解不等式可得.。
2019-2020年高二下学期期中考试数学(理)试题含答案
2019-2020年高二下学期期中考试数学(理)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3-4页。
试卷满分150分。
考试时间120分钟。
第I 卷(选择题,共60分)一、选择题:(本大题共12小题,每题5分,满分60分)1.曲线y =13x 3-2在点(1,-53)处切线的倾斜角为( )A .30°B .45°C .135°D .150° 2.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32 D .33 3.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .eC .ln 22D .ln 2 4.曲线y =cos x 与坐标轴所围成图形面积是( ) A .4B .2C .52D .35.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .在(0,π)上递增,在(π,2π)上递减C .减函数D .在(0,π)上递减,在(0,2π)上递增6.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除7.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 8.设a >0,b >0,则以下不等式中不一定成立的是( )A . a 2+b 2+2≥2a +2bB .ln(ab +1)≥0C .b a +ab≥2 D .a 3+b 3≥2ab 29.在平行六面休ABCD -A ′B ′C ′D ′中,若'23'AC xAB yBC zC C =++u u u u r u u u r u u u r u u u u r, 则x +y +z 等于( )A .B .76C .56D .2310.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A .20B .18C .3D .011.利用数学归纳法证明不等式1+12+13+ (1)2n -1<f(n) (n≥2,n ∈N *)的过程中,由n =k变到n =k +1时,左边增加了( ) A .1项B .k 项C .2k-1项 D .2k 项12.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于0B .一定等于0C .一定小于0D .正负都有可能第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每题5分,满分20分)13.函数f (x )=x (1-x 2)在[0,1]上的最大值为 . 14.则常数T 的值为 .15.在12221111,,;Rt ABC CA CB h h CA CB∆⊥=+中,斜边上的高为则类比此性质,如下图,在四面体P -ABC 中,若PA 、PB 、PC 两两 垂直,底面ABC 上的高为h ,则得到的正确结论为__________________________. .16.若函数在区间上是单调递增函数,则实数的取值范围是.hP三、解答题:(本大题共6小题,满分70分) 17.(本题满分10分) 若,求证:33222()()()a b a b a b ++≥+ .18.(本题满分12分) 已知函数在处取得极值-2. (1)求函数的解析式; (2)求曲线在点处的切线方程;19.(本题满分12分)用总长为14.8米的钢条制成一个长方体容器的框架,如果所制的容器的底面的长比宽多0.5米,那么高为多少时容器的容器最大?并求出它的最大容积.20.(本题满分12分)如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。
2020春高二下学期线上期中考试数学 (理)试题+参考答案+评分标准 (3)
2019-2020学年高二下学期线上教学期中检测数学试题注意事项:1.测试范围为导数及其应用、数系的扩充与复数的引入、计数原理、概率和统计案例。
2.本卷试题及答案共10页,包括单项选择题(第1题~第8题,共40分)、多项选择题(第9题~第12题,共20分)、填空题(第13题~第16题,共20分)、解答题(第17题~第22题,共70分),满分150分。
考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a +b i(a ,b ∈R )是1-i1+i 的共轭复数,则a +b =A .-1B .-12C .12D .12.设随机变量X 服从二项分布,且均值E (X )=3,p =15,则方差V (X )=A .35B .45C .125D .23.101⎪⎭⎫⎝⎛-x x 的展开式中x 4的系数是A .-210B .-120C .120D .2104.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为A .-23B .23C .13D .-135.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中(新球用完后即成旧球),此时盒中旧球个数X 是一个随机变量,其分布列为P (X =k ),则P (X =5)的值为 A .2755B .1335C .315D .11276.设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到线性回归方程为yˆ=0.85x -85.71,则下列结论中不正确的是A .y 与x 具有正线性相关关系B .回归直线过样本点的中心) ,(y xC .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kg 7.已知函数xex x x f 12)(2-+=,若过原点的直线l 与曲线y =f (x )有三个交点,则直线l 的斜率的取值范围为 A .)2,(e-∞B .)2,0(eC .)2 ,2(e eD .)2 ,0(e8.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a 元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费=基准保费×(1+与道路交通事故相联系的浮动比率),具体情况如下表: 交强险浮动因素和浮动费率比率表类别 浮动因素浮动比率 A 1 上一个年度未发生有责任道路交通事故 下浮10% A 2 上两个年度未发生有责任道路交通事故 下浮20% A 3 上三个及以上年度未发生有责任道路交通事故 下浮30% A 4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0% A 5 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故上浮10% A 6上一个年度发生有责任道路交通死亡事故上浮30%为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:类型 A 1 A 2 A 3 A 4 A 5 A 6 数量20101038202若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为 A .a 元B .0.958a 元C .0.957a 元D .0.956a 元二、多项选择题:本题共4小题,每小题5分,共20分。
陕西省榆林市2020学年高二数学下学期期中试题 理(含解析)
