离散07-08期末考试题(A卷)
离散07—08期末考试题(B卷)
四川大学期末考试试题(闭卷B)(2007-2008学年第1学期)1.下列命题公式是永真式的是()A.(P∧~P)↔Q B.(~(P→Q)∧Q)→Q C.(P→Q)∨Q D.(P∨P)∧(P→~P)2.命题公式A不存在主合取范式,则A是()A.矛盾式B.可满足式C.永真式D.都不对3.谓词公式(∀x)P(X)→(∃x)P(X)是()A.可满足式B.矛盾式C.无法判别D.永真式4.公式(∀x)(∃y)(P(x,y)∧Q(z))→R(x)中的x ()A.仅是约束变元B.仅是自由变元C.既是约束变元又是自由变元D.既不是约束变元也不是自由变元5.设S={I,Q,R} ,下列命题哪个正确()A.I⊂Q,Q⊂R则I⊂R B.-1∈I,I∈S 则-1∈S C.D.都不正确6.下面的表达哪个不正确()A.{a}⊆{{a}} B.{a}∈{{a}} C.{a}⊆{a,{a}} D.{a}∈{a,{a}}7.若集合A中共有n个元素,那么A上不同二元关系的个数为()A.n2B.2 n2C.2 n2-1 D.都不对8.下列判断正确的是()A.若R,S是自反的,则R-S是自反的B.若R,S是对称的,则R○S是对称的C.若R,S是传递的,则R∩S是传递的D.若R,S是传递的,则R∪S是传递的9.设R,S是非空集合上的等价关系,则R∪S是()A.一定具有自反性,但不一定保持对称性B.一定具有对称性,但不一定保持自反性C.一定具有自反性和对称性D.是等价关系10.在5个元素的集合上可以定义的单射数目为()A.5 B.10 C.60 D.12011.设函数f:X→Y;X,Y是有限集合,f是单射,那么下列关系一定不成立的是()A.|X|=|Y| B.|X|﹥|Y| C.|X|﹤|Y| D.X∈Y12.平面非连通图G,n-m+f 的值为()A.2 B.ω(G)C.ω(G)+1 D.313.若一棵树G(n,n-1)只有两个叶节点,则()不正确A.不包含点度大于等于3的枝点B.节点总度数大于等于4C.最少包含2个节点D.节点总度数=2+2(n-2)14.设10阶简单连通图有32条边,则最少要去掉()条边才能使其成为平面图A.10 B.12 C.32 D.815.下列代数系统,()是群A.〈S1={1,1/2,2,1/3,1/4,4},*:为普通乘法〉B.〈S2={ai | ai∈R,i=1,2,3…n},o:∀ai,aj∈S2 → aioaj=ai 〉C.〈S3={0,1},*:为普通乘法〉D.〈S4={-1,1},+:为普通加法〉二、多项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的五个备选项中有二个至五个是符合题目要求的,请将其代码填写在题后的括号内。
离散数学期末试卷及部分答案 (2)
离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。
离散数学期末复习题(6套)
《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。
离散数学期末考试题及答案
离散数学期末考试题及答案1.选择题(每题3分,共30分)1. 下列命题中,属于复合命题的是:A. 3是一个奇数,且2是一个偶数B. 如果2是一个素数,那么4也是一个素数C. 不是所有奇数都是素数D. 存在一个整数x,使得x>5且x是一个偶数答案:D2. 已知命题p:草地是绿的,命题q:天空是蓝的。
下列表述可以表示p ∧ ¬q 的是:A. 草地是绿的,天空是蓝的B. 草地不是绿的,天空是蓝的C. 草地是绿的,天空不是蓝的D. 草地不是绿的,天空不是蓝的答案:B3. 设命题p表示“这个数是偶数”,q表示“这个数大于10”。
那么“这个数既是偶数又大于10”可以表示为:A. p ∧ qB. p ∨ qC. ¬p ∧ qD. ¬p ∨ q答案:A4. 下列以下列集合的方式描述,其中哪个是空集∅:A. {x | 0 ≤ x ≤ 1}B. {x | x是一个自然数,x > 10}C. {x | x是一个正偶数,x < 2}D. {x | x是一个负整数,x < -1}答案:C5. 设A = {a, b, c},B = {c, d, e},C = {a, c, e}。
则(A ∪ B) ∩ C等于:A. {a, b, c, d, e}B. {a, c, e}C. {c}D. 空集∅答案:B6. 假设U是全集,A、B、C是U的子集。
