2011版高中数学二轮专题复习学案-专题七 第二讲 数形结合思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七:思想方法专题
第二讲数形结合思想
【思想方法诠释】
一、数形结合的思想
所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.
二、数形结合思想解决的问题常有以下几种:
1.构建函数模型并结合其图象求参数的取值范围;
2.构建函数模型并结合其图象研究方程根的范围;
3.构建函数模型并结合其图象研究量与量之间的大小关系;
4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;
5.构建立体几何模型研究代数问题;
6.构建解析几何中的斜率、截距、距离等模型研究最值问题;
7.构建方程模型,求根的个数;
8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:
1.准确画出函数图象,注意函数的定义域;
2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:
1.要清楚一些概念和运算的几何意义以及曲线的代数特征;
2.要恰当设参,合理用参,建立关系,做好转化;
3.要正确确定参数的取值范围,以防重复和遗漏;
4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。【核心要点突破】
要点考向1:利用数学概念或数学式的几何意义解题
例1:实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)点(a,b)对应的区域的面积;
(2)的取值范围;
(3)(a-1)2+(b-2)2的值域.
思路精析:列出a,b满足的条件→画出点(a,b)对应的区域→求面积→根据的几何意义求范围→根据(a-1)2+(b-2)2的几何意义求值域.
解析:方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)= x2+ax+2b 与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,
由此可得不等式组
由,解得A(-3,1).由,解得C(-1,0).
∴在如图所示的aOb坐标平面内,满足条件的点(a,b)对应的平面区域为△ABC(不包括边界).
(1)△ABC的面积为(h为A到Oa轴的距离).
(2)几何意义是点(a,b)和点D(1,2)边线的斜率.
由图可知
(3)∵(a-1)2+(b-2)2表示的区域内的点(a,b)与定点(1,2)之间距离的平方,
注:如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:
(1)连线的斜率;
(2)之间的距离;
(3)为直角三角形的三边;
(4)图象的对称轴为x=.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.
要点考向2:用数形结合求方程根的个数,解决与不等式有关的问题
(1)已知:函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lgx 例2:
解的个数是()
(A)5 (B)7 (C)9 (D)10
(2)设有函数f(x)=a+ 和g(x)= ,已知x∈[-4,0]时,恒有f(x)≤g(x),求实数a的范围.
思路精析:(1)画出f(x)的图象→画出y=lgx的图象→数出交点个数.
(2)f(x)≤g(x)变形为→画出的图象→画出的图象→寻找成立的位置
解析:(1)选C.由题间可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x) =lgx,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.
(2)f(x)≤g(x),即,变形得,令…………①,………………②
①变形得,即表示以(-2,0)为圆心,2为半径的圆的上半圆;
②表示斜率为,纵截距为1-a的平行直线系.设与圆相切的直线为AT,其倾斜角为α,则有tanα=,,
要使f(x)≤g(x)在x∈[-4,0]时恒成立,则②成立所表示的直线应在直线AT的上方或与它重合,故有1-a≥6,∴a≤-5.
注:(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.
(2)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决不等式的解的问题,往往可以避免繁琐的运算,获得简捷的解答.
(3)函数的单调性经常联系函数图象的升、降;奇偶性经常联系函数图象的对称性;最值(值域)经常联系函数图象的最高、最低点的纵坐标.
要点考向2:数形结合在解析几何中的应用
例3:已知椭圆C的中心在原点,一个焦点
(0,2)
F
,且长轴长与短轴长的比是2:1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;
(Ⅲ)求PAB
∆面积的最大值.
解析:(Ⅰ)设椭圆C的方程为
22
22
1(0)
y x
a b
a b
+=>>
.
由题意
222,
:2
2.
a b c
a b
c
⎧=+
⎪⎪
=
⎨
⎪
=
⎪⎩
………………………………………………2分