1.2 金属材料的力学性能1(修改)

合集下载

金属材料的力学性能

金属材料的力学性能

使用性能
力学性能 强度、硬度、塑性、韧性等 物理性能 指熔点、导热性、导电性、磁性等 化学性能 抗氧化性、抗腐蚀性等 其它性能 耐磨性、热硬性、消振性等
工艺性能——加工成形的性能
1.1 金属材料的力学性能
是指金属材料在外加载荷作用下所表现出来的抵抗能 力,
静载荷
根据载荷作用性质不同 冲击载荷
疲劳载荷 静载荷是指外力的大小和方向不变或变化很缓慢的载荷; 冲击载荷是指突然增加的载荷; 疲劳载荷则是指大小和方向随时间作(ZHOU)期性变化
在一定条件下,HB与HRC可以查表互换,其心算公式可大概记 为:1HRC≈1/10HB,
3 .维氏硬度 HV
维氏硬度试验原理 维氏硬度压痕
维氏硬度计
维氏硬度 HV 测试计




显微维氏硬度计





1 维氏硬度测量原理
用压头为锥面夹角为136º的金刚石四棱锥体,以一定的试验 力将压头压入试样表面,保持规定时间卸载后,在试样表面留 下一个四方锥形的压痕,测量压痕两对角线长度,以此计算出 硬度值,
成形工艺的应用
重要环节: 热处理
1.3 金属材料的工艺性能
金属材料的工艺性能:是指用不同的加工手段所 表现出来的难易程度,
铸造性能 流动性、收缩、偏析等
锻压性能 切削加工性 焊接性 热处理性能
小 结:
本单元了解了金属材料的类型和性能,重点学 习了金属材料的力学性能的指标:强度、塑 性、韧性、硬度以及疲劳强度,
屈强比 ReL/ Rm : 0.6~0.85 屈强比高,材料利用率越高; 屈强比低,零件的可靠性越高
—— 综合考虑材料利用率和安全性
1. 1. 2 塑 性

常用金属材料的力学性能一览表

常用金属材料的力学性能一览表

常用金属材料的力学性能金属材料的力学性能任何机械零件或工具,在使用过程中,往往妾受到各种形式外力的作托。

如起重机上的钢索,受到悬吊物拉力的作用:柴油机上的连杆,在传递动力时.不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件燮受到弯矩、扭力的作用等尊。

这就要求金属材料必须具有一种弟受机械荷而不超过许可变形或不破坏的能力* 这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在夕卜力作坤下表现出力学性能的指标。

111 强度强度是扌旨金属材料在静载荷作用下抵抗变形和断裂的能力。

逼度扌旨标一般用单位面积所承受的载荷即力表示,符号为6 单位为 MP 弘工程中常用的强度指标有屈服逼度和扰拉强度。

屈服逼度是指金属材料在外力作用下* 产生屈服现象时的应力,或开始岀现塑性变形吋的最低应力值,用%表示?抗竝强度是指金厲材料在拉力的作用下,被拉断前所能承受的最大应力值,用巧表示。

对于大多数机械零件.工作时不允许产生塑性变形,所以屈服强度是事件逼度设计的依据!对于因断裂而失效的零件,而用抗拉强度作为其逼度设计的依据。

1.1 2 塑性塑性是扌旨金属材料在外力作用下产生塑性变形而不断裂的能力。

工程中常用的塑性揭标有诩长率和断面收缩率。

伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号豪示*断面收縮率指试样拉断后,断面縮小的面积与原来截面积之比,用甲表示。

伸长率和断面收缩率越大,其塑性越好;反之塑性越差,良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。

113 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力? 硬度的测试方法很多,生产中常埔的硬度测试方法有布氏硬度测试法和洛氏碳度试验方法两神°C- )布氏硬度试验法布氏硬度试验法是用一直径为 D 的淬火钢球或硬质合金球作为压头,在载荷 0 的作用下压入被测试金厲表面,保持一定时间后卸载,测量金属表面形成的压痕直径乩以压痕的单位面积所承受的平均压力作为被测全属的布氏硬度值。

金属材料的力学性能

金属材料的力学性能

a. Elongation 断后伸长率

Definition: A test to measure the ductility of steel. When a material is tested for tensile strength it elongates a certain amount before fracture takes place. The two pieces are placed together and the amount of extension
Stress-Strain Behaviour

Elastic deformation. When the stress is removed, the material returns to the dimension it had before the load was applied. Valid for small strains (except the case of rubbers). Deformation is reversible, non permanent