则(A ∪ B) ∩ C 的补集是:A. A ∩ B ∩ C的补集B. (A ∪ B) ∩ C的补集C. A ∪ (B ∩ C)的补集D. (A ∩ C) ∩ (B ∩ C)的补集答案:D7. 若关系R为集合A到集合B的一种映射,且|A| = 7,|B| = 4,则R包含的有序对数目为:A. 4B. 7C. 11D. 28答案:D8. 设A={1,2,3},B={4,5,6},则从A到B的映射总数为:A. 3B. 9C. 6D. 18答案:C9. 设A={a,b,c,d,e},则集合A的幂集的元素个数是:A. 2B. 5C. 10D. 32答案:D10. 若f:A→B为满射且g:B→C为单射,则(g ∘ f):A→C为:A. 双射B. 满射C. 单射D. 非单射且非满射答案:A2.简答题(每题10分,共20分)1. 请简要解释什么是关系R的自反性、对称性和传递性。
离散考试试题及答案
离散考试试题及答案一、单项选择题(每题2分,共10分)1. 在离散数学中,以下哪个概念不是命题逻辑的一部分?A. 命题B. 谓词C. 函数D. 真值表答案:C2. 集合{1, 2, 3}和{3, 2, 1}是否相等?A. 是B. 否答案:A3. 在图论中,一个连通图至少需要多少个顶点?A. 1B. 2C. 3D. 4答案:B4. 以下哪个选项不是关系的性质?A. 自反性B. 对称性C. 传递性D. 互异性答案:D5. 有限自动机和正则表达式之间的关系是什么?A. 它们是等价的B. 它们是完全不相关的C. 有限自动机比正则表达式更强大D. 正则表达式比有限自动机更强大答案:A二、填空题(每题3分,共15分)1. 如果一个命题的否定为真,则该命题为______。
答案:假2. 在集合论中,空集用符号______表示。
答案:∅3. 如果一个图的任意两个顶点都由一条边连接,则称该图为______图。
答案:完全4. 在关系数据库中,一个表的主键必须满足______和唯一性两个条件。
答案:非空5. 一个有n个状态的确定性有限自动机至少需要______个状态来表示其逆。
答案:2^n三、简答题(每题10分,共20分)1. 请简述归纳推理和演绎推理的区别。
答案:归纳推理是从特殊到一般的推理过程,它通过观察特定的实例来推断一般性的结论。
演绎推理则是从一般到特殊的推理过程,它从已知的前提出发,通过逻辑推理得出具体的结论。
2. 什么是二元关系?请给出一个例子。
答案:二元关系是定义在两个集合之间的一种关系,它将第一个集合中的元素与第二个集合中的元素联系起来。
例如,小于关系是实数集上的一个二元关系,它将每一对实数(x, y)联系起来,当且仅当x小于y。
四、计算题(每题15分,共30分)1. 给定一个函数f: {1, 2, 3} → {a, b},其中f(1) = a,f(2) = b,求f(3)的可能值。
答案:f(3)的可能值为a或b。
《离散数学》期末考试试卷附答案
《离散数学》期末考试试卷附答案一、填空题(每小题3分,共15小题,共45分)1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________;ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=_________________________; A⋃B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1•R2 = ________________________,R2•R1 =____________________________,R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| =_____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。
离散数学期末考试题(附答案和含解析)
一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。
//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。
//备注:二元运算为x*y=max{x,y},x,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。
2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
07-08-2概率统计A期末试卷答案
