正余弦定理综合应用PPT课件

合集下载

第4章第7节正弦定理余弦定理的综合应用课件共60张PPT

第4章第7节正弦定理余弦定理的综合应用课件共60张PPT

1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之
间的位置关系.( )
(4)方位角大小的范围是[0,2π),方向角大小的范围一般是0,π2.
[答案] (1)√ (2)× (3)√ (4)√
()
第七节 正弦定理、余弦定理的综合应用
二、教材习题衍生
C [如图所示,依题意可知∠ADC=
45°,∠ACD=180°-60°-15°=105°,
∴∠DAC=180°-45°-105°=30°, 由正弦定理可知sin∠CDDAC=sin∠ACCDA,
∴AC=CDsi·ns∠in∠DACCDA=25 2米. ∴在Rt△ABC中,
AB=AC·sin∠ACB=25 2× 23=252 6≈31米. ∴旗杆的高度约为31米,故选C.]
第七节 正弦定理、余弦定理的综合应用
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
一、易错易误辨析(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关 系为α+β=180°.( )
第七节 正弦定理、余弦定理的综合应用
第七节 正弦定理、余弦定理的综合应用
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
(1)10 6 (2) 1241[(1)∵△ABC中,由题意可得:
∠CAB=120°,∠BCA=30°,AB=60×13=
20, ∴由正弦定理sin∠BCCAB=sin∠ABBCA,
∴BC=ABsi·nsi∠n∠BCCAAB=20×1

正弦定理与余弦定理的应用优秀PPT课件

正弦定理与余弦定理的应用优秀PPT课件

A.50 2 m
B.50 3 m
C.25 2 m
25 2 D. 2 m
解析 由正弦定理得sin∠ABACB=sAinCB,又 B=30°,
∴AB=AC·ssiinn∠BACB=50×1
2 2 =50
2(m).
2
答案 A
2.从 A 处望 B 处的仰角为 α,从 B 处望 A 处的俯角为 β,则 α,
45和 60 ,CD间的距离是12m.已知测角仪器
高1.5m,求烟囱的高。
想一想
图中给出了怎样的一个 几何图形?已知什么, 求什么?
实例讲解
分析:如图,因为AB=AA1+A1B,又
B
已知AA1=1.5m,所以只要求出A1B即可。
解:在BC1D1中, C1BD1 60 45 15,
β 的关系为( ).
A.α>β
B.α=β
C.α+β=90°
D.α+β=180°
解析 根据仰角与俯角的定义易知 α=β.
答案 B
3.若点 A 在点 C 的北偏东 30°,点 B 在点 C 的南偏东 60°,且
AC=BC,则点 A 在点 B 的( ).
A.北偏东 15°
B.北偏西 15°
C.北偏东 10°
练习2
如图,甲船以每小时30 2海里的速度向正北方向航行, 乙船按固定方向向匀速直线航行。当甲船位于A1处时, 乙船位于甲船的北偏西1050方向的B1处,此时两船相距 20海里,当甲船航行20分钟到达A2处时,乙船航行到 甲船的北偏西1200方向的B2处,此时两船相距10 2海里, 问乙船每小时航行多少海里?
=85°, ∠ ACD=47°, 则
∠ DAC=48°,又DC=

