立体几何解题技巧及高考类型题老师专用

立体几何解题技巧及高考类型题老师专用
立体几何解题技巧及高考类型题老师专用

立体几何解题技巧及高考类型题—老师专用

【命题分析】高考中立体几何命题特点:

1.线面位置关系突出平行和垂直,将侧重于垂直关系.

2.空间“角”与“距离”的计算常在解答题中综合出现.

3.多面体及简单多面体的概念、性质多在选择题,填空题出现.

4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 【高考考查的重难点】空间距离和角 “六个距离”:

1、两点间距离 2

212

212

21)()()(d z z y y x x -+-+-=;

2、点P 到线l

的距离d =

(Q 是直线l 上任意一点,u 为过点P 的直线l 法向量);

3

、两异面直线的距离d =

(P 、Q 分别是两直线上任意两点,u 为两直线公共法向量); 4、点P 到平面的距离

d =

(Q 是平面上任意一点,u 为平面法向量);

5

、直线与平面的距离d =(P 为直线上的任意一点、Q 为平面上任意一点,u 为平面法向

量);

6、平行平面间的距离u

u PQ *d =

(P 、Q 分别是两平面上任意两点,u 为两平面公共法向量 );

“三个角度”:

1、异面直线角[0,2π

],cos θ=2

121v v v v ;【辨】直线倾斜角范围[0,π);

2、线面角 [0,

] ,sin θ=n

v vn n v =,cos 或者解三角形; 3、二面角 [0,π],cos 2

121n n n n ±

=θ 或者找垂直线,解三角形。

不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,证是本专题的一大特色.

求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。 【例题解析】

考点1 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.

典型例题1、(福建卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.

(Ⅰ)求证:1AB ⊥平面1A BD ;

(Ⅱ)求二面角1A A D B --的大小;

(Ⅲ)求点C 到平面1A BD 的距离.

A

B

C

D A 1

C 1

B 1

考查目的:本小题主要考查直线与平面的位置关系,二面角的大小, 点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)取BC 中点O ,连结AO .

ABC Q △为正三角形,AO BC ∴⊥.

Q 正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

G

AO ∴⊥平面11BCC B .

连结1B O ,在正方形11BB C C 中,O D ,分别为

1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.

在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .

(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面

1A BD .

1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.

在1AA D △中,由等面积法可求得455

AF =,

又1122AG AB ==Q , 210sin 4

455AG AFG AF ∴===∠.

所以二面角1A A D B --的大小为10arcsin 4

(Ⅲ)1A BD △中,1

115226A BD BD A D A B S ===∴=△,,,1BCD S =△.

在正三棱柱中,1A 到平面11BCC B 的距离为3.

A

B

C D

C 1

O

F

设点C 到平面1A BD 的距离为d .

由1

1

A BCD C A BD V V --=,得1

11333

BCD A BD S S d =g g △△,

1322

BCD A BD S d S ∴=

=

△△.

∴点C 到平面1A BD 的距离为22

解法二:(Ⅰ)取BC 中点O ,连结AO .

ABC Q △为正三角形,AO BC ∴⊥.

Q 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,

AD ∴⊥平面11BCC B .

取11B C 中点1O ,以O 为原点,OB uuu r ,1OO u u u u r

,OA uu u r 的方向为x y z ,,轴的正方向建立空间直角坐标系,

则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,, 1(123)AB ∴=-u u u r ,,,(210)BD =-u u u r ,,,1(1

23)BA =-u u u r ,,. 12200AB BD =-++=u u u r u u u r Q g ,111430AB BA =-+-=u u u r u u u r

g , 1AB BD ∴u u u r u u u r ⊥,.11AB BA u u u r u u u r

1AB ∴⊥平面1A BD .

(Ⅱ)设平面1A AD 的法向量为()x y z =,,n . (113)AD =--u u u r ,,,1(020)AA =u u u r ,,. AD u u u r Q ⊥n ,1AA u u u r ⊥n ,

令1z =得(301)=-,,n 为平面1A AD 的一个法向量.

x z

A

B

C D

O

F

y

由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴u u u r

为平面1A BD 的法向量.

cos

1

336222AB AB AB -->===-u u u r

u u u r g u u u r g g n n . ∴二面角1A A D B --的大小为6arccos .

(Ⅲ)由(Ⅱ),1AB u u u r

为平面1A BD 法向量, 1(200)(123)BC AB =-=-u u u r u u u r

Q ,,,,,.