在测定材料的布氏硬度时,应根据材料的种 类和试样的厚度,选择球体材质、球体直径 D、施加载荷F和载荷保持时间等
布氏硬度的特点


操作比较方便(需查表) 淬火钢球硬度有限 压痕面积大,代表性强,结果较精 确,一次测量。
2.2 洛氏硬度(Rockwell) HR

将标准压头(锥顶角120o 金刚石圆锥体或一定直 径的钢球)用规定压力压 入被测材料的表面,根 据压痕深度来确定硬度 值 h=h1-h0
2.1 布氏硬度(Brinell) HBS(W)

第一章 金属材料的力学性能

第一章  金属材料的力学性能


A、C标尺为100
B标尺为130
机 械 制



§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA


硬度值 A标尺




§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高

•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制



第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结






§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基

第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,

金属材料的主要性能

金属材料的主要性能
定义: HR=k-(h1-h0)/0.002 常用标尺有:B、C、A三种
① HRA 硬、薄试件,如硬质合金、表面淬火层和渗碳层。 ② HRB 轻金属,未淬火钢,如有色金属和退火、正火钢等 ③ HRC 较硬,淬硬钢制品;如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。
②弹性:材料不产生塑性变形的情况下,所能承受的最 大应力。
弹性极限:σe=Fe/So 不产永久变形的最大抗力。
2)屈服强度s:材料发生微量塑性变形时的应力值。即 在拉伸试验过程中,载荷不增加,
试样仍能继续伸长时的应力。
s = Fs/So
s
条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以0.2 来表示。
影响因素:循环应力特征、温度、材料成分和组织、夹 杂物、表面状态、残余应力等。
二、塑性 金属材料受力破坏前可承受最大塑性变形的能力。
1.延伸率
延伸率与试样尺寸有关:δ5、δ10 (L0=5d,10d)
2.断面收缩率 ψ=△S/So=(So-Sk)/So x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
0.2
3)抗拉强度b:材料断裂前所承受的最大 应力值。(材料抵抗外力而不致断裂的极 限应力值)。
b = Fb/So
(5)灰铸铁拉伸时的力学性能 灰口铸铁是典型的脆性材料,其σ-曲线是一段微弯曲 线,如图a)所示,没有明显的直线部分,没有屈服和颈 缩现象,拉断前的应变很小,延伸率也很小。强度极限 σb是其唯一的强度指标。 铸铁等脆性材料的抗拉强度 很低,所以不宜作为受拉零 件的材料。
无论是塑性材料还是脆性材料,断裂时都不产生明显的 塑性变形,而是突然发生,具有很大的危险性,有相当多 零件的破坏属于疲劳破坏,对此必须引起足够的重视。

金属材料的力学性能

金属材料的力学性能
法主要用于测硬度较低(小于450HBS或小于650HBW)且较厚的 材料和零件,如铸铁、有色金属和硬度不高的钢。 4、适用范围: <450HBS; <650HBW
第1章 金属材料的力学性能
二、洛氏硬度 HR ( Rockwll hardness ) 1、测量原理
10HRC≈HBS
洛氏硬度测试示意图
第1章 金属材料的力学性能
三、维氏硬度 HV
1、测量原理:
第1章 金属材料的力学性能
2、表示方法: 符号HV。标注时,硬度值写在符号之前,如666HV
3、特点: 维氏硬度试验的测试精度较高,测试的硬度范围大,被测试样的厚度 或表面深度几乎不受限制(如能测很薄的工件、渗氮层、金属镀层等)。 但是, 维氏硬度试验操作不够简便,试样表面质量要求较高,故在生 产现场很少使用。
抗拉强度为设计机械零件和选材的主要依据。
σe σs σb
第1章 金属材料的力学性能
(二)疲劳强度
工程上规定,材料经无数次重复循环(交变)载荷作用而不发生 断裂的最大应力称为疲劳强度。表示材料经无数次交变载荷作用而 不致引起断裂的最大应力值。
钢材的循环次数一般取 N = 107 有色金属的循环次数一般取 N = 108
主要指标: 强度、塑性、冲击韧性和硬度。
第1章 金属材料的力学性能
1.1 强度
按照载荷的性质,金属材料的强度有静强度、疲劳强度和 冲击强度。一般意义上的强度是指静强度。
(一)强度 一、拉伸试验
1.拉伸试样 标准试样(按GB/T6397-1986规定) 常用圆截面拉伸试样 : 长试样:L0=10d0 短试样:L0=5d0
钢铁材料的疲劳曲线
第1章 金属材料的力学性能
疲劳的危害:

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

材料在常温、静载作用下的宏观力学性能。

是确定各种工程设计参数的主要依据。

这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。

对于韧性材料,有弹性和塑性两个阶段。

弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。

当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。

弹性极限:弹性阶段的应力最高限。

金属材料的力学性能

金属材料的力学性能
2、Fe-FH段:曲线、弹性变形+塑性变形
3、FL 段:水平线(略有波动)明显的 塑性变形屈服现象,作用的力基本不变, 试样连续伸长。
4、FL-FM曲线:弹性变形+均匀塑性变形
5、M点:出现缩颈现象,即试样局部截面明显缩小试样承载能力降低, 拉伸力达到最大值,试样即将断裂。 6、K点:试件在缩颈处拉断
19
§1-4 冲击韧度
一般来说,强度、塑性均好的材料,韧度值也高。在实 际工作中常见的是承受多次小能量冲击。对多次冲击 问题: •

1) 如果冲击能量低,冲击周次较多时,α KV主 要取决于材料的强度,强度高则冲击韧度较好;
2) 如果冲击能量高,则主要取决于材料的塑性, 材料塑性越高则冲击韧度较好。
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力的作用下压入试样表面, 经规定时间后卸除试验力,用测量的残余压痕深度增量来计算硬度的一 种压痕硬度试验。
12
§1-3 硬度
2、洛氏硬度表示方法
洛氏硬度直接在符号前面写出硬度值。可从表盘上直接读出。
如:50HRC 3、优缺点
(1)试验简单、方便、迅速(2)压痕小,可测成品、薄件(3)数据 不够准确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
20
§1-5 疲劳强度
1.5 一、概念
疲劳强度
什么是金属的疲劳? 疲劳强度:在指定寿命下使试样失效的应力水平。
交变应力:大小和方向随时间作周期性变化的应力。 通常规定钢铁材料的循环基数取107,有色金属取108。
21
§1-5 疲劳强度
金属的疲劳强度曲线
22
S0:试件原横截面积。 S1:断裂后颈缩处的横截面积,用卡尺直接量出。

金属材料的力学性能

金属材料的力学性能

• •
ae =1/2×ζ e× ε e 弹簧是典型的弹性零件,要求有较大 的弹性比功。弹簧在实际工作中起缓冲和 存储能量作用。 • 实际设计时通过提高弹性极限ζ e ,提 高弹簧的弹性比功。
• 三、强度 • 强度是金属材料在外力的作用下,抵
抗变形和断裂的能力。根据零件的工作状 态不同分为:抗拉强度、抗压强度、抗弯强 度和抗剪强度等。 • 1、屈服强度和条件屈服强度 • 拉伸试样产生屈服现象(塑变)时的 应力。 ζ s=Fs/A0 • 对于许多没有明显屈服现象的金属材 料,工程中常以产生0.2%塑性变形时的应 力,作为该材料的条件屈服强度,用ζ 表示。
• §1—4 断裂韧度 • 机械零件的传统设计一般为强度设计、
刚度校核。强度设计标准为屈服强度。 • 零件在许用应力的条件下工作,不会发 生塑性变形和断裂。 • 实际工作情况往往不同。某些零件在远 远低于屈服强度条件下工作时会发生脆性 断裂,这种情况非常危险,称为低应力脆 断。 • 研究表明低应力脆断是由宏观裂纹扩展 引起的。
• 一、裂纹扩展的基本形式 • 裂纹扩展一般分为张开型、滑开型、撕
开性三种。其中以张开型最为危险。 • 二、应力场强度因子KI • 零件表面是凹凸不平的,在凸点和凹点 最容易引起应力集中,形成应力场。裂纹 的扩展与应力场有直接的关系。衡量应力 场的大小用应力场强度因子KI。
• 三、断裂韧度KIC及其应用 • KI随着和a的增大而增大。达到一定值
• §1—1 强度、刚度、弹性及塑性 • 金属材料的强度、刚度、弹性及塑性用
拉伸试验来测量。 • 一、拉伸曲线与 应力-应变曲线 • 1、拉伸曲线 • 拉伸过程分为 弹性变形、塑性变形和 断裂三个阶段。
• 几点说明:(书中图1-2) • 试件总伸长of,其中gf为弹性变形,og