25正弦定理、余弦定理应用举例PPT课件

25正弦定理、余弦定理应用举例PPT课件

.
8
又又∠∠DDBBCC==∠∠DDBBAA++∠∠AABBCC==3300°+°+(9(09°0-°-606°0)°=)=606°0, °B,CB=C=20203 ∠时里C=DDD)D3)B.B6,×2点=A=0C又在∴故在∴故在∴故又在∴故∴°+12需3,B又在∴故=∠△C救△C救0B△C救需∠△C救∠D要0D∠△C救DDC9DDD援+2D援D援要DD援AD=+0===DD援=1BBBB0=BB船1船的船船BB小BCC3,C3船C32CC320CC3到0C=00到0时到=0到中=时0(中到中=((中(2海中0(海海海达-∠海间达达3-达,.∠3达∠,,,,里0C里(里C里C2里DCC°2海DDDDtDDBDD+D=D×D)DB)))B),BD,2点,里,2,点=2点A2点=2==点A(==3=3=1A==·9∴+B∴00∴0需)需∴需∴30+33B需需,B=33CBB0°00需需∠需0D0要要-D要0需0需3∠·0DD要要1c00+2+×2+要2A要oA+(要+++226+1要要A小1+1+sB10B1121的1小B的B的∠1小CB1°小B0的2的时C小B小B2C)2C时=0C时2C=2时=时00D时C2时C0时)=时003-时202时0间.3-.-B2-602×0间间3--0.-.-间03-2间-C.0.°2t2B2°0+12=°2×22tt,2BB°2+=D=2=××tBtB+B=(×331D=D×·9BD00C09(D333110··9(=3310BCB003030=1°·9·0B0000-B==300·0CC01°c=,×C2=°-Co(33··61c小1-0c3s·××03·21co(o(1c×6∠°小小×0o(时ss6o()023小2s=小∠0s∠D2°0(0时)时23∠海°).0时∠B6=0×)时DD)0=)3C3D里..°B)D12B3×6×).,3B=6.×0CCB)×0,12°C12C9C,°=12=012,=B=0B=9C9,20C90=09000=0,0,230,20(,海0 3里

余弦定理(55张PPT)

余弦定理(55张PPT)

2.在解三角形的过程中,求某一个角有时既可以用余 弦定理,也可以用正弦定理,两种方案有什么利弊呢?
提示:用余弦定理求角时,运算量较大,但角与余弦 值是一一对应的,无须讨论;而用正弦定理求角时,运算 量较小,但由于在区间(0,π)上角与正弦值不是一一对应 的,一般情况下一个正弦值可对应两个角,往往要依据角 的范围讨论解的情况.
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
2.余弦定理的推论 余弦定理揭示了三角形中两边及其夹角与对边之间的 关系,它的另一种表达形式是 b2+c2-a2 cosA=_____________ , 2bc
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
类型二 [例2]
判断三角形的形状 在△ABC中,已知(a+b+c)(b+c-a)=3bc且
sinA=2sinBcosC,试确定△ABC的形状. [分析] 首先根据条件(a+b+c)(b+c-a)=3bc,利
用余弦定理求出一个角,再利用另一个条件,得到另外两 个角的关系,即可判断.
[解]
∵(a+b+c)(b+c-a)=3bc,
须知余弦定理是勾股定理的推广,勾股定理是余弦定
2 2 2 a > b + c 理的特例.角A为钝角⇔_____________,角A为直角⇔ 2 2 2 2 2 2 a = b + c a < b + c ____________,角A为锐角⇔____________.
3.利用余弦定理可解决的两类问题 余弦定理的每一个等式中都包含四个不同的量,它们 分别是三角形的三边和一个角,知道其中的三个量,代入 等式,便可求出第四个量来. 利用余弦定理可以解决以下两类解斜三角形的问题:

6.4.3.3余弦定理、正弦定理应用举例(新教材)PPT课件(人教版)

6.4.3.3余弦定理、正弦定理应用举例(新教材)PPT课件(人教版)
有关的三角形中,建立一个解斜三角形的数学模型; (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模
型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题
的解.
a sin .
sin 180 ( ) sin( )
计算出AC和BC后,再在△ABC中,应用余弦定理
计算出AB两点间的距离为
δγ D
α β
C
变式训练 一条河自西向东流淌,某人在河南岸A处看到河北岸两个目标C,D分别在 东偏北45°和东偏北60°方向,此人向东走300米到达B处之后,再看C,D, 则分别在西偏北75°和西偏北30°方向,求目标C,D之间的距离.
sin A a ,sin B b ,sin C c
2R
2R
2R
sin A: sin B : sin C a : b : c
将等式中的角换成 边,注意2R约掉。
1 课程导入
遥不可及的月亮离我们地球究竟有多远呢?在古代,天文学家没有 先进的仪器就已经估算出了两者的距离,是什么神秘的方法探索到这个奥 秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测 量方案,比如可以应用全等三角形、类似三角形的方法,或借助解直角三 角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会 不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所 以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解 决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用, 第一研究如何测量距离.
4 测量角度问题
例3:位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有 一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位 于甲船南偏西30°,且与甲船相距7 n mile的C处的乙船.那么乙船前往营 救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东 多少度(精确到1°)?需要航行的距离是多少海里(精确到1n mile)?