∴点C 到平面1A BD 的距离1

1

2222BC AB d AB -===u u u r u u u r

g u u u r .

小结:本例(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这种方法. 考点2 异面直线的距离

考查异目主面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离.

典型例题2、 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.

思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,

EF ∴为BCD ?的中位线,EF ∴∥CD CD ∴,∥面SEF ,

CD ∴到平面SEF 的距离即为两异面直线间的距离.

又Θ线面之间的距离可转化为线CD 上一点C 到平面SEF

的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,

在Rt SCE ?中,3222=+=CE SC SE

在Rt SCF ?中,30224422=++=+=CF SC SF

又3,6=∴=

?SEF S EF Θ

由于h S V V SEF CEF S SEF C ??=

=?--3

1

,即332331=

??h ,解得332=h 故CD 与SE 间的距离为

3

3

2. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离

偶尔会再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.

典型例题3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解:解法一 BD Θ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求

点O 平面11D GB 的距离,

B

A

C

D

O

G

H

1111C A D B ⊥Θ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,

又?11D B Θ平面11D GB

∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,

作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1?中,2222

1

2111=??=??=

?AO O O S OG O . 又3

6

2,23212111=∴=??=??=

?OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于

3

6

2. 解法二 BD Θ∥平面11D GB ,

BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.

设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则

由于632221,111111=??=

=?--D GB GBB D D GB B S V V 3

4

222213111=????=-GBB D V , ,3

6

26

4=

=

∴h 即BD 到平面11D GB 的距离等于

3

6

2. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离.

考点4 异面直线所成的角【重难点】

此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.

(1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识(余弦定理、正弦定理、射线定理(12cos cos cos θθθ=))求解,整

个求解过程可概括为:一找二证三求。

(2)求异面直线所成角的步骤:

①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置斩点。

②求相交直线所成的角,通常是在相应的三角形中进行计算。

③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。

3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

4、利用向量,设而不找,对于规则几何体中求异面直线所成的角也是常用的方法之一。 方法总结:直接平移法、中位线平移、补形平移法、向量法

典型例题 4、 长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的大小。

选题意图,通过该题,让学生进一步理解异面直线所成角的概念,熟练掌握异面直线所成角的求法。

分析:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。

解法一:如图①连结B 1C 交BC 1于0,过0点作OE ∥DB 1,则∠BOE 为所求的异面直线DB 1与

BC 1所成的角。连结EB ,由已知有B 1BC 1=5,BE=

2,∴cos ∠BOE=170

∴∠

BOE=cos

arc 734

170

解法二:如图②,连DB 、AC 交于O 点,过O 点作OE ∥DB 1,过E 点作EF ∥C 1B ,则∠OEF 或其补角就是两异面直线所成的角,过O 点作OM ∥DC ,连结MF 、OF 。则OF=

73

,cos ∠OEF=734

,∴异面直线B 1D 与BC 1所成的角为cos arc 734。

解法三:如图③,连结D 1B 交DB 1于O ,连结D 1A ,则四边形ABC 1D 1为平行四边形。在平行四边

形ABC 1D 1中过点O 作EF ∥BC 1交AB 、D 1C 1于E 、F ,则∠DOF 或其补角就是异面直线DB 1与BC 1所成的角。在△ADF 中DF=

352,cos ∠DOF=734170,∴∠DOF=cos arc 734

170

。 解法四:如图④,过B 1点作BE ∥BC 1交CB 的延长线于E 点。

则∠DB 1E 就是异面直线DB 1与BC 1所成角,连结DE 交AB 于M ,DE=2DM=35,

cos ∠DB 1E=

734170 ∴∠DB 1E=cos arc 734170

。 解法五:如图⑤,在平面D 1DBB 1中过B 点作BE ∥DB 1交D 1B 1的延长线于E ,则∠C 1BE 就是异面直线DB 1与BC 1所成的角,连结C 1E ,在△B 1C 1E 中,∠C 1B 1E=135°,C 1E=35,

cos ∠C 1BE=

734170,∴∠C 1BE=cos arc 734

170

。 分析:在已知图形外补作一个相同的几何体,以例于找出平行线。

解法六:如图⑥,以四边形ABCD 为上底补接一个高为4的长方体ABCD-A 2B 2C 2D 2,连结D 2B ,则DB 1∥D 2B ,∴∠C 1BD 2或其补角就是异面直线DB 1与BC 1所成的角,连C 1D 2,则△C 1D 2C 2为Rt △,cos ∠C 1BD 2=-

734,

∴异面直线DB 1与BC 1所成的角是cos

arc 734

170

。 解法七:如图⑦,连结DB 、DC 1,设异面直线DB 1与BC 1所成的角为θ,1111

DB cos BC DB BC θ?=

而11DB BC ?=1DB ?(111BB B C +)=11DB BB ?+111DB B C ?