2020学年陕西省榆林市高二(下)期中数学试卷(理科)选择题(本大题共12小题,共60分)1.1.复数在复平面上对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】试题分析:先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限解:∵复数=,∴复数对应的点的坐标是()∴复数在复平面内对应的点位于第一象限,故选A考点:复数的实部和虚部点评:本题考查复数的实部和虚部的符号,是一个概念题,在解题时用到复数的加减乘除运算,是一个比较好的选择或填空题,可能出现在高考题的前几个题目中2.2.已知,是复数,以下四个结论正确的是若,则,若丨,则,若,则若,则向量与重合A. 仅正确B. 仅正确C. 正确D. 仅正确【答案】A【解析】【分析】举例说明①③④错误;由|z1|+|z2|=0,得|z1|=|z2|=0,从而得到z1=0,z2=0,说明②正确.【详解】①若z1+z2=0,则z1=0,z2=0,错误,如z1=﹣1,z2=1;②若|z1|+|z2|=0,则|z1|=|z2|=0,∴z1=0,z2=0,故②正确;③若z1+=0,则z1=0,错误,如z1=i,;④若|z1|=|z2|,则向量与重合错误,如z1=1+i,z2=1﹣i,满足|z1|=|z2|,但向量与不重合.∴正确的结论是②.故选:A.【点睛】本题考查命题的真假判断与应用,考查复数的有关概念,属于基础题.3.3.曲线在点处的切线斜率为()A. B. C. D.【答案】A【解析】试题分析:由,得到,把x=0代入得:,则曲线在点A(0,1)处的切线斜率为1.故选A.考点:1.直线的斜率;2.导数的几何意义.视频4.4.定义一种运算“”:对于自然数n满足以下运算性质:,,则等于A. nB.C.D.【答案】A【解析】【分析】根据定义中的运算法则,对(n+1)*1=n*1+1反复利用,即逐步改变“n”的值,直到得出运算结果.【详解】∵1*1=1,(n+1)*1=n*1+1,∴(n+1)*1=n*1+1=(n﹣1)*1+1+1=(n﹣2)*1+3=…=[n﹣(n﹣1)]*1+n=1+n,∴n*1=n.故选:A.【点睛】本题题型是给出新的运算利用运算性质进行求值,主要抓住运算的本质,改变式子中字母的值再反复运算性质求出值,考查了观察能力和分析、解决问题的能力.5.5.用反证法证明命题:“,可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A. 都能被5整除B. 都不能被5整除C. 不都能被5整除D.不能被5整除【答案】B【解析】命题:“,可被5整除,那么a,b中至少有一个能被5整除的否定是都不能被5整除,故反证法假设的内容应为都不能被5整除,故选A.6.6.原命题为“若互为共轭复数,则”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A. 真,假,真B. 假,假,真C. 真,真,假D. 假,假,假【答案】B【解析】试题分析:设复数,则,所以,故原命题为真;逆命题:若,则互为共轭复数;如,,且,但此时不互为共轭复,故逆命题为假;否命题:若不互为共轭复数,则;如,,此时不互为共轭复,但,故否命题为假;原命题和逆否命题的真假相同,所以逆否命题为真;故选B.考点:命题以及命题的真假.7.7.用数学归纳法证明等式时,第一步验证时,左边应取的项是( )A. 1B. 1+2C. 1+2+3D. 1+2+3+4【答案】D【解析】试题分析:因为1+3=4,所以左边应取的项是1+2+3+4.考点:本小题主要考查数学归纳法的应用.点评:应用数学归纳法时,一定要严格遵守步骤,验证第一步时要仔细.8.8.由曲线y=x2,y=围成的封闭图形的面积为( )A. B.C. D. 1【答案】B【解析】由曲线和曲线可得交点坐标为,则曲线和曲线围成的封闭图形的面积为,故选B.9.9.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是( )A. B. C. D.【答案】D【解析】试题分析:由题意,得,所以,故选D.考点:1、导数的几何意义;2、直线的倾斜角.10.10.已知,且,则为虚数单位的最小值是A. B. C. D.【答案】A【解析】【分析】利用复数|z|=1的几何意义即可求得|z﹣2﹣2i|(i为虚数单位)的最小值.利用复数|z|=1的几何意义即可求得|z﹣2﹣2i|(i为虚数单位)的最小值.【详解】∵|z|=1且z∈C,作图如图:∵|z﹣2﹣2i|的几何意义为单位圆上的点M到复平面上的点P(2,2)的距离,∴|z﹣2﹣2i|的最小值为:|OP|﹣1=2﹣1.故选:A.【点睛】本题考查复数求模,着重考查复数模的几何意义,考查作图、用图的能力,属于中档题.11.11.函数在内有极小值,则()A. B. C. D.【答案】A【解析】分析:该题考查的是有关函数极值的问题,该题等价于导数等于零对应的二次方程在相应区间上有较大的根,之后转化为一元二次方程根的分布问题来解决即可.详解:,函数在内有极小值,等价于方程在区间上有较大根,即,解得,故选A,点睛:解决该题的关键是要明确函数的极值点的位置,以及极值点存在的条件,还有极值点的求解方法,除此之外,还需要明确极大值与极小值的区别所在.12.12.用数学归纳法证明不等式的过程中,由到时,不等式的左边( )A. 增加了一项B. 增加了两项+C. 增加了两项+,又减少了一项D. 增加了一项,又减少了一项【答案】C【解析】当时,不等式左边为++…+++,故增加了两项+,减少了一项,故选C.填空题(本大题共4小题,共20分)13.13.已知i为虚数单位,则______.【答案】2【解析】.14.14.函数在时有极值为10,则的值为______.【答案】【解析】【分析】首先对f(x)求导,然后由题设在x=1时有极值10可得,解方程得出a,b的值,最后求它们的即可.【详解】对函数f(x)求导得f′(x)=3x2+2ax+b,又∵在x=1时f(x)有极值10,∴,解得或,验证知,当a=﹣3,b=3时,在x=1无极值,故 a+b的值﹣7.故答案为:﹣7【点睛】掌握函数极值存在的条件,考查利用函数的极值存在的条件求参数的能力.15.15.已知有下列各式:,,成立,观察上面各式,按此规律若,则正数______.【答案】【解析】【分析】由已知中的不等式,归纳推理得:x+≥n+1,进而根据n+1=5,求出n值,进而得到a值.【详解】由已知中:x∈(0,+∞)时,x+≥2,x+=++≥3,x+=+++≥4…归纳推理得:x+≥n+1,若x+≥5,则n+1=5,即n=4,此时a=n n=44,故答案为44.【点睛】常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.16.16.______.【答案】【解析】【分析】由定积分的几何意义求得dx,直接求定积分得到sinxdx,则答案可求.【详解】求dx﹣sinxdx.由定积分的几何意义可知,dx是以原点为圆心,以1为半径的四分之一圆的面积,等于.sinxdx=.∴dx﹣sinxdx=.故答案为:.【点睛】本题考查了定积分,考查了定积分的几何意义,是基础的计算题.解答题(本大题共6小题,共70分)17.17.已知,复数.实数m取什么值时,复数z为实数、纯虚数;实数m取值范围是什么时,复数z对应的点在第三象限.【答案】(1)(2)【解析】【分析】(1)由虚部为0求得使z为实数的m值,再由实部为0且虚部不为0求得使z为纯虚数的m值;(2)由实部与虚部均小于0求解.【详解】解:当,即时,复数为实数;当,即时,复数是纯虚数;由题意,,解得.当时,复数z对应的点在第三象限.【点睛】本题考查复数的代数表示法及其几何意义,考查复数的基本概念,是基础题.18.18.数列的前n项和记为,已知,2,.证明:数列是等比数列;.【答案】(1)见解析(2)见解析【解析】试题分析:⑴由,得∴S n=S n+1-S n, 2分∴S n+1=S n,∴=2, 4分∴数列{}为等比数列. 6分⑵由⑴知{}公比为2, 8分∴==·, 10分∴S n+1=4a n. 12分考点:等比数列及求和点评:要证明一数列是等比数列需用定义,如要证明是等比数列只需证明是常数,另本题中用到了关系式19.19.已知a,,其中e是自然对数的底数,求证:提示:可考虑用分析法找思路【答案】见解析【解析】【分析】要证:b a>a b只要证:alnb>blna.只要证>.构造函数f(x)=,利用函数的单调性即可证明.【详解】证明:,,要证:只要证:,只要证,设,,当时,,函数在上是单调递减.当时,有,即,.【点睛】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,属于中档题.20.20.求由抛物线与它在点和点的切线所围成的区域的面积.【答案】.【解析】试题分析:求出函数的切线方程,利用积分的几何意义即可求出区域的面积试题解析:,,所以过点A(0,-3)和点B(3,0)的切线方程分别是,……2分两条切线的交点是(),…3分围成的区域如图所示:区域被直线分成了两部分,分别计算再相加,得:]即所求区域的面积是。