诚信应考 考出水平 考出风格浙江大学城市学院2007 — 2008 学年第二学期期末考试试卷《 概率统计A 》开课单位:计算分院 ;考试形式:闭卷;考试时间:__2008____年__6__月_28___日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人一.单项选择题(本大题共__10__题,每题3分,共__30 分)1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则事件A 为( D )()A 甲种产品滞销,乙种产品畅销 ()B 甲、乙两种产品均畅销 ()C 甲种产品滞销 ()D 甲种产品滞销或乙种产品畅销2、若两事件A 和B 同时出现的概率0)(=AB P ,则( C )()A A 和B 不相容 ()B AB 是不可能事件 ()C AB 未必是不可能事件 ()D 0)(=A P 或0)(=B P3、设随机变量X 和Y 相互独立,且都服从10-分布:X 0 1p0.40.6则下列结论正确的是( C )Y X A =)( 1)()(==Y X P B 52.0)()(==Y X P C 24.0)()(=≠Y X p D得分Y 0 1 p0.40.6年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线………………………………………………………4、设随机变量X 的概率密度函数⎪⎩⎪⎨⎧≤≤+=其他,020,)(x b ax x f ,且已知X 的分布函数41)1(=F 则有( A )0,21)(==b a A 21,0)(==b a B 21,1)(==b a C 41,41)(==b a D5、设某人练习射击,每次命中率为,p 重复射击n 次,这n 次中的命中次数记为X ,若6.1)(,8)(==X D X E ,则( D ) 2.0,40)(==p n A 32.0,25)(==p n B 4.0,20)(==p n C 8.0,10)(==p n D6、对任意两个随机变量X 和Y ,若)()()(Y E X E XY E =,则( B )X A )(和Y 相互独立 )()()()(Y D X D Y X D B +=+ )()()()(Y D X D XY D C = )(D X 和Y 不独立7、设总体,),(~2σμN X 其中2σ已知,n X X X ,,21为来自该总体的一个样本,则μ的置信度为95.0的置信区间为( A ))(A ⎪⎪⎭⎫ ⎝⎛+-025.0025.0,u n X u n X σσ )(B ⎪⎪⎭⎫ ⎝⎛+-025.0025.0,t n X t n X σσ)(C ⎪⎪⎭⎫ ⎝⎛+-05.005.0,u n X u n X σσ )(D ⎪⎪⎭⎫ ⎝⎛+-05.005.0,t n X t n X σσ8、在假设检验中,显著性水平α指( C ))(A ()α=为假接受00H H P )(B ()α=为假接受11H H P )(C ()α=为真拒绝00H H P )(D ()α=为真拒绝11H H P9、已知X 和Y 的联合分布律为0 1 1 1/3 0 21/31/3则在X 和Y 的下列关系中,正确的是( D )XY)(A 独立,不相关 )(B 独立,相关 )(C 不独立,不相关 )(D 不独立,相关10、设总体X 的数学期望是μ,n X X X ,,21为来自该总体的一个样本,则下列结论正确的是( C ))(A 不能确定 )(B 2X 是 μ的极大似然估计量 )(C 2X 是 μ的无偏估计量 )(D 2X 不是 μ的估计量二、填空题(本大题共__10 _题,每空格3分共___30___分)1、设事件A 和B 互不相容,且31)(=A P ,41)(=B P ,则=)(B A P 7/12 , ()=B A P 4/9 。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。
2007-2008考试试卷及答案
2005级VB期末试题部分(2006 2007 — 2008 学年第二学期《复变函数》课程考试试卷A注意:1、本试卷共 3 页;2、考试时间120分钟3、姓名、学号必须写在指定地方阅卷负责人签名:一、填空题(本题共5小题,每小题3分,满分15分.)1.Ln i=2.=3.若函数2222()(2)f z x axy y i x xy y=+-+-++在复平面内处处解析,则a= ____4.幂级数(1)n nni z∞=+∑的收敛半径为______5.复变函数积分212(1)zdzz-=-⎰=二、选择题(本题共6小题,每小题3分,满分18分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)1.点0z=为函数2sin zz的[ ](A)可去奇点(B)本性奇点(C)一级极点(D)二级极点2.下列命题正确的是[ ](A) 如果()f z在z连续,那么()f z'存在;(B) 如果()f z'存在,那么()f z在z解析;.(C) 如果z是()f z的奇点,那么()f z在z不可导;(D) 如果()f z在区域D内解析且实部为常数,那么()f z在D内是常数.3.