=1DB 1BB cos 〈1DB ,1BB 〉+1DB 11B C cos 〈1DB ,11B C 〉 ∵ BB 1∥DD 1

∴ 〈1DB ,1BB 〉=〈1DD ,1DB 〉=∠D 1DB 1

cos ∠D 1DB 1=

34

〈1DB ,11B C 〉=180°-∠DB 1C 1

∵cos ∠DB 1C 1=

34

∴cos 〈1DB ,11B C 〉=-cos ∠DB 1C 1=-

34

11DB BC ?=7

∴ cos θ=

734170,734

arccos 170

θ= 解法八:如图⑧,建立如图所示的空间直角坐标系,

则B (3,3,0),B 1(3,3,4),D (0,0,0),C 1(3,0,4)。 设1DB 和1BC 的夹角为θ,

则1111

DB cos BC DB BC θ?=

=

170

∴异面直线1DB 与1BC

所成的角为。 总之,异面直线所成的角是立体几何中的重要概念,也是我们学习的第一个空间角,它的求法体现了立体几何将空间图形问题化归为平面图形问题的基本思想。

典型例题5、长方体ABCD -A1B1C1D1中,AB=AA1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。 解法1:平移法

设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中

,所以异面直线所成的角为

解法2:补形法

在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,,

所以异面直线A 1C 1与BD 1所成的角为

图2

解法3:利用公式

设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是、1、2,则

(注:在

上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成

55arccos

OE C 1=∠所以111BD C A 与55

arccos

5BE =5224E D 221=+=55

arccos

2

1cos cos cos θθθ?=θθθ2

1cos cos cos θθθ?=

的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为,

所以

所以异面直线A 1C 1与BD 1所成的角为

解法4:向量几何法:

为空间一组基向量

所以异面直线A 1C 1与BD 1所成的角为

解法5:向量代数法:

以D 为坐标原点,DC 、DA 、DD 1分别为x 、y 、z 轴,建立空间直角坐标系,则A (0,1,0)、C (2,0,0),B (2,1,0)、D 1(0,0,2),

所以异面直线A 1C 1与BD 1所成的角为

解法6:利用公式

定理:四面体A —BCD 两相对棱AC 、BD 间的夹角必满足

图6

解:连结BC 1、A 1B 在四面体

中,异面直线A 1C 1与BD 1所成的角是,易求得

图7

θAOD

cos BD D cos cos 1∠?∠=θ5

5

BD BD BD D cos 11==

∠55

arccos

=θ55arccos

|b ||a |b a cos ?=

θ→→→1AA AD AB 、、55arccos

)

0,1,2(AC ),2,1,2(BD 1-=→

--=→55arccos

θ1

11D C A B -θ3BD ,22B A ,5BC C A 11111====

由定理得:

所以

小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:??

? ??2,0π.

考点5 直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算.

典型例题6、(全国卷Ⅰ理)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠,2AB =,22BC =,3SA SB ==.

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小.

考查目的:本小题主要考查直线与直线,直线与平面的位置关系,

二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .

因为SA SB =,所以AO BO =,

又45ABC =o

∠,故AOB △为等腰直角三角形,AO BO ⊥,

由三垂线定理,得SA BC ⊥.

1

112

1

1212111BD C A 2C D B A BC D A cos ?--+=

θ55arccos

=θD

B

C

A

S

D

B

C

A

S

(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =

,2AO =,得

1SO =,11SD =.

SAB △的面积2

21112

22S AB SA AB ?

?=-= ???

g . 连结DB ,得DAB △的面积21

sin13522

S AB AD =

=o g 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得

1211

33

h S SO S =g g ,解得2h =. 设SD 与平面SAB 所成角为α,则222sin 11h SD α===.

所以,直线SD 与平面SBC 所成的我为22arcsin .

解法二:

(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面

ABCD .

因为SA SB =,所以AO BO =.

又45ABC =o ∠,AOB △为等腰直角三角形,AO OB ⊥.