湖北省“荆荆襄宜四地七校考试联盟”2020届高二数学(理科)第二学期期中联考试题及答案
“荆、荆、襄、宜四地七校考试联盟” 高二期中联考试题数学(理)本试题卷共2页, 共22小题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.答题时请按要求用笔. 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在稿纸试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 命题“若21x =,则1x =”的逆否命题为( )A .若1x ≠,则11x x ≠≠-或B .若1x =,则11x x ==-或C .若1x ≠,则11x x ≠≠-且D .若1x =,则11x x ≠≠-且2. 已知参加某次考试的10万名理科考生的数学成绩ξ近似地服从正态分布(70,25)N ,估算这些考生中数学成绩落在(75,80]内的人数为( ) (附:2~(,)Z N μσ,则()0.6826,(22)0.9544P Z P Z μσμσμσμσ-<≤+=-<≤+=)A .4560B .13590C . 27180D . 311740 3.对任意的实数x ,若[]x 表示不超过x 的最大整数,则“1x y -<”是“[][]x y =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.292)x展开式中含1x的项是( ) A .第8项 B .第9项 C .第10项 D .第11项 5.CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.右图是根据统计局发布的2020年1月—7月的CPI 同比增长与环比增长涨跌幅数据绘制的折线图.(注:2020 年2月与2019年2月相比较,叫同比;2020年2 月与2020年1月相比较,叫环比)根据该折线图,则下列结论错误的是( ) A .2020年1月—7月CPI 有涨有跌B .2020年2月—7月CPI 涨跌波动不大,变化比较平稳C .2020年1月—7月分别与2019年1月一7月相比较,1月CPI 涨幅最大D .2020年1月—7月分别与2019年1月一7月相比较,CPI 有涨有跌6. 已知双曲线22221x y a b -=-的离心率为135,则它的渐近线为( )A .513y x =±B .135y x =±C .125y x =±D .512y x =± 7. 为了了解奥运五环及其内部所占面积与单独五个圆环及其内部面积之和的比值P ,某同学设计了如右图所示的数学模型,通过随机模拟的方法,在长为8,宽为5的矩形内随机取了N 个点,经统计落入五环及其内部的点的个数为n ,若圆环的半径为1,则比值P 的近似值为( )A .325n N π B .32n N π C .8nNπ D .532nNπ8. 假设有两个分类变量X 和Y 的22⨯列联表如下:X1y2y总计1xa 10 10a +2xc 30 30c +总计 6040100注:2K 的观测值2()()()()()()()n ad bc a b a c k n a b c d a c b d a c b d a b c d-==--++++++++. 对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( )A .45,15a c ==B .40,20a c ==C . 35,25a c ==D .30,30a c == 9.如图,在平行六面体1111ABCD A B C D -中,底面是边长为2的正方形,若1160A AB A AD ∠=∠=,且13A A =,则1A C 的长为( )A .5B .22C .14D .1710.已知点A (1,2)在抛物线2:2C y px =,过焦点F 且斜率为3的直线与C 相交于,P Q 两点,且,P Q 两点在准线上的投影分别为,M N 两点,则三角形MFN 的面积MFN S ∆=( )A .83 B .163C . 833D .163311.用五种不同颜色(颜色可以不全用完)给三棱柱ABC DEF -的六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色种数有( ) A .840 B .1200 C . 1800 D .192012.历史上,许多人研究过圆锥的截口曲线.如图,在圆锥中,母线与旋转轴夹角为30,现有一截面与圆锥的一条母线垂直,与旋转轴的交点O 到圆锥顶点M 的距离为1,对于所得截口曲线给出如下命题: ①曲线形状为椭圆;②点O 为该曲线上任意两点最长距离的三等分点;③该曲线上任意两点间的最长距离为32,最短距离为233; ④该曲线的离心率为33. 其中正确命题的序号为 ( )A .①②④B .①②③④C .①②③D .①④第Ⅱ卷(90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为___________.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 748114.已知向量(1,2,1)a =-,(2,2,0)b =-,则a 在b 方向上的投影为________.15.右图中的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为17,乙组数据的中位数为17,则x y +的值为___________.16.在平面直角坐标系xOy 中,点(1,0)A ,动点M 满足以MA 为直径的圆与y 轴相切,过A 作直线(1)250x m y m +-+-=的垂线,垂足为B ,则MA MB +的最小值为___________. 三、 解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知命题P :实数p 使得二项分布ξ~(5,)B p 满足(3)(4)P P ξξ=>=成立;命题Q :实数p 使得方程22132x y p p+=-表示焦点在x 轴上的椭圆.若P Q ∧为假命题,P Q ∨为真命题,求实数p 的取值范围.18.(本小题满分12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (Ⅰ)求tan C 的值;(Ⅱ)若ABC ∆的面积为3,求b 的值.19.(本小题满分12分)已知等差数列{}n a 中,82=a ,前10项和10185S .(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若从数列{}n a 中依次取出第 ,,,,,n 2842项,按原来的顺序排列成一个新的数列,试求新数列的前n 项和n A .20.(本小题满分12分)某农科所发现,一种作物的年收获量s (单位:kg )与它“相近”作物的株数n 具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过1m ),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:(Ⅰ)根据研究发现,该作物的年收获量s 可能和它“相近”作物的株数n 有以下两种回归方程:2;s bn a s bn a =+=+①②,利用统计知识,结合相关系数r 比较使用哪种回归方程更合适;(Ⅱ)农科所在如右图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(......