微积分及三角函数公式合集
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan(
A
+
B)
=
tan A + tan B 1− tan A tan B
倍角公式 cot( A
+
B)
=
cot A⋅ cot B cot B + cot
−1 A
2.
tan(
A
−
B)
=
tan A − tan B 1+ tan A tan B
cot( A
−
B)
=
cot A⋅ cot B cot B − cot
∑ (4)u ( x) ⋅ v ( x)(n) = n ( ) ( ) cnku(n−k) x v(k) x k =0
6、基本初等函数的 n 阶导数公式
( ) (1) xn (n) = n!
( ) (2) eax+b (n) = an ⋅ eax+b
( ) (3) ax (n) = ax lnn a
(4)
sin
( ax
+
b ) ( n)
=
an
sin
ax
+
b
+
n⋅
π 2
(5)
cos (ax
+
b)(n)
=
an
cos
ax
+
b
+
n⋅π 2
(6)
1 ax +
b
(n)
=
( −1)n
an ⋅n!
(ax + b)n+1
ln (ax
+ b)(n)
=
( ) −1 n−1
an ⋅(n −1)! (ax + b)n
(arctan
x)′
=
1 1+ x2
⒃ (arc cot
x)′
=
−1 1+ x2
⒄
x ′ =1⒅
x ′= 1 2x
5、高阶导数的运算法则
(1) u ( x) ± v ( x)(n) = u ( x)(n) ± v ( x)(n)
(2) cu ( x)(n) = cu(n) ( x)
(3)u (ax + b)(n) = anu(n) (ax + b)
形如 ,令 , 4
∫ xn arctan xdx u = arctan x dv = xndx
形如 ,令 , 5
∫ xn ln xdx u = ln x dv = xndx
形如 , 令 均可。 6
∫ ∫ eax sin xdx eax cos xdx u = eax , sin x, cos x
常用凑微分公式
(6)lim arc tan x = − π
x→−∞
2
(9) lim ex = 0 x→−∞
(10) lim ex = ∞ x→+∞
(11) lim xx = 1 x→0+
(12)
lim
x→∞
a0 xn b0 xm
+ +
a1xn−1 b1xm−1
+L+ +L +
an bm
=
a0 b0 0
∞
n=m
n<m n>m
(系数不为 0 的情况)
(13)
lim
x → x0
∆y ∆x
=
f
( x0
+
∆ x
)
−
∆x
f (x0 )
2、常用等价无穷小关系( x → 0 )
sin x ~ x 1− cos x ~ 1 x2
2
(1+ x)∂ −1 ~ ∂x
sin3 x ~ (x)3
tan x ~ x
ln (1+ x) ~ x
x→0 x (4)lim n n = 1
n→∞
(7) lim arc cot x = 0 x→∞
(c=常数)
(2) lim (1+
)1
xx
=e
x→0
(5)lim arctan x = π
x→∞
2
(8) lim arc cot x = π x→−∞
(3) lim n a (a > o) = 1 n→∞
9. ∫ 1 f ( x )dx = 2∫ f ( x )d ( x ) x
10. ∫
1 x2
f
(1 )dx x
=
−∫
f
(1 )d (1 ) xx
11. ∫ f (cot x) ⋅ csc2 xdx = ∫ f (cot x)d (cot x)
第二部分:常用微分、导数公式
1、极限 (1) lim sin x = 1
基本积分公式:
1 ∫ kdx = kx + c
第一部分:常用积分公式
∫ 2
xµ dx
=
xµ +1 µ +1
+
c
3
∫
dx x
=
ln
x
+c
∫ 4 axdx = ax + c
ln a
∫ 5 exdx = ex + c
6 ∫ cos xdx = sin x + c
7 ∫ sin xdx = − cos x + c
7、微分公式与微分运算法则
⑴d (c) = 0
( ) ⑵ d xµ = µ xµ−1dx
(7)
⑶ d (sin x) = cos xdx
⑷ d (cos x) = − sin xdx ⑸ d (tan x) = sec2 xdx
⑹ d (cot x) = − csc2 xdx
⑺ d (sec x) = sec x ⋅ tan xdx
∫
f
(ax
)d
(ax
)
6. ∫ f (sin x) ⋅ cos xdx = ∫ f (sin x)d (sin x)
7. ∫ f (cos x) ⋅sin xdx = −∫ f (cos x)d (cos x)
8. ∫ f (tan x) ⋅sec2 xdx = ∫ f (tan x)d (tan x)
4、基本导数公式
⑴ (c)′ = 0
⑵ xµ = µ xµ−1
u v
′
=
u′v − uv′ v2
⑶ (sin x)′ = cos x
⑷ (cos x)′ = − sin x ⑸ (tan x)′ = sec2 x
⑹ (cot x)′ = − csc2 x
⑺ (sec x)′ = sec x ⋅ tan x
sin( A + B) = sin Acos B + cos Asin B
sin( A − B) = sin A cos B − cos Asin B
cos( A + B) = cos A cos B − sin Asin B
cos( A − B) = cos Acos B + sin Asin B
14 ∫ sec xdx = ln sec x + tan x + c
