大数据挖掘技术在石油工程的应用前景展望
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据挖掘技术在石油工程的应用前景展望
发表时间:2019-08-02T10:15:05.827Z 来源:《基层建设》2019年第9期作者:王建宇[导读] 摘要:随着信息技术不断发展,各种新进技术不断被应用于我国石油行业,促进了我国石油行业的快速发展。
中国石油天然气股份有限公司吉林油田分公司红岗采油厂吉林省大安市 131300摘要:随着信息技术不断发展,各种新进技术不断被应用于我国石油行业,促进了我国石油行业的快速发展。大数据挖掘技术应用于石油生产的各个环节,大大提升了石油生产的经济效益。因此本文在此技术上重点研究了大数据挖掘技术在石油工程的应用前景展望,从而更好促进我国石油行业的发展。
关键词:大数据挖掘技术;石油工程;应用前景展望背景
1.油田数据挖掘技术 1.1数据挖掘概述
数据挖掘就是通过一定的技术手段来研究数据背后的规律,学界一般这样表述,数据挖掘技术就是从大量的、不完全的、有噪声的、模糊的、随机的工业生产数据中,通过一定的算法来提出数据背后隐含的、不为人知、同时又具有价值的规律的过程。数据挖掘任务有不同的分类,一般可以概括地分成:分类和回归。对于这种任务对于不同的算法可能二者又有一定的统一性。在进行数据挖掘任务时,一般需要根据具体的任务来进行判断该任务是属于哪一种任务,是回归还是分类,然后根据不同的任务来选择合适的算法,从而使得数据挖掘出来的效果更加优异。在开展数据挖掘时,要意识到数据是数据挖掘的基础,只有通过对于当前数据的学习,得到出来数据潜在的规律,才能更好对于未来的数据执行一定的操作。但是这种预测是一定的概率的,因此通过数据挖掘的出来的结论一般是具有统计规律的。一般来说,数据量越大,算法一定时,所发掘的规律更加准备,在进行预测时也会更加精准。
1.2石油行业的数据挖掘
为了更好促进石油领域的发展,很多数据挖掘技术被广泛应用于石油生产的各个环节。对于不同的环节往往采用的不同的数据模型,一般国内外在把数据挖掘技术应用于石油产业的过程中,主要是通过建立不同的数据挖掘模型,从而提高石油产业的发展。
我国主要将数据挖掘的相关技术应用于石油储层评价、施工方式的选择、生产指标的预测以及石油系统的诊断。对于不同环节的工作往往采用的算法不尽相同,基于传统的机器学习的算法包括了决策树、随机森林、聚类算法以及粗糙集等,基于深度学习的方法可以应用于分类和回归等各个环节。但是深度学习的数据挖掘算法往往需要很大的数据集进行训练,同时还需要人为进行数据集的标定等等,但是基于深度学习的方法往往在准确率方面的性能远超于传统的机器学习。这是因为深度学习的算法能够具有以下的特点,第一学习深度特征、第二自主学习,第三非线性映射、第四较强泛化能力。虽然深度学习的模型在训练和调试方面需要投入大量的人力物力,但是一旦模型被训练好之后就可以一直使用。我国很多研究人员将深度学习的数据挖掘技术应用在稠油开采方式进行筛选,取得了很好的效果,在各项性能方面都超过了传统的数据挖掘算法。
2.基于大数据的数据挖掘技术的特点 2.1大数据技术的特点
相关性是大数据技术很重要的一个特征。在大数据环境下,通过分析数据之间的相关性,往往可以得出来很重要的结论。具体的实现过程就是通过相关分析大量数据来挖掘数据背后存在的显著性的统计因素,然后利用这些统计因素进一步分析得到预期结果。进行相关分析的技术手段有很多,常见的手段有基于最小二乘方法或者利用多回归模型来构建大数据模型,然后进行回归分析得到影响变量的主要因素,这些因素就可以广泛应用于石油勘测的风险预测工程中,这个过程就不用使用基于风险评估的手段进行了。往往通过大数据得出来的影响因素可以直接用在石油生产的各个环节的过程中,可以有效预测出石油生产各个指标的发展趋势。因此,在大数据技术的背景下,大量的数据为石油生产的各个环节的发展奠定了基础,通过相关分析就可以很快得到石油生产各项指标的参数以及风险评估情况,以此制定的石油生产计划更加的科学合理。
2.2云计算为大数据挖掘技术提供了可靠的技术支持
云计算技术使得大数据技术计算实现了可能,同时它扩展了虚拟技术、分布式技术、并行技术等技术框架,为大数据计算提供了灵活性和可扩展性的应用程序服务、资源存储服务等云服务,几乎涵盖了所有的信息资源。包括数据资源、应用程序、计算资源、存储资源和基础设施等都可以从云服务中获得。但是云计算存在着很大的安全隐患,这也是限制它发展的很重要的一个因素,但是云计算提供了很大的快捷性和可靠性。通过云服务,工程审计人员可以构建数据云,从而利用数据云的大量数据进行审计业务的开展与实施。
3.石油工程大数据挖掘应用展望 3.1能够有效提高石油产量
随着信息技术不断发展,石油生产的各个环节已经实现了自动化、智能化和信息化,通过各种智能传感器和物联网技术能够采集油田生产环节的各种数据,这些数据包括了采油与地面工程的生产、作业等各个类型的数据,这些数据能够储存在数据库中,为开展数据挖掘算法研究了提供了第一手数据。另外随着我国石油企业的信息发展,各种信息系统被应用于石油生产的各个环节,尤其以中石油A5系统为代表的。A5系统的推广和油气生产物联网系统A11的实施,为采集石油生产环节的数据做出了重要贡献,然后通过数据挖掘技术来提出数据背后隐藏的规律,从而更好地指导石油生产,能够保障石油企业的经济效率。把数据挖掘技术应用石油生产的环节具有很多优点,能够保障管理人员即使更加预测的指标和风险评估来制定相应的生产技术,同时这些预测的指标往往是基于大数据得出来的统计规律,往往更具有一般性。管理者利用这些指标来指导石油生产,往往可以有效提升油田产量、采收率、效率、效益。
3.1网络化发展
近些年随着石油信息技术的不断发展,行业的基于数据挖掘的物联网技术也得到了很大的提升。监督管理人员在任何地点都可以对于石油生产的各个环节进行有效的监督,这一技术得以实现主要由于网络化技术的发展。另外一方面,随着工业化网络系统的发展,石油生产环节也越来越智能化,智能传感器通过使用数据挖掘技术能够对于系统的相关参数进行合理分析,一般发现异常就通过控制系统向相关管理系统发送错误报告,从而对于故障进行合理的修复。网络化的技术使得人们加强了对于生产环节的控制力度,从而更好促进我国石油行业的发展。