Ⅰ.)中选择的回归方程计算所得数据为依.................据.) 参考公式:线性回归方程为y bx a =+,其中121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑;7 2.65≈,61()()664iii w w s s =--=-∑621()43ii w w =-≈∑,其中2i i w n =.21.(本小题满分12分)如图,四棱锥P ABCD -中,平面PAC ⊥底面ABCD ,且P 在底面正投影点在线段AC 上,122BC CD AC ===,3ACB ACD π∠=∠=. (Ⅰ)证明:AP BD ⊥;(Ⅱ)若5AP =AP 与BC 5A BP C --的余弦值.22.(本小题满分12分)已知椭圆2222:1(0)x y M a b a b+=>>的左焦点为1(1,0)F -,过点1F 的直线l 交椭圆于A B 、两点,O 为坐标原点.(Ⅰ)若l 的斜率为1,P 为AB 的中点,且OP 的斜率为34-,求椭圆M 的方程;(Ⅱ)连结AO 并延长,交椭圆于点C ,若椭圆的长半轴长a 是大于1的给定常数,求ABC ∆的面积的最大值()S a .高二联考数学试题(理科) 参考答案及评分标准二、填空题13. 01 14. 2- 15. 10 16.3 三、解答题17. 对于命题P :由(3)(4)P P ξξ=>=知,3324455(1)(1)C p p C p p ->-且(0,1)p ∈,得2(0,)3p ∈. ……2分对于命题Q :由3(2)032p p p p->⎧⎨>-⎩得1(,2)2p ∈. ……4分P Q ∧为假命题,P Q ∨为真命题,则,P Q 一真一假, ……5分若P 真Q 假,则2(0,)3p ∈且1(,][2,)2p ∈-∞+∞,得1(0,]2p ∈. ……7分若Q 真P 假,则1(,2)2p ∈且2(,0][,)3p ∈-∞+∞,得2[,2)3p ∈. ……9分综上可知,满足条件的实数p 的取值范围是1(0,]22[,2)3. ……10分18.(Ⅰ)由22212b ac -=及正弦定理得2211sin sin 22B C -=,∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos2sin 22sin cos B C C C -==,由sin 0C 解得tan 2C =; ……6分(Ⅱ)由tan 2C =,(0,)C π∈得25sin 5C =,5cos 5C =, 又∵sin sin()sin()4B A C C π=+=+,∴310sin 10B =,由正弦定理得223c b =,又∵4A π=,1sin 32bc A =,∴62bc =,故3b =. ……12分19.(Ⅰ)由题意得,解得,所以.……6分 (Ⅱ),……8分则==……12分20.(Ⅰ)1(123567)46n =+++++= 16s =(60+55+53+46+45+41)50= ………1分 61()()(3)10(2)5(1)31(4)2(5)3(9)84iii n n s s =--=-⨯+-⨯+-⨯+⨯-+⨯-+⨯-=-∑622222221()(3)(2)(1)12328ii n n =-=-+-+-+++=∑622222221()1053(4)(5)(9)256ii s s =-=+++-+-+-=∑………3分1377.950.99375828256r ∴==≈-=-,2830.9658643256r ==-≈-⨯ ………5分知12r r >,回归方程①更合适,(Ⅱ)由(Ⅰ)84328b -==-,则503462a s bn =-=+⨯= 故所求的线性回归方程为362s n =-+ ………7分结合图形可知当2,3,4n =时,与之相对应56,53,50s = ………8分41(56)(2)164P s P n =====,81(53)(3)162P s P n =====41(50)(4)164P s P n =====……10分s 56 53 50P14 12 14∴()56535053424E s =⨯+⨯+⨯=(kg ) ………12分21.(Ⅰ)如图,连接BD 交AC 于O ∵BC CD =,AC 平分BCD ∠∴AC BD ⊥. ………2分∵平面PAC ⊥底面ABCD ,平面PAC 底面=ABCD AC , ∴BD ⊥平面PAC ∵AP ⊂平面PAC ∴AP BD ⊥. ………4分 (Ⅱ)作PE AC ⊥于E ,则PE ⊥底面ABCD ∴PE BD ⊥ ………5分以O 为坐标原点,,,OB OC EP 的方向分别为,,x y z 轴 的正方向,建立如图所示的空间直角坐标系O xyz -cos13OC CD π==,而4AC = 则3AO AC OC =-=又sin33OD CD π== 故(0,3,0)A -,3,0,0)B ,(0,1,0)C ,(3,0,0)D - ………6分设(0,,)(0)P y z z > 由5AP =22(3)5y z ++= ①而(0,3,)AP y z =+ (3,1,0)BC =-由5cos ,5AP BC <>=35525y += ② 由①②可知及P 投影位置可知1,1y z =-= ∴(0,1,1)P - ………8分∴(3,3,0)AB =,(3,1,1)BP =--,(3,1,0)BC =- 设平面ABP 的法向量为1111(,,)n x y z =由1100n AB n BP ⎧=⎪⎨=⎪⎩即1111133030x y x y z ⎧+=⎪⎨--+=⎪⎩取11y =-得1(3,1,2)n =- ………10分同理可得BCP 的一个法向量为2(3,3,6)n = ………11分∴121212126cos ,42243n n n n n n <>=== 故钝二面角A BP C --的余弦值为4-………12分22.(Ⅰ)设112200(,),(,),(,)A x y B x y P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=-. 由此可得2122121221()1()b x x y y a y y x x +-=-=-+-;………2分因为1202x x x +=,1202y y y +=,0034y x =-,所以2234b a = ………3分 又由左焦点为(1,0)-,故221a b -=,因此224,3a b ==.所以M 的方程为22143x y += ………5分 (Ⅱ)因为椭圆M 的半焦距1c =,所以221a b -=,设1122(,),(,)A x y B x y ,直线l 的方程为1x my =-,由方程组222211x y a b x my ⎧+=⎪⎨⎪=-⎩消去x 得:2222222()2(1)0a b m y b my b a +-+-=,2122222,b m y y a b m ∴+=+22412222222(1)b a b y y a b m a b m--==++,且0∆>恒成立, ………7分 连结OB ,由OA OC =知2ABCAOBS S=,112ABCSOF y y ∴=⋅-=, ………9分t =,则222222222222221(1),1(1)1ABC ab t ab t ab m tt S a b t b t b tt=-≥∴===+-++,①若11b ≥,即1a <≤,则212b t b t+≥=,当且仅当1t b =,即m =时,max ()()ABC S a S ∆== ……… 10分②若101b <<,即a >21()f t b t t=+,则1t ≥时,()f t 在[1,)+∞上单调递增,所以22min [()](1)1f t f b a ==+=,当且仅当1t =,即0m =时,2max 2(1)()()ABC a S a S a∆-==;综上可知:2()2(1),a S a a a a ⎧<≤⎪=⎨->⎪⎩………12分。