如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,

(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-u u r

,,, (0220)CB =u u u r

,,,0SA CB =u u r u u u r g

,所以SA BC ⊥. D

B

C

A

S

(Ⅱ)取AB 中点E ,0E ???

??

连结SE ,取SE 中点G ,连结OG ,12G ???

??

,.

1

2OG ?=????,,1SE ?=??

??

,(AB =.

0SE OG =g ,0AB OG =g ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.

所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.

D ,()DS =.

cos OG DS OG DS

α=

=

g g sin β=

所以,直线SD 与平面SAB 所成的角为

小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角【重点】

此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点

①从一条直线出发的两个半平面所成的图形叫做二面角,记作:二面角α—l —β。

②以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

③范围: [0,]θπ∈

2、二面角出现的状态形式有哪些? 竖立式 横卧式

2、二面角的类型及基本方法 (1)四种常规几何作求法

定义法 垂面法; 三垂线法; 射影面积法=S 射影多边形/S 多边形 (2)向量法:

①设m u r 和n r

分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量 m u r 、n r

的夹角为ω,如图:

βα,的法向量,二面角βα--l 的大小为θ,向量 m u r 、n

r

θω= βα,的法向量,则平面α与平面β所成的二面角θ

的计算公式是:=θ 时)当二面角为锐角、直角(或-=πθ当二面角为钝角时)(,其中锐角、钝角根据图形确定。

1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s 投影面=s 被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。尤其对无棱问题

5异面直线距离法:

EF 2=m 2+n 2+d 2-2mn θcos

典型例题7、若p 是ABC ?所在平面外一点, 而PBC ?和ABC ?都是边长为2的正三角形, PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法

解:取BC 的中点E ,连接AE 、PE

Θ AC=AB ,PB=PC

∴ AE ⊥ BC ,PE ⊥BC

∴PEA ∠为二面角P-BC-A 的平面角

在PAE ?中AE=PE=3,PA=6

∴PEA ∠=900

∴二面角P-BC-A 的平面角为900。

典型例题8、已知ABC ?是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。 [思维]二面角的大小是由二面角的平面角来度量的,本题可利用三垂线定理(逆)来作平面角,还可以用射影面积公式或异面直线上两点间距离公式求二面角的平面角。

P

C

B

A

E

解1:(三垂线定理法)

取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF Θ⊥PA 平面ABC ,PA ?平面PAC

∴平面PAC ⊥平面ABC, 平面PAC I 平面ABC=AC ∴BE ⊥平面PAC

由三垂线定理知BF ⊥PC

∴BFE ∠为二面角A-PC-B 的平面角

设PA=1,E 为AC 的中点,BE=

23,EF=4

2 ∴tan BFE ∠=

6=EF

BE

∴BFE ∠=arctan 6

解2:(三垂线定理法)

取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FM

ΘAB=AC,PB=PC ∴

AE ⊥BC,PE ⊥BC

∴ BC ⊥平面PAE,BC ?平面PBC ∴ 平面PAE ⊥平面PBC,

平面PAE I 平面PBC=PE 由三垂线定理知AM ⊥PC

∴FMA ∠为二面角A-PC-B 的平面角

P

C

B

A

E F M

E

P

C

B

A

F

设PA=1,AM=

22,AF=721

.=PE AE AP

∴sin FMA ∠=

7

42

=AM AF ∴FMA ∠=argsin

7

42

解3:(投影法) 过B 作BE ⊥AC 于E,连结PE Θ⊥PA 平面ABC ,PA ?平面PAC

∴平面PAC ⊥平面ABC, 平面PAC I 平面ABC=AC ∴BE ⊥平面PAC

∴PEC ?是PBC ?在平面PAC 上的射影

设PA=1,则PB=PC=2,AB=1

4

1

=

?PEC S ,47=

?PBC S

由射影面积公式得,7

7

cos

arg ,77=∴==

??θθPBC PEC S S COS , 解4:(异面直线距离法)