关于函数()f z z=的性质下列说法错误的是[ ](A)()f z在整个复平面上都是连续的(B)()f z仅仅在原点可导(C)()f z在原点解析(D)()f z在整个复平面上都不解析4.下列说法正确的是[ ](A) 每一个幂级数在它的收敛圆周上处处收敛;(B) 每一个幂级数的和函数在收敛圆内解析;(C) 幂级数(2)nnnc z∞=-∑在0z=收敛且在3z=发散;(D) 在z连续的函数一定可以在z的邻域内展开成泰勒级数.三峡大学试卷纸教学班号序号学号姓名命题教审题教…………………….………….……试题不要超过密封线………….………………………………2005级VB 期末试题部分(20065. 设221()z f z d z ζζζ=+=-⎰, 则(3)f =[ ](A )0 (B )2i π (C )14i π (D )6i π6. 级数0n n i n∞=∑是[ ](A ) 绝对收敛 (B ) 条件收敛 (C ) 发散 (D ) 无法判断三、试解下列各题(本题满分67分.)1.(本小题20分)计算下列积分:(1) 3()z C e dz z α-⎰ 其中1α≠, C 为正向圆周:1z =(2)2211Cz z dz z -+-⎰, 其中 C 为正向圆周:2=z(3) 22(1)zz e dz z z =-⎰ ,(4) 10sin z zdz ⎰2.(本小题12分)证明:32(,)3u x y y x y =-为调和函数,并求其共轭调和函数),(y x v 和由它们组成的解析函数)(z f ,使0)0(=f .三峡大学 试卷纸 教学班号 序号 学号 姓名命题教师 审题教…………………….………….……试 题 不 要 超 过 密 封2005级VB 期末试题部分(20063.(本小题8分)将函数)2)(1(1--z z 在021z <-<内展成Laurent 级数.4.(本小题15分)计算下列函数在有限奇点处的留数: (1) 212z z z+-(2)241ze z- (3) tan z π5.(本小题12分)判定下列函数在何处可导,在何处解析?(1) w z = (2) 2()f z x iy =- (3)()(cos sin )x f z e y i y =+三峡大学 试卷纸 教学班号 序号 学号 姓名命题教师 审题教…………………….………….……试 题 不 要 超 过 密 封2007 — 2008 学年第 二 学期 《复变函数》课程考试试卷A 参考答案一、填空题 (每小题3分)1.(2)()2k i k Z ππ+∈ 2.cos(2sin(2()k i k k Z ππ+∈3.2a = 4.25.0 二、选择题(每小题3分)1.C 2.D 3.B 4.B 5.A 6.B三、试解下列各题1.(本小题20分)计算下列积分:(1) 3()zC e dz z α-⎰ 其中1α≠, C 为正向圆周:1z = 解: 当1α>时,由Cauchy 积分定理得,原式=0 …………2分 当1α<时,由Cauchy 积分公式得, 原式=2()2!zz i e e i ααππ=''=…………5分 (2)2211Cz z dz z -+-⎰, 其中 C 为正向圆周:2=z解: 方法一: 由Cauchy 积分公式得,原式=122(21)4z i z z i ππ==-+ ………………………………5分 方法二:22(21)1211C C z dz z z z dz z ⎡⎤++⎢⎥-⎣⎦-+=-⎰⎰0442(21)1C C dz i i z dz z ππ+=+==+-⎰⎰ (3) 22(1)zz e dz z z =-⎰ , 解: 分别作两个互不相交互不包含的正向小圆周12,C C ,使1C 只包含奇点0,2C 只包含奇点1, 则122222(1)(1)(1)z z zC C z e e z ze dz dz dz zz z z =-=+--⎰⎰⎰012222(1)zzz z e e ii i z zπππ=='⎛⎫=+=⎪-⎝⎭…………5分 (4)10zsin zdz ⎰解: 函数zsin z 在复平面内解析, 积分与路径无关, 故101(cos sin )cos1sin1sin z z z z zdz =-+=-+⎰ (5)分2.(本小题12分)证明:32(,)3u x y y x y =-为调和函数,并求其共轭调和函数),(y x v 和由它们组成的解析函数)(z f ,使0)0(=f .解:(1)因为 y x u xy xu6622-=∂∂-=∂∂ y yux y yu 6332222=∂∂-=∂∂ 所以 02222=∂∂+∂∂yux u ,即),(y x u 是调和函数。
离散数学期末试题及答案A
学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
离散数学试题及答案