2020年高二下学期期中考试数学(理)试卷
数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考试时间120分钟,满分150分.第I 卷(选择题,共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名.准考证号.考场号.座号.考试科目涂写在答题卡上. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合}31|{},06|{2≤≤=<-+=x x N x x x M ,则=N M I ( ) A.]2,1[ B.)2,1[ C.]3,2( D.]3,2[2.已知△ABC 中,“4π=∠A ”是“22sin =A ”的() A.充分不必要条件 B. 必要不充分条件C.充要条件D. 既不充分也不必要条件3.在复平面内,复数i 32i15-+对应的点位于( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+002052x y x y x ,则目标函数y x z 32+=的最大值为( )A.10B. 9C.8D. 4 5.已知是等差数列的前项和,若,,则=6S ( )A.40B.80C.36D.576.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从口4出来,那么你取胜的概率为()A.325 B. 61 C. 165D.以上都不对 7.己知抛物线x y 42=的焦点为F ,准线为l .若l 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于点A 和点B ,且||32||OF AB =(O 为原点),则双曲线的离心率为( )A.3B. 2C. 2D. 58.设随机变量)9,1(~N X ,且)1(0(-≥=≤a X P X P ),则实数a 的值为( ) A.2 B. 3 C. 4 D. 59.已知函数()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有()()2112120x f x x f x x x -<-,记()33f a =,()1b f =--,()22f c -=-,则( )A .a c b << B. a b c << C. c b a << D. b c a<<10.在等比数列{}n a 中,若2534a a =-,234594a a a a +++=,则23451111a a a a +++= ( )A.1B. 34-C. 3-D. 1311.已知12,F F 为椭圆()2222:10x y C a b a b+=>>的左右焦点,若椭圆C 上存在点P ,使得线段1PF 的中垂线恰好经过焦点2F ,则椭圆C 离心率的取值范围是( )A . 1,13⎡⎫⎪⎢⎣⎭B .12,32⎡⎤⎢⎥⎣⎦C .2,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤⎥⎝⎦12.已知函数2ln 2,0()3,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-对称的点在21y kx =-的图像上,则实数的取值范围是( )A.)83,41(B. )21,41(C. )21,61(D. )1,41( 第II 卷(非选择题,共90分)注意事项:1.答题前将密封线内的项目及座号填写清楚;2.考生做答时,用黑色签字笔将答案答在答题卷上,答在试题卷上的答案无效. 二.填空题(本大题共4小题,每小题5分,共20分13.已知函数x x x f 2ln )(+=,则不等式2)3(2<-x f 的解集为_______.14.已知1x >-,则函数()()521x x y x ++=+的最小值为________.15.已知a R ∈,命题[]:1,2P x ∀∈,30x a -≥.命题2:,220q x R x ax a ∃∈++-=,若命题p q ∧ 为真命题,则实数a 的取值范围是________________. 16.设函数)(),(x g x f 分别是定义在上的奇函数和偶函数,且xx g x f 2)()(=+,若对]2,21[∈x ,不等式0)2()(≥+x g x af 恒成立,则实数a 的取值范围是__________.三.解答题(本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤) 17.已知,在AB C ∆中,a 、b 、c 分别为角A 、B 、C 的对边,且A b B a cos 3sin =. (1)求角A 的大小;(2)设AB C ∆的面积为33,求a 的取值范围.18.如图与都是边长为的正三角形,平面平面,平面,.(1)求点到平面的距离; (2)求平面与平面所成二面角的正弦值.19.已知椭圆)0(1:2222>>=+b a by a x C 的左.右焦点分别为32||,,2121=F F F F ,直线l 与椭圆C 交于B A ,两点,且4||||21=+AF AF (1)求椭圆C 的方程;(2)若B A ,两点关于原点O 的对称点分别为B A '',,且ο90=∠AOB ,判断四边形B A AB ''是否存在内切的定圆?若存在,请求出该内切圆的方程;若不存在,请说明理由.20.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg)进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植编号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 吸收量(mg)683895662775 10 6788469株的存活”与“制剂吸收足量”有关?吸收足量吸收不足量合计 植株存活 1 植株死亡 合计20(2) ①若在该样本“吸收不足量”的植株中随机抽取3株,记ξ为“植株死亡”的数量,求ξ得分布列和期望ξE ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求ηD .2()0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828P K k k≥参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++21.已知函数x x a ax x f ln )2()(2--+=.(1)若函数)(x f 在1=x 时取得极值,求实数a 的值; (2)当10<<a 时,求)(x f 零点的个数.选做题:22,23两题中选择一道进行作答,写出必要的解答过程22.在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ty t x 442(其中为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,圆2C 的极坐标方程为015sin 82=+-θρρ.(1)求曲线1C 的方程普通方程和2C 的直角坐标方程;(2)过圆2C 的圆心2C ,倾斜角为4π的直线l 与曲线1C 交于B A ,两点,则||||22BC A C +的值.23.已知|12||1|)(--+=x x x f . (1)求不等式0)(>x f 的解集;(2)若R x ∈,不等式32)(-+≤a x x f 恒成立,求实数a 的取值范围.高二数学(理科)试卷参考答案一.选择题1 2 3 4 5 6 7 8 9 10 11 12 BADBDCCBACAB二.填空题13. )2,3()3,2(Y -- 14. 9 15. 12=-≤a a 或 16. [2,)+∞-2 三.解答题:17.解:(1)sin =3cos a B b A .