过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E

设PA=1,则AD=

2

2

,PB=PC=2 P

C

B

A

E

E

P

C

B

A

D

图3

∴BE=

PC S PBC 2

1?=414,CE=42,DE=42

由异面直线两点间距离公式得

AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =

7

7cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。

典型例题9、二面角βα--EF 的大小为ο

120,A 是它内部的一点,AB ⊥α,AC ⊥β,B 、C 为垂足。

(1) 求证:平面ABC ⊥α,平面ABC ⊥β

(2) 当AB=4cm,AC=6cm 时求BC 的长及A 到EF 的距离。 分析:本题采用作棱的垂面法找二面角的平面角

解:(1)设过 ABC 的平面交平面α于BD,交平面β于CD

ΘAB ⊥α,AB ?平面ABC

∴ 平面ABC ⊥α,同理平面ABC ⊥β

(2)ΘAB ⊥α

∴AB ⊥EF

同理AC ⊥EF

∴EF ⊥平面ABDC ∴BD ⊥EF, CD ⊥EF ∴BDC ∠=ο120

图4

A

B

C

D

(完整版)高三数学立体几何历年高考题(2011年-2017年)

高三数学立体几何高考题 1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 2.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π 3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4 7.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8 9(2016年7)如图,某几何体的三视图是三个半径相等的 圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π 3 , 则它的表面积是 (A )17π (B )18π (C )20π (D )28π 10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面, ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为 (A )32 (B )22 (C )33 (D )1 3 11.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。 : `

} (一) 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- < 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0, {n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 - <

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ \ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 . 《

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

数学立体几何解题技巧

数学立体几何解题技巧 数学立体几何解题技巧 1平行、垂直位置关系的论证的策略: (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2空间角的计算方法与技巧: 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 (1)两条异面直线所成的角: ①平移法:②补形法:③向量法: (2)直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。 ②用公式计算. (3)二面角: ①平面角的作法: (i)定义法; (ii)三垂线定理及其逆定理法;(iii)垂面法。 ②平面角的计算法: (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;

(ii)射影面积法; (iii)向量夹角公式. 3空间距离的计算方法与技巧: (1)求点到直线的距离: 经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。 (2)求两条异面直线间距离: 一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。 (3)求点到平面的距离: 一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以 把点到平面的距离转化为直线到平面的距离,从而“转移”到另一 点上去求“点到平面的距离”。求直线与平面的距离及平面与平面 的距离一般均转化为点到平面的距离来求解。 4熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6与球有关的题型 只能应用“老方法”,求出球的半径即可。 7立体几何读题:

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1, 故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ;

(Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=o ,AC = O

立体几何解题技巧及高考类型题—老师专用

立体几何解题技巧及高考类型题—老师专用 【命题分析】高考中立体几何命题特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. 【高考考查的重难点】空间距离和角 “六个距离”: 1、两点间距离 221221221)()()(d z z y y x x -+-+-=; 2、点P 到线l 的距离d = (Q 是直线l 上任意一点,u 为过点P 的直线l 法向量); 3 、两异面直线的距离d = (P 、Q 分别是两直线上任意两点,u 为两直线公共法向量); 4、点P 到平面的距离 d =Q 是平面上任意一点,u 为平面法向量); 5 、直线与平面的距离d =(P 为直线上的任意一点、Q 为平面上任意一点,u 为平面法向量); 6 、平行平面间的距离d = (P 、Q 分别是两平面上任意两点,u 为两平面公共法向量 );

“三个角度”: 1、异面直线角[0,2π],cos θ=2 121v v v v ;【辨】直线倾斜角范围[0,π); 2、线面角 [0,2π] ,sin θ=n v vn n v =,cos 或者解三角形; 3、二面角 [0,π],cos 212 1n n n n ±=θ 或者找垂直线,解三角形。 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,证是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题1、(福建卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的大小, 点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解:解法一:(Ⅰ)取BC 中点O ,连结AO .

(完整版)历年高考立体几何大题试题.doc

2015 年高考立体几何大题试卷 1.【 2015 高考新课标2,理 19】 如图,长方体ABCD A1B1C1D1中,AB=16,BC =10, AA18 ,点E,F分别在 A1 B1,C1D1上, A1 E D1F 4 .过点E,F的平面与此长方体的面相交,交线围成一个正方 形. D F C A E B D C A B ( 1 题图) (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面所成角的正弦值. 2. 【 2015 江苏高考, 16】如图,在直三棱柱ABC A1 B1C1中,已知AC BC , BC CC1,设 AB1的中点为D, B1C BC1 E .求证:(1) DE // 平面 AA1C1C ; (2)BC1AB1. A C B E D A C B ( 2 题图)(3 题图) 3. 【2015 高考安徽,理19】如图所示,在多面体A1 B1 D1 DCBA ,四边形 AA1B1 B , ADD A , ABCD 均为正方形, E 为 B D 的中点,过 A1 , D , E 的平面交CD于F. 1 1 1 1 1 (Ⅰ)证明:EF / / B1C ;(Ⅱ)求二面角 E A1 D B1余弦值.