离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。
解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。
则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。
因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。
二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。
解:论域:所有人的集合。
S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。
离散数学考试试题(A卷及答案)
离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。
二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。
解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。
因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。
四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。
解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。
大学离散数学期末考试题库和答案
大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
离散控制期末试题答案
离散控制期末试题答案一、选择题1. 在离散控制系统中,状态转移矩阵的作用是()。
A. 描述系统在不同时刻的状态变化B. 确定系统的稳态行为C. 计算系统的频率响应D. 校正系统的控制策略答案:A2. 若一个离散时间系统的差分方程为y[n] + ay[n-1] = b u[n] + bu[n-1],其中a和b为常数,u[n]为输入,y[n]为输出,则该系统的开环传递函数为()。
A. 1 + ab^(-1)B. 1 + ba^(-1)C. 1 + a/(b^(-1))D. 1 + b/(a^(-1))答案:D3. 在离散PID控制器的设计中,比例(P)、积分(I)和微分(D)环节的作用分别是()。
A. 减小稳态误差、提高系统稳定性、预测未来误差B. 减小稳态误差、预测未来误差、减小振荡C. 提高系统稳定性、减小稳态误差、预测未来误差D. 预测未来误差、提高系统稳定性、减小稳态误差答案:A4. 对于一个离散时间系统,若其单位脉冲响应为h[n],则该系统的频率响应H(e^jω)可以通过()计算得到。
A. 傅里叶变换B. 拉普拉斯变换C. 离散傅里叶变换D. 拉普拉斯逆变换答案:C5. 在离散控制系统的分析和设计中,使用z变换的主要目的是()。
A. 简化微分方程B. 转换为代数方程C. 转换为频率域分析D. 求解线性方程组答案:C二、填空题1. 在离散控制系统中,闭环传递函数的一般形式为________,其中G(z)是系统的开环传递函数,H(z)是反馈环节的传递函数。
答案:H(z) / (1 + G(z)H(z))2. 离散系统的稳定性可以通过________来判定,其中λ是系统特征方程的根。
答案:根的模值3. 离散PID控制器中,积分作用的z变换表达式为________,微分作用的z变换表达式为________。
答案:1/(1-z^(-1));-z^(-1)4. 离散控制系统的稳态误差可以通过________来计算,其中E(s)是误差信号的拉普拉斯变换,G(s)是开环传递函数的拉普拉斯变换。
大学《离散数学》期末考试试卷及答案(1)
大学《离散数学》期末考试试卷及答案(1)一、选择题1. 离散数学的主要研究对象是()。
A. 连续的数学结构B. 有限的数学结构C. 数学的综合应用D. 数学的哲学思考2. 命题逻辑是离散数学的一个重要组成部分,它主要研究()。
A. 命题之间的真假关系B. 变量之间的关系C. 函数之间的关系D. 集合之间的关系3. 集合的基本运算包括()。
A. 并、交、差、补B. 加、减、乘、除C. 包含、相等、不等、自反D. 大于、小于、等于、不等于二、填空题1. 若集合A={m|2m-1>3},则A中的元素为______。
2. 有一个集合A={1,2,3},则集合A的幂集为______。
3. 若命题p为真,命题q为假,则复合命题“p∧q”的真值为______。
三、解答题1. 请写出离散数学中常用的数学符号及其含义。
2. 请解释命题逻辑中的充分必要条件及其符号表示,并给出一个例子。