由正弦定理可得:sin sin =3sin cos A B B A , 又sin 0B ≠,可得:tan 3A =,又(0,)A π∈,所以3A π=.........6分(2)因为3A π=,ABC ∆的面积为1333sin 2bc A bc ==,解得12bc =......8分 由余弦定理可得:22222cos 223a b c bc A b c bc bc bc bc =+-=+-≥-≥=, 当且仅当23b c ==时等号成立.综上,边a 的取值范围为[23,)+∞............12分 18.取CD 中点O ,连OM OB ,,则CD OM CD OB ⊥⊥,, 又平面⊥MCD 平面BCD ,则⊥MO 平面BCD ,........1分 以O 为原点,直线OM BO OC ,,为轴,轴,轴,建立空间直角坐标系如图,3==OM OB ,则各点坐标分别为)0,0,0(O ,)0,0,1(C ,)3,0,0(M ,)0,3,0(-B ,)32,3,0(-A ,2分(1)设),,(z y x n =是平面MBC 的法向量,则)3,3,0(),0,3,1(==BM BC , 由BC n ⊥得03=+y x ;由BM n ⊥得033=+z y ,..........4分 取)1,1,3(--=n ,则距离5152||==n n BA d ..............6分 (2))32,3,1(),3,0,1(--=-=CA CM ,,设平面的法向量为),,(1111z y x n =,由n ⊥1得0311=+-z x ;由n ⊥1得0323111=+--z y x ,......9分 取)1,1,3(1=n ,又平面BCD 的法向量为)1,0,0(=n , 则51,cos 111=>=<n ,.....11分 设所求二面角为θ,则552cos 1sin 2=-=θθ......12分 19. (1)因为32||21=F F ,所以3c =因为直线l 与椭圆C 交于,两点,且12||4||AF AF =-,所以12||||4AF AF +=,所以24a =,解得2a =,所以2221b a c =-=,所以椭圆的方程为1422=+y x ......4分(2)①当直线l 的斜率k 存在时,设1122:,(,),(,)l y kx m A x y B x y =+由2214y kx mx y =+⎧⎪⎨+=⎪⎩ 得222(41)8440k x kmx m +++-=,222222644(41)(44)16(41)k m k m k m ∆=-+-=+-,.....6分所以12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,,因为ο90=∠AOB ,所以OB OA ⊥,0=⋅,即22222222212121212222448544(1)()(1)0414141m k m m k x x y y k x x km x x m k m k k k ---+=++++=+-+==+++,.....8分所以22445k m +=,所以原点O 到直线l 的距离2||2551m d k ==+..........9分 根据椭圆的对称性,同理可证,原点O 到达,,BA AB A B ''''的距离都为255,所以四边形存在内切的定圆,且该定圆的方程为2245x y +=......10分 ②当直线l 的斜率不存在时,设直线l 的方程为x n =,不妨设,A B 分别为直线l 与椭圆C 的上.下交点,则22(4)(4)(,),(,)22n n A n B n ---,由,得,22404n n --=,解得245n =, 所以此时原点到直线的距离为255.根据椭圆的对称性,同理可证,原点O 到达,,BA AB A B ''''的距离都为255,所以四边形存在内切的定圆,且该定圆的方程为2245x y +=. .综上可知,四边形存在内切的定圆,且该定圆的方程为2245x y +=......12分 20.(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计15520635.6934.5515713)13412(2022<≈⨯⨯⨯⨯-⨯=K所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关.………6分①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3. 其中53)2(3524===C C P ξ, 52)3(3534===C C P ξ………………8分ξ的分布列为:所以55352=⨯+⨯=ξE .………10分②“植株存活”且“制剂吸收足量”的概率为532012==p 332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯= ………………12分21.(1))(x f 定义域为)0(∞+,,xax x x x a ax x f )1)(12(1)2(2)(-+=--+=', 由已知,得0)1(='f ,解得1=a ,.....2分 当1=a 时,xx x x f )1)(12()(-+=',所以,100)(<<⇔<'x x f ,,10)(>⇔>'x x f ,所以)(x f 减区间为)10(,,增区间为)1(∞+,,.....4分所以函数)(x f 在1=x 时取得极小值,其极小值为0)1(=f ,符合题意,所以1=a ......5分(2)令0)1)(12()(=-+='x ax x x f ,由,10<<a ,得,11>=ax .....6分所以a x x f 100)(<<⇔<',a x x f 10)(>⇔>',所以)(x f 减区间为)10(a ,,增区间为)1(∞+,a ,所以函数)(x f 在a x 1=时取得极小值,其极小值为aa a f 11ln )1(-+=,.....8分因为10<<a ,所以0ln <a ,11>a,所以011<-a ,所以011ln )1(<-+=aa a f ,因为021212)1(2>+-=+->+-+=ee a e a e a e a ef , 根据零点存在定理,函数)(x f 在)10(a,上有且仅有一个零点,.....10分因为x x ln >,)3()2(ln )2()(22-+=--+>--+=a ax x x x a ax x x a ax x f ,令03>-+a ax ,得a a x ->3,又因为10<<a ,所以aa a 13>-, 所以当a a x ->3时,0)(>x f ,根据零点存在定理,函数)(x f 在)1(∞+,a上有且仅有一个零点,所以,当10<<a 时,)(x f 有两个零点......12分22.(1)曲线C 1的参数方程为244x t y t⎧=⎨=⎩(其中t 为参数),消去参数可得24y x =......2分 曲线2C 的极坐标方程28sin ρρθ-+15=0变为直角坐标的方程为:22(4)1x y +-=......5分(2) 可知2C 的圆心坐标为(0,4),直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=⋅+==⋅=t t y t t x 2244sin 4224cos ππ(其中为参数),.....7分代入24y x =可知22320t t ++=,.....8分因为1232t t =,可知2212||||||2C A C B t t +=+=4......10分23. (1)⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤--<-=--+=21,2211,31,2|12||1|)(x x x x x x x x x f ......2分当1-<x 时,由02>-x 得2>x ,即解集为Φ,当211≤≤-x 时,由03>x 得0>x ,解集为]210(,, 当21>x 时,由02>-x 得2<x ,解集为)2,21(,综上所述,0)(>x f 的解集为)2,0(......5分最新精品(2)不等式32)(-+≤a x x f 恒成立等价于32)(-≤-a x x f 恒成立,则max ])([32x x f a -≥-,.....6分 令⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤--<-=-=21,22211,21,2)()(x x x x x x x f x g ,.....7分 则1)(max =x g ,即2132≥⇒≥-a a .....9分 所以实数a 的取值范围是),2[+∞......10分。