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。

工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。

力学性能是指金属在外力作用下所显示的性能能。

金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。

d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。

Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。

强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。

单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。

常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。

1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料在外力或能的作用下,所表现出来的一系列力学特性,如强度、刚度、塑性、韧性、弹性、硬度等,也包括在高低温、腐蚀、表面介质吸附、冲刷、磨损、空蚀(氧蚀)、粒子照射等力或机械能不同程度结合作用下的性能。

力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,是选用金属材料的重要依据。

充分了解、掌握金属材料的力学性能,对于合理地选择、使用材料,充分发挥材料的作用,制定合理的加工工艺,保证产品质量有着极其重要的意义。

一、强度强度是材料受外力而不被破坏或不改变本身形状的能力。

(一)屈服点金属试样在拉伸试验过程中,载荷不再增加而试样仍继续发生塑性变形而伸长,这一现象叫做“屈服”。

材料开始发生屈服时所对应的应力,称为“屈服点”,以σs表示。

有些材料没有明显的屈服点,这往往采用σ0.2作为屈服阶段的特征值,称为屈服强度。

(二)抗拉强度拉伸试验时,材料在拉断前所承受的最大标称应力,即拉伸过程中最大力所对应的应力,称为抗拉强度,以σb表示。

二、塑性塑性是金属材料在外力作用下(断裂前)发生永久变形的能力,常以金属断裂时的最大相对塑性变形来表示,如拉伸时的断后伸长率和断面收缩率。

(一)伸长率金属材料在拉伸试验时试样拉断后其标距部分所伸长的长度与原始标距长度的百分比,称为断后伸长率,也叫伸长率,用δ表示。

(二)断面收缩率金属试样在拉断后,其缩颈处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率,以符号ψ表示。

三、硬度硬度是金属材料表面抵抗弹性变形、塑性变形或抵抗破裂的一种抗力,是衡量材料软硬的性能指标。

硬度不是一个单纯的、确定的物理量,而是一个由材料弹性、塑性、韧性等一系列不同性能组成的综合性能指标。

所以硬度不仅取决于材料本身,还取决于试验方法和条件。

(一)布氏硬度(二)洛氏硬度(三)维氏硬度四、韧性金属在断裂前吸收变形能量的能力,称为韧性。

衡量材料韧性的指标分为冲击韧性和断裂韧性。

金属材料的力学性能

金属材料的力学性能

(a)试样 (b)伸长 (c)产生缩颈 (d)断裂
拉 伸 试 样 的 颈 缩 现 象
(一)强度
1. 定义:强度是指金属材料抵抗塑性变形和断 裂的能力,是工程技术上重要的力学性能指 标。由于材料承受载荷的方式不同,其变形 形式也不同,分为抗拉、抗扭、抗压、抗弯、 抗剪等的强度。

最常用的强度是抗拉强度或强度极限σb。

1.变动载荷和循环应力
金属疲劳产生的原因

1.变动载荷

——引起疲劳破坏的外力,指载荷大小、甚至方
向均随时间变化的载荷,其在单位面积上的平均
值即为变动应力。

变动应力可分为规则周期变动应力(也称循环应力) 和无规则随机变动应力两种。
GB/T 228-2002新标准 名称 屈服强度① 符号 -
GB/T 228-1987旧标准 名称 屈服点 符号 σs
上屈服强度
下屈服强度 规定残余延伸 强度 抗拉强度 断后伸长率
ReH
ReL Rr Rm A或A11.3
上屈服点
下屈服点
σsU
σsL
规定残余延伸 σr 应力 抗拉强度 断后伸长率 σb δ5或δ10
第一章 金属材料的力学性能
概 述

使用性能:材料在使用过程中所表现的性能。包括力学性能、
物理性能和化学性能。

工艺性能:材料在加工过程中所表现的性能。包括铸造、锻 压、焊接、热处理和切削性能等。

金属材料的力学性能是指在承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时,对变形与断裂的抵抗

冲击试样
原理

冲击韧性可以通过一次摆锤冲击试验来测定,试验 时将带有U型或V型缺口的冲击试样放在试验机架 的支座上,将摆锤升至高度H1,使其具有势能 mgH1;然后使摆锤由此高度自由下落将试样冲断, 并向另一方向升高至H2,这时摆锤的势能为mgH2。 所以,摆锤用于冲断试样的能量