3. 请定义集合的笛卡尔积,并给出两个集合进行笛卡尔积运算的例子。
四、问答题1. 离散数学在计算机科学中有着重要的应用,请列举三个与计算机科学相关的离散数学应用领域并简要介绍。
2. 请简要解释归纳法在离散数学中的作用,并给出一个使用归纳法证明的例子。
3. 什么是有向图?请给出一个有向图的例子,并解释该图中的关系。
参考答案:一、选择题1. B2. A3. A二、填空题1. A={m|2m-1>3}2. {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}3. 假三、解答题1. 常用数学符号及含义:- ∪:并,表示集合的合并操作。
- ∩:交,表示集合的交集操作。
- ∖:差,表示减去一个集合中的元素。
- ⊆:包含,表示一个集合包含于另一个集合。
- =:相等,表示两个集合具有相同的元素。
2. 充分必要条件是指一个命题的成立与另一个命题的成立互为必要条件,若A是B的充分必要条件,那么当A成立时B一定成立,且当A不成立时B也一定不成立。
南昌大学本科离散试卷及答案1
南昌大学2007~2008学年第一学期期末考试试卷试卷编号:( A )卷课程编号:课程名称:离散数学考试形式:闭卷适用班级:姓名:学号:班级:学院:专业:考试日期:题号一二三四五六七八九十总分累分人签名题分20 80 100得分考生注意事项:1、本试卷共 5 页,请查看试卷中是否有缺页或破损。
如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题4 分,共20 分)得分评阅人1、使得公式p→(q∨r)成真的赋值是_______________________________使得公式p→(q∨r)成假的赋值是:_______________________________2、设个体域为D=⎨1,2,3⎬,试消去公式(∀x)P(x)∨(∃y)Q(y)中量词的等价式_______________________________3、4个元素的集合共有___个不同的划分,并给出三个划分块的划分_______________________________4、设A=⎨1,2⎬,求:A×P(A)= _______________________________5、无向树T有8片树叶,2个3度分枝点,其余的分枝点都是4度结点,问T有___个4度分枝点?二、综合题(每小题10分,共80 分)得分评阅人1、有向图G如图所示。
⑴写出G的邻接矩阵。
(2)求G中长度为3的路的总数,其中有多少条回路。
(3)求G的可达性矩阵。
2、用等价演算证明:p→(q∨r)⇔(p∧⌝q)→r3、求命题公式(⌝p→q)→(p∨⌝q)的主析取范式,并求命题公式的成真赋值4、将下列命题符号化。
并讨论它们的真值(1) 有些实数是有理数。
(2)每个自然数都有比它大的自然数。
5、证明(∀x)(F(x)∨G(x)),(∀x)(G(x)→⌝R (x)),(∀x)R(x)⇒(∀x)F(x)6、设A=⎨1,2,3,4⎬,A上二元关系R定义为:R=⎨<1,2>,<2,1>,<2,3>,<3,4>⎬求R的自反闭包、对称闭包和传递闭包。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学期末考试试题(闭卷)
一、单项选择题(本大题共15小题,每小题1分,共15分)
1、下列公式中,( )不是永真式。
①(P ∧Q )→Q ② P →(P ∨Q )
③(P →Q )↔(~Q →~P ) ④(~P ∨Q )∧(~(~P ∧~Q ))
2、下列谓词公式中是前束范式的是( )
① )()()()(x G x x F x ∃⌝∧∀ ② )()()()(y G y x F x ∀∨∀
③ )),()()()((y x Q x P y x →∃∀ ④ )),()()()((y x Q y x P x ∃→∀
3、对任意集合A 、B 、C ,下列命题中为真的是( )。
① 若A ⊆B 且 B ∈C ,则A ∈C ② 若A ⊆B 且 B ∈C ,则A ⊆C
③ 若A ∈B 且 B ⊆C ,则A ∈C ④ 若A ⊆B 且 B ∈C ,则A ∉C
4、设R 、S 都是集合A 上的二元关系,下列命题中( )不真。
① 若R 、S 都是自反的,则R ∪S 是自反的 ② 若R 、S 都是反自反的,则R ∪S 是反自反的 ③ 若R 、S 都是对称的,则R ∪S 是对称的 ④ 若R 、S 都是传递的,则R ∪S 是传递的
5、设R1、R2都是集合A 上的等价关系,下列关系中是A 上的等价关系的是( )。
① (A ×A )-R1 ② R1∩R2 ③ r (R1-R2) ④ R1-R2
6、设集合A={1,2,3,4},下列A 上的关系构成A 到A 的映射的是( )。