2020最新高二下册期中联考试题数学(理)word版有答案
高中 二 年 数学(理) 科试卷考试时间:4月25日 完卷时间:120分钟 满分:150分一、选择题(本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.)1、复数2(2)1i z i+=-(i 是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.用反证法证明某命题时,对某结论:“自然数a b c ,,中恰有一个偶数” 正确的假设为( )A .a b c ,,都是奇数B .a b c ,,都是偶数C .a b c ,,中至少有两个偶数D .a b c ,,中至少有两个偶数或都是奇数 3.y =log a (2x 2-1)的导数是( )A.4x (2x 2-1)ln aB.4x 2x 2-1C.1(2x 2-1)ln aD.2x 2-1ln a4.如图,阴影部分的面积是( )A .2 3B .-2 3C .353D .3235.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a 等于( )A .2 B .3 C .4 D .56.函数f (x )的图象如图所示,下列数值的排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)7.平面内有n 条直线,最多可将平面分成)(n f 个区域,则()f n 的表达式为( )A . 1+nB . n 2C .222++n nD . 12++n n8.定义在()0,+∞上的函数()f x 的导函数()f x '满足()12x f x '<,则下列不等式中,一定成立的是( )A . ()()()91411f f f -<<+B . ()()()11491f f f +<<-C . ()()()52411f f f +<<-D . ()()()11452f f f -<<+9.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”: 丙说:“甲、乙两人中有一人是小偷”: 丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A .甲B .乙 C.丙 D .丁 10.已知()f x 是定义在0+∞(,)上的单调函数,且对任意的0x ∈+∞(,),都有()l ]n [1f f x x e -=+,则方程()f x f x e -'=()的解所在的区间是( )A .(0,12)B .(12,1) C .(1,2) D .(2,3)11.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形12.已知,a b R ∈,直线2y ax b π=++与函数()tan f x x =的图象在4x π=-处相切,设2()x g x e bx a =++,若在区间[1,2]上,不等式2()2m g x m ≤≤-恒成立,则实数m 有( ) A.最大值e B.最大值1e + C.最小值e - D.最小值e 二、填空题(本大题共4小题,每小题5分,共20分.)13、i 是虚数单位,若复数(3)()i m i -+ 是纯虚数,则实数m 的值为 . 14.220(3)10,x k dx k +==⎰则15.若三角形内切圆的半径为r ,三边长为a b c ,,,则三角形的面积等于1()2S r a b c =++,根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别是1234S S S S ,,,,则四面体的体积V = .16.若函数()()320h x ax bx cx d a =+++≠图象的对称中心为()()00,M x h x ,记函数()h x 的导函数为()g x ,则有()0'0g x =,设函数()3232f x x x =-+,则12403240332017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋯++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭________. 三、解答题(本大题6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.) 17.已知定义在()1,+∞上的函数()ln 2f x x x =--,求证:()f x 存在唯一的零点,且零点属于()3,4.18. 已知函数()ln af x x x=-,其中a R ∈,且曲线()y f x =在点()1,(1)f 的切线垂直于直线y x =.(Ⅰ)求a 的值; (Ⅱ)求函数()f x 的单调区间和极值.19.已知数列{a n }的通项公式a n =2)12(4-n ,数列{b n }的通项满足b n =(1-a 1)(1-a 2) (1)a n ),试证明:b n =2n +11-2n.20.设f (x )=ln x ,g (x )=f (x )+f ′(x ).(1)求g (x )的单调区间和最小值.(2)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.21.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式210(6)3a y x x =+--,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二学期其中考试试卷高二数学理科第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、计算复数2(ii i-是虚数单位) A .12i + B .12i -+ C .12i -- D .12i -2、函数21y x =-的图象上一点(1,0)处的切线的斜率为A .1B .2C .0D .-13、由①上行的对角线互相垂直;②菱形的对角线互相垂直;③正方形是菱形,写出一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为A .②①③B .③①②C .①②③D .②③① 4、设()ln f x x x =,若0(3)f x '=,则0x = A .2e B .e C .ln 22D .ln 2 5、20cos xdx π⎰等于A .3-B .12C .3D .12- 6、若()sin cos f x x α=-,则()f α'等于A .sin αB .cos αC .sin cos αα+D .2sin α 7、函数()(3)x f x x e =-的单调区间是A .(,2)-∞B .(2,)+∞C .()1,4D .()0,38、设函数()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是9、函数3239(04)y x x x x =--<<有A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值 10、已知函数()f x 在R 上满足()122(2)x f x f x e x -=-++,则()1f '=A .2B .3C .-1D .1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
