蒙特卡罗在金融中模拟方法实现

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

▪ We need to generate a sequence {Ui} of random samples, which are independent (iid)
▪ Then we can compute the empiric mean:
Îm

1 m
m i 1
g(Ui )
▪ From the law of Great Numbers, one gets :
10 20
30 40
50 60 70
80 90 100
100 90 80 70 60 50 40 30 20 10 0 0
10 20
30 40
50 60 70
80 90 100
▪ Results depends on :
▪ random number generation (Mersenne Twister)
▪ Drawbacks
▪ Dependency to random number generator ▪ Big variability (accuracy) ▪ Computation time
8
Why MATLAB ?
®
®
▪ Efficiency :
▪ 1 000 000 paths in less than 1 s ▪ 25 times fastest thanExcel
▪ Number of simulations
4
®
®
Typical uses cases of Monte carlo in finance
▪ Derivatives pricing
▪ Risk
▪ Structurer
▪ Stochastic Asset Liability Management
▪…
®
®
Typical uses cases of Monte carlo in finance
© The MathWorks, Inc.
Agenda
®
®
▪ Principles and uses cases for Monte Carlo methods ▪ Using MATLAB toolbox for Monte Carlo simulations ▪ Develop you own Monte Carlo engine ▪ A quick overview of Variance reduction technics
▪ State of the Art Algorithms
▪ Mersenne Twister ▪ Linear algebra
▪ Lots of statistical distributions supported (+ than 20)
▪ Easy deployment
9
Agenda
®
®
▪ Principles and uses cases for Monte Carlo methods ▪ Using MATLAB toolbox for Monte Carlo simulations ▪ Develop you own Monte Carlo engine ▪ A quick overview of Variance reduction technics
10
®
®
Which tools for Monte Carlo simulations ?
▪ MATLAB : Core linear algebra engine, matrix factorisation, … ▪ Statistics toolbox : Random numbers, copulas, … ▪ Financial toolbox :
2
®
®
An simple example 100 90 80 70 60 50 40
▪ Compute the area of a lake 30
20 10
0 0 10 20 30 40 50 60 70 80 90 100
▪ We shot N cannon balls
▪ n balls out of the “lake” ▪ N- n balls in the lake
5
General Principles
®
®Baidu Nhomakorabea
▪ Estimation technique based on the simulation of a great number of random variables
1
▪ Let’s consider I g(x)dx
0
▪ This can be seen as the expectation g(U ), with U being
▪ Portsim :” Monte Carlo simulation of correlated asset returns”
▪ GARCH Toolbox
▪ garchsim
11
Financial toolbox
®
®
▪ On a time interval, performances are driven by the following equation : ds dt dt
a uniform random variable on (0,1), ie U~(0,1)
▪ We can estimate tis expectation using an empiric mean from random draws
6
®
®
General Principles, continued
▪ One gets
100 90 80 70 60 50 40 30 20 10 0 0
10 20
30 40
50 60 70
80 90 100
AreaSquare AreaLake

N N n

AreaLake

N N
n
* AreaSquare
3
®
®
Take outs
100 90 80 70 60 50 40 30 20 10 0 0
▪ Variance :
lim
m
Îm

I
V
ar(
Îm
)

V
ar(
g (U m
i
))
▪ Confidence interval : using a Gaussian approximation
7
®
®
Good points and drawbacks
▪ Good points
▪ Various application areas ▪ Few hypothesis ▪ Easy to develop
相关文档
最新文档