① f1={(2,1),(2,4),(3,4),(4,1)} ② f2={(4,4),(3,1),(1,2),(4,2)}
③ f3={(1,1),(2,1),(1,2),(3,4)} ④ f4={(1,4),(2,1),(3,4),(4,1)}
7、设集合A={1,2,3,4,6,9},则下列子集族中构成A 的一个划分的是( )。
① {{1},{3,4},{9,6}} ② {{1,2,3},{3},{4,9,6}}
③ {{1,2},{3},{4,9,6}} ④ {{1,2},{2,3},{6,9}}
8、下列集合关于数的加法运算封闭的是( )。
① A={-1,1,3} ② B={x|x 是奇数}
③ C={a+b 2|a,b ∈Z} ④ D={x|x 是复数且|x|=1}
9、设Z ,Q ,R 分别是整数集,有理数集,实数集,下列代数系统中,不构成环的是( )。
(其中+,-,×是普通数的加法,减法、乘法)
① (Z ,+,×) ② (Z ,-,×) ③ (Q ,+,×) ④ (R ,+,×)
10、设G 是六阶群,则其元素的阶不能是( )。
① 1 ② 2 ③ 3 ④ 4
11、实数集R 的下列运算不满足交换律的是( )。
① b a =|a-b| ② b a =(a+b)/2 ③ b a =a+2b ④ b a =22b a +
12、下列环中是域的是( )。
(其中S 是全体偶数的集合)
① (Z ,+,×) ② ,,(6+z .) ③ ,,(3+z .) ④ (S ,+,×)
13、设有代数系统) ,(⨯*R ,其中*R 为非零实数,×是普通乘法,则下列映射中( )不是自同态。
① x x f =)( ② 1)(+=x x f ③ 2)(x x f = ④ x x f 1
)(= 14、3,3k 图是( )。
① 欧拉图 ② 哈密顿图 ③ 平面图 ④ 完全图
15、12阶循环群有( )个不同的子群。
① 3 ② 6 ③ 9 ④ 12
二、多项选择题(本大题共5小题,每小题2分,共10分 )在每小题列出的五个备选项中有二个至五个是符合题
目要求的,请将其代码填写在题后的括号内。
错选、多选、少选或未选均无分。
1、 下列语句中,是命题的有( )。
1).美国的首都是纽约。
2).你喜欢日本吗? 3). 我们一定要解放台湾! 4).所有实数都是整数。
5).如果3>2,那么有人不死。
2、 设A ={1,2,3},则右图所示A 上的关系具有( )。
1).自反性 2).反自反性
3).对称性 4).反对称性 5).传递性 3、 右图所示的图一定不是( )。
1).平面图
2).二部图 3).欧拉图 4).哈密而顿图 5).树
4、 设G 是一个35阶群,a ∈G ,则a 的周期不可能是( )。
1).1 2).2 3).3 4).4 5).5
5、 下列哈斯图中,是格的有( )。
1).
2). 3). 5).
三、简答题(本大题共4小题,每小题2.5分,共10分)
1、试述命题的定义。
2、设f 是一个函数,试述f 是单射的定义。
3、试述一个简单有向图G 的邻接矩阵的定义。
4、试述两个代数系统>*< ,A 和>< ,B 是同构的定
四、演算题(本大题共5小题,每小题7分,共35分 )
1、求公式)())((P Q P R P ↔∧∨→ 的主合取范式及主析取范式。
2、设集合A ={a ,b ,c},A 上的关系
1R ={<a ,a>,<a ,b>,<a ,c>,<b ,b>,<b ,c>,<c ,c>},
2R ={<a ,a>,<a ,b>,<b ,a>,<b ,b>, <c ,c>}。
计算)(),(),(,,,111112121R t R s R r R R R R R - 。
3、设简单有向图G 有21条边,三个4度结点,其余结点的度都是3,计算G 有多少个结点?(写出求解过程)
4、剩余类加群 >⊕<,6Z 有子群>⊕<],4[],2[],0[,计算该子群的所有左、右陪集。
5、 下图为一连通赋权图,计算该图的最小生成树和权值。
五、推理与证明题(本大题共3小题,每题10分,共30分 )
1、试符号化下列语句,并用演绎法证明其论证是否正确?
每个自然数不是奇数就是偶数;一个自然数当且仅当它能被2整除时,它才是偶数;8是自然数且8
能被2整除。
因此8不是奇数。
2、设B 是数的集合,A =B ×B ,定义A 上的关系R 如下: (u,v)R(x,y)当且仅当u-v=x-y ,证明R 是A 上的一
个等价关系。
3、给定代数系统>*< , ,I ,且*和 定义为:b a b a b a b a b a ⨯-+=-+=* ;1。
其中,I 是整数集合,⨯-+,,分别是通常数的加法、减法和乘法,I b a ∈,,
证明>*< , ,I 是具有幺元的可交换环。