. 11、核黄素()sin 2f x x =,则函数的导函数为()f x '= 12、复数12,z i z =-=13、在ABC ∆中,不等式1119A B C π++≥成立,在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,猜想在n 边形12n A A A L 中,有 不等式成立。
14、把复数z 的共轭复数记作z ,已知(1)1i z i +=-,则z =15、函数322y x x x =-+-图象在于y 轴交点处的切线与两坐标轴围成三角形的面积为三、解答题:本大题共5小题,满分50分,解答应写出文字说明、证明过程或演算步骤 16、(本小题满分10分) 当实数m 取何值时,在复平面内与复数22(4)(6)z m m m m i =-+--对应点满足下列条件? (1)在第四象限;(2)在直线30x y -+=上。
17、(本小题满分10分) 用数学归纳法证明21122221()n n n N -*++++=-∈L18、(本小题满分10分) 已知函数()323911f x x x x =--+(1)求函数()f x 的递减区间;(2)讨论函数()f x 的极大值或极小值,如有写出极值。
19、(本小题满分10分)设函数()322338f x x ax bx c =+++在1x =及2x =时取得极值。
(1)求,a b 的值;(2)对于任意的[]0,3x ∈,求()f x 的最值。
20、(本小题满分10分)已知2x =是函数()2(23)xf x x ax a e =+--的一个极值点( 2.718)e =L 。
(1)求实数a 的值;(2)求函数()f x 在3[,3]2x ∈的最大值和最小值。
四、附加题(共3道题,共30分) 21、(本小题满分10分) 用数学归纳法证明11125123124n n n +++>+++L 对任意正整数n 成立。
22、(本小题满分10分)已知二次函数()f x 满足:①在1x =时有极值;②图象过点(0,3)-,且在该点处的切线与直线20x y +=平行。
(1)求()f x 的解析式;(2)求函数()2()g x f x =的单调递增区间。
23、(本小题满分10分) 已知函数()1ln(1),01xf x ax x x-=++>+,其中0a >。
(1)若()f x 在1x =处取得极值,求a 的值; (2)求()f x 的单调区间。
高二数学(理)11. 2cos2x 12.5 13. )2(,)2-(n n 111221*∈>≥+++N n n A A A n 且πΛ 14.i15.2三.解答题16解:复数z =(m 2-4m )+(m 2-m -6)i ,对应点的坐标为Z (m 2-4m ,m 2-m -6). (Ⅰ)点Z 在第四象限,则⎩⎨⎧<<-><⎪⎩⎪⎨⎧<-->-3240,060422m m m m m m m 或解得 ∴-2<m <0. …………………………………………………………………………..5分(Ⅱ)点Z 在直线x -y +3=0上,则(m 2-4m )-(m 2-m -6)+3=0,即-3m +9=0,∴m =3. …………………………………………………………10分17. ①当n=1时,左边=1,右边=121-=1,等式成立。
…………………………...2分②假设当n=k 时,等式成立,即21122221k k -+++⋅⋅⋅=-……………………….4分则当n=k+1时,2111222221221k k k k k -++++⋅⋅⋅+=-+=-………………….8分 所以,当n=k+1时等式成立。
由此可知,对任何*n N ∈,等式都成立。
. ………………………………10分18. 解:令0)('=x f ,得11-=x ,31=x ………………………………………2分x 变化时,的符号变化情况及的增减性如下表所示:分 (Ⅰ)由表可得函数的递减区间为)3,1(- ……………………………..8分 (Ⅱ)由表可得,当1-=x 时,函数有极大值16)1(=-f ;当3=x 时,函数有极小值16)3(-=f . ……………………..10分19. 解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值, 则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.…………………………………………………………….4分(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.0)(='xf 解得,2,1==x x ………….6分最小值为c f 8)0(=,最大值为c f 89)3(+=.…………………………………………10分 20解:(I )由2()(23)xf x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--………..4分 ∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………..6分 (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增, 由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ………………….8分2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=-∴()f x 在]3,23[∈x 的最大值是3)3(e f =.…………………………………10分附加题1证明:(1)当1=n 时,左=24252426413121>=++,不等式成立………………………….2分(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++L .……………4分 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++L 111111112313233341k k k k k k k =++++++-+++++++L 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++.………………………………………………………8分所以当1n k =+时不等式也成立.由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++L , …………10分 2解:(Ⅰ)设f (x )=ax 2+bx +c ,则f (x )=2ax +b .由题设可得:⎪⎩⎪⎨⎧-=-='=',3)0(,2)0(,0)1(f f f 即⎪⎩⎪⎨⎧-=-==+.3,2,02c b b a 解得⎪⎩⎪⎨⎧-=-==.3,2,1c b a所以f (x )=x 2-2x -3.……………………………………………………………….4分(II ) g (x )=f (x 2)=x 4-2x 2-3,g (x )=4x 3-4x =4x (x -1)(x +1).列表:由表可得:函数g (x )的单调递增区间为(-1,0),(1,+∞). ………………….10分3解: (Ⅰ)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵()f x 在x=1处取得极值,∴2'(1)0,120,f a a =+-=g即解得 1.a =………4分 (Ⅱ)222'(),(1)(1)ax a f x ax x +-=++ ∵0,0,x a ≥> ∴10.ax +>①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 的单调增区间为(0,).+∞ ②当02a <<时,由22'()0,'()0,a af x x f x x a a-->><<解得由解得 ∴()),a af x a a+∞2-2-的单调减区间为(0,单调增区间为(,).……10分x (-∞,-1) -1 (-1,0) 0 (0,1) 1 (1,+∞) f (x ) - 0 + 0 - 0 + f (x ) ↘ ↗ ↘ ↗。