15 ∫ csc xdx = ln csc x − cot x + c
∫ 16
a2
1 +
x2
dx
=
1 a
arctan
x a
+
c
∫ 17
x2
1 − a2
dx =
1 ln 2a
x−a x+a
+c
∫ 18
1 dx = arcsin x + c
2
2 tan a
tan a =
2
1− tan2 a
2
sin2 x + cos2 x = 1
sec2 x − ta n2 x = 1
8.倒数关系
tan x ⋅ cot x = 1
9.商数关系
sec x ⋅ cos x = 1
tan x = sin x cos x
cot x = cos x sin x
10.正弦定理: a = b = c = 2R sin A sin B sin C
sin a − sin b = 2 cos a + b ⋅ sin a − b
2
2
cos a − cos b = −2sin a + b ⋅sin a − b
2
2
tan
a
+
tan
b
=
sin cos
(a +b)
a ⋅ cos b
5.积化和差公式
sin
a
sin
b
=
−
1 2
cos
(
a
+
b)
−
cos
(
a
−
b)
⑻ d (csc x) = − csc x ⋅ cot xdx
( ) ⑼ d ex = exdx
( ) ⑽ d ax = ax ln adx
⑾ d (ln x) = 1 dx
x
( ) ⑿ d
log a x
= 1 dx x ln a
⒀ d (arcsin x) = 1 dx ⒁ d (arccos x) = − 1 dx
csc2 x − cot2 x = 1 cs c x ⋅sin x = 1
11.余弦定理: c2 = a2 + b2 − 2ab cosC
12.反三角函数性质: arcsin x = π − arccos x arctgx = π − arcctgx
2
2
a2 − x2
a
∫ 19
1 dx = ln x + x2 ± a2 + c
x2 ± a2
分部积分法公式
形如 ,令 , 1
∫ xneaxdx
u = xn dv = eaxdx
形如 令 , 2
∫ xn sin xdx u = xn dv = sin xdx
形如 令 , 3
∫ xn cos xdx u = xn dv = cos xdx
8
∫
1 cos2
x
dx
=
∫
sec2
xdx
=
tan
x
+
c
9
∫
1 sin 2
x
=
∫
csc2
xdx
=
−
cot
x
+
c
∫ 10
1 1+ x2
dx
=
arctan
x
+
c
∫ 11
1 dx = arcsin x + c
1− x2
12 ∫ tan xdx = − ln cos x + c
13 ∫ cot xdx = ln sin x + c
1− x2
1− x2
⒂
d
(arctan
x)
=
1 1+ x2
dx
8、微分运算法则
⑴ d (u ± v) = du ± dv
⒃
d
(arc cot
x)
=
−
1
1 +x
2
dx
⑵ d (cu) = cdu
⑶ d (uv) = vdu + udv
⑷
d
u v
=
vdu − udv v2
1.和差公式
第三部分:常用三角函数公式
1− cos 1+ cos
A A
=
sin A 1+ cos A
4.和差化积公式
sin a + sin b = 2 sin a + b ⋅ cos a − b
2
2
cos a + cos b = 2 cos a + b ⋅ cos a − b
2
2
cot A = 2
1+ cos 1− cos
A A
=
sin A 1− cos A
+1 A
sin 2 A = 2sin A cos A
cos 2 A = cos2 A − sin2 A = 1− 2sin2 A = 2 cos2 A −1
半角公式 tan
2
A
=
1
2 −
tan tan
A 2A
3.
sin A = 1− cos A
2
2
cos A = 1+ cos A
2
2
tan A = 2
⑻ (csc x)′ = − csc x ⋅ cot x
( ) ⑼ ex ′ = ex
( ) ⑽ ax ′ = ax ln a
⑾ (ln x)′ = 1
x
( ) ⑿
log a x
′=
1 x ln a
⒀ (arcsin x)′ = 1
1− x2
⒁ (arccos x)′ = − 1
1− x2
( ) ( ) ⒂
cos
a
cos
b
=
1 2
cos
(a
+
b)
+
cos
(
a
−
b
)
万能公式 sin
a
cos
b
=
1 2
sin
(a
+
b
)
+
sin
(
a
−
b)
6.
cos
a
sin
b
=
1 2
sin
(a
+
b
)
−
sin
(
a
−
b
)
2 tan a
sin a =
2
1+ tan2 a
2
7.平方关系
1− tan2 a
cos a =
2
1+ tan2 a
arcsin x ~ x ex −1~ x
sec x −1 ~ 1 x2 2
1+ x sin x −1 ~ 1 x2 2
arctan x ~ x ax −1 ~ x ln a
1+ x2 − 1− x2 ~ x2
3、导数的四则运算法则
(u ± v)′ = u′ ± v′
(uv)′ = u′v + uv′
1.
∫
f
( ax
+
b)dx
=
1 a
∫
f
( ax
+
b)d
( ax
+
b)
2.
∫
f
(
xµ
)x µ −1dx
=
1 µ
∫
f
(
xµ
)dБайду номын сангаас
( xµ
)
3.
∫
f
(ln
x)
⋅
1 x
dx
=
∫
f
(ln
x )d
(ln
x)
4. ∫ f (ex )⋅ exdx = ∫ f (ex )d (ex )
5.
∫
f
(ax
)⋅
a x dx
=
1 ln a