金属材料的力学性能及工艺性能

金属材料的力学性能及工艺性能

金属材料的力学性能及工艺性能
1.1 力学性能
金属材料抵抗不同性质载荷的能力,称为金属材料的力学性能,通常又称为 机械性能。它的主要指标是强度、塑性、韧性、硬度和疲劳强度等。上述指标既 是选用材料的重要依据,又是控制、检验材料质量的重要参数。
1.强度和塑性 2. 硬度 3. 韧性和疲劳强度
金属材料的力学性能及工艺性能
金属材料的力学性能及工艺性能
工业上使用的金属材料主要是合金,而纯金属应用较少(价格高昂且强度较 低)。所谓合金,是指由两种或两种以上的元素(其中至少有一种是金属元素)所 组成的具有金属性质的物质。例如,碳钢是由铁和碳组成的合金,黄铜是由铜和锌 组成的合金等。金属与合金统称为金属材料。
金属材料的性能包括使用性能和工艺性能两大类。使用性能包括力学性能、物 理性能和化学性能等,工艺性能包括铸造性、锻造性、焊接性、热处理性能和切削 加工性等。
1.2 工艺性能
金属材料的工艺性能是指金属பைடு நூலகம்料所具有的能够适应各种加工工艺要求的能力。工艺性 能实质上是力学、物理、化学性能的综合表现。金属材料常用铸造、压力加工、焊接和切削 加工等方法制造成零件。各种加工方法对材料提出了不同的要求。
1. 铸造性 2. 锻造性 3. 焊接性 4. 切削加工性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的力学性能什么是力学性能?力学性能的用途力学性能的来源
什么是力学性能?力学性能的用途力学性能的来源
材料的力学性能在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。

按照有关标准规定的方法和程序,用相应的试验设备和仪器测定。

设计各种工程结构选用材料的主要依据。

材料的力学性能有哪些?
材料受载情况不同,常用不同的力学性能指标进行描述。

如强度、刚度等。

力学性能
强度
刚度
硬度
弹性
塑性
韧性
低温脆断
高温蠕变疲劳强度
1、材料的强度与塑性
一、强度(strength)
•概念:材料抵抗由外力载荷所引起的变形或断裂的能力称为强度。

•常用的强度指标主要是抗拉强度和屈服强度
金属材料的强度
强度的测定方法:
拉伸试验拉伸曲线
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
金属材料的强度
OE ——弹性变形ES ——屈服阶段SB ——强化阶段BK ——缩颈阶段
低碳钢拉伸曲线
应力—应变曲线
不同的拉伸阶段,材料抵抗变形和破坏的能力不同,即对应不同的强度指标。

抗拉强度σb
•概念:材料在拉伸过
程中单位面积所能承
受的最大拉伸力。

•用σb表示:
σb = F b / A0
屈服点应力σs
屈服强度σs
•概念:材料在外力作用下发生屈
服现象时,单位面积所能承受的
最大拉伸力。

•用σs表示:
σs = F s / A0
高分子材料的强度
•高分子材料的性能不同于金属材料,它受温度的影响较大。

变形
温度
T g 玻璃态
高弹态
粘流态
T f •高分子在不同温度下存在三种状态:玻璃态、高弹态和粘流态。

高分子材料拉伸曲线
(高弹态)
(玻璃态)σb εy εb
εd σy
a
b c
e
d E
高分子材料的拉伸曲线
oa 段:普弹形变ab 段:高弹形变(b :屈服点)bc 段:缩颈形变cd 段:应变软化de 段:应力硬化
抗拉强度:σb
屈服强度:σy
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
材料的强度与塑性
二、塑性
•概念:材料在外力作用下,产生永久残余变形而不断裂的能力,称为塑性。

•工程上常用延伸率和断面收缩率作为材料的塑性指标。

延伸率δ
•试样在拉断后的相对伸长量称为延伸率,用符号δ表示,即
1)
延伸率δ断面收缩率ψ
•试样被拉断后横截面积的相对收缩量为断面收缩率,
用符号ψ表示,即
%1000
10⨯-=ψA A A
本讲小节
思考题
1.什么是材料的强度?什么是材料的塑性?
2.低碳钢在进行拉伸试验时,其变形要经历哪几个阶段?答:材料抵抗由外力载荷所引起的变形或断裂的能力称为强度。

材料在外力作用下,产生永久残余变形而不断裂的能力,称为塑性。

答:要经历:弹性变形、屈服阶段、强化阶段、缩颈阶段
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
下讲预告
材料的硬度与韧性
1. 金属材料的硬度与韧性的概念
2. 金属材料的硬度与韧性的应用范围
3. 硬度与韧性的测量方法。

相关文档
最新文档