4.【2015江苏高考,22】如图,在四棱锥P ABCD 中,已知 PA平面ABCD,且四边形 ABCD 为直角梯形,ABC BAD,PA AD 2, AB BC 12 ( 1)求平面PAB与平面PCD所成二面角的余弦值; ( 2)点Q是线段BP上的动点,当直线CQ 与 DP 所成角最小时,求线段BQ 的长 A P D Q B F A D G B C E C ( 4 题图)( 5 题图) 5 .【 2015 高考福建,理 17】如图,在几何体 ABCDE 中,四边形 ABCD 是矩形, AB ^平 面 BEC, BE^ EC,AB=BE=EC=2 , G,F 分别是线段 BE, DC 的中点 . ( Ⅰ ) 求证:GF / /平面ADE; ( Ⅱ ) 求平面 AEF 与平面 BEC 所成锐二面角的余弦值. 6. 【 2015 高考浙江,理17】如图,在三棱柱ABC A1B1C1 - 中,BAC 90o, AB AC 2 ,A1A 4 ,A1在底面ABC的射影为BC的中点, D 为B1C1的中点. (1)证明:A1D平面A1B C; (2)求二面角A1-BD- B1的平面角的余弦值.

高中数学“立体几何初步”教学研究

专题讲座 高中数学“立体几何初步”教学研究 袁京生北京市朝阳区教育研究中心 一、“立体几何初步”教学内容的整体把握 (一)“立体几何初步”内容的背景分析 1.从立体几何发展的历程看立体几何课程 (1)不同学段几何学习的特点 一个学生从小学的数学课中就接触到了空间图形,由于知识和年龄的限制,他们对空间图形的认识方法主要是大量的观察、操作,对空间图形形成一定的感性认识. 在初中,课程安排了简单几何体的概念及体积公式,三视图的基本知识,正方体的截面、展开问题,建立了长方体模型概念,已初步具有平面几何基础知识及推理论证能力, 总体上看,初中学生对空间图形的认识主要是直观感知,操作确认,但平面几何的学习又呈现出思辨论证等理性的特征. 总之,高中以前的学生对空间图形的认识主要是对图形的整体形象的直观感知,操作确认,这种基于直观和操作的认知的优点是简便、直观,不需要更多的知识作基础,但不足也是很明显的,即不能对空间图形及其内部的元素关系进行深入的分析,不能产生对空间图形本质的认识. 当学生进入高中以后,教材对空间图形的有了专门的介绍:立体几何.从历次的立体几何教材看,无论教材怎样变化,高中立体几何的最终目标都是要从学生可接受的理论高度来认识空间图形.除了传统的综合几何外,近几年的高中《大纲》或《课程标准》还引入了空间向量,空间向量进入几何,使几何有了更多代数的味道,因此现行的高中几何不完全是欧式几何. 当我们回顾大学的几何学习时,容易发现,大学的几何学习正是沿着几何代数化的方向展开,无论《空间解析几何》、《高等几何》、《微分几何》等无不是通过代数的手段对几何进行研究,通过代数的形式呈现几何结论. (2)几何研究方法的发展

全国卷历年高考立体几何真题归类分析(含答案)

全国卷历年高考立体几何真题归类分析(含答案) 类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。 1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积. 2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值. 3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.

4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC , 3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值. 5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面 ABCD ,1 2 AB BC AD == ,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值. E M D C B A P 类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。这类题,第(Ⅰ)小问的证明用几何法证明,其证明过程中的结论通常是第(Ⅱ)问证明的条件。第(Ⅱ)小问开始需要证明底面上两条直线垂直,然后才能建立空间直角坐标系。 6.(2011年全国卷)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ; (Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.

2010年高考立体几何专题复习-6

2010年高考立体几何专题复习 岱山中学 孙珊瑚 鲁纪伟 高考立体几何试题一般有选择、填空题, 解答题,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力. 2.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。 4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概 念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?? ???? , 二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力. 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面,设∩=OA ,∩=OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥,垂足为B ,AC ⊥,垂足为C ,则∠BAC =或∠BAC =-; (5) 利用面积射影定理,设平面内的平面图形F 的面积为S ,F 在平面内的射影图形的面积为S ,则cos =S S ' . 5.空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线

高中数学立体几何解题技巧

高中数学立体几何解题技巧 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

相关文档
最新文档