正、余弦定理的综合应用 课件

正、余弦定理的综合应用    课件

3.解决正弦定理与余弦定理的综合应用问题,应根 据具体情况引入未知数,运用方程思想来解决问题;解 决平面向量与解三角形的交汇问题,应准确运用向量知 识将其转化为解三角形问题,再利用正、余弦定理来求 解.
[变式训练] (全国卷Ⅰ)△ABC 的内角 A,B,C 的对边
分别为 a,b,c,已知 b sin C+c sin B=4a sin B sin C,b2+
c2-a2=8,则△ABC 的面积为________.
解析:因为 b sin C+c sin B=4a sin B·sin C,
所以 b sin
⇔C 为钝角;c2<a2+b2⇔C 为锐角.
4.三角形的面积公式 任意三角形的面积公式为: (1)S△ABC=12bcsin A=12ac·sin B=12ab·sin C,即任意三 角形的面积等于任意两边与它们夹角的正弦的乘积的一 半. (2)S△ABC=12a·h,其中 a 为△ABC 的一边长,而 h 为 该边上的高的长.
所以B→A·B→C=B→A·B→C·cos B=accos B=21. 所以 ac=35, 因为 cos B=35, 所以 sin B=45. 所以 S△ABC=12acsin B=12×35×45=14. (2)因为 ac=35,a=7,所以 c=5. 由余弦定理 b2=a2+c2-2accos B=32,
由正弦定理sinc C=sinb B, 所以 sin C=bcsin B=452×45= 22. 因为 c<b 且 B 为锐角,所以 C 一定是锐角. 所以 C=45°.
归纳升华 1.解答向量与正、余弦定理的综合题的关键是揭开 向量的“伪装”,找到三角形的边角关系. 2.求向量数量积时应注意向量的方向. 3.利用余弦定理、正弦定理分别列方程,要有列方 程组、解方程组的意识.

正弦定理余弦定理应用举例PPT课件

正弦定理余弦定理应用举例PPT课件

则α=60°-50°=10°.
第4页/共44页
3.在△ABC中,AB=3,BC= ,AC=41,3则边AC
上的高为( )
B
A.
B.
C.
D.
3 解析2
由2余弦定理可得23: 3
3 2
33
cos A AC2 AB2 BC2 42 32 ( 13)2 1 .
2AC AB
2 3 4
2
sin A 3 ,则AC边上的高 2
∠ADB=45°,
10
9
解得BD= .故BD的长为
.
10
要利用由正正、余弦弦定定理理解: 决问A题B,需将 BD .
多边形分割成若干个三角形.在分割s时in,要B注D意A sin BAD
92 有利于应用正2、余弦定理.
探究提高
92 2
12分
第20页/共44页
知能迁移3 如图所示,已知半圆的直径AB=2, 点C在AB的延长线上,BC=1,点P为半圆上的 一个动点,以DC为边作等边△PCD,且点D与 圆心O分别在PC的两侧,求四边形OPDC面积的 最大值.
第21页/共44页
解 设∠POB=θ,四边形面积为y, 则在△POC中,由余弦定理得 PC2=OP2+OC2-2OP·OCcos θ=5-4cos θ.
y SOPC SPCD
1 1 2sin
2
3 (5 4cos )
4
2sin( ) 5 3.
34

3
2
,即
5
6
时,
ymax
2
5 3. 4
解 如图所示,某人在C处,AB为塔高,他沿CD 前进,CD=40,此时∠DBF=45°,过点B作BE⊥ CD于E,则∠AEB=30°,

6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)

6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)

4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,
塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
解 如图,过点C作CE∥DB,延长BA交CE于点E,
设CD=x m,则AE=(x-20) m,
∵tan
60°=CBDD,∴BD=tanCD60°=
x= 3
3 3x
m.
在△AEC 中,x-20= 33x,解得 x=10(3+ 3)m. 故山高 CD 为 10(3+ 3)m.
解 设缉私船应沿CD方向行驶t h,才能最快截获(在D点)走私船, 则 CD=10 3t n mile,BD=10t n mile. ∵BC2=AB2+AC2-2AB·AC·cos A=( 3-1)2+22-2( 3-1)·2cos 120°=6,
∴BC= 6,
∵sBinCA=sin
∠ACABC,∴sin
【训练 3】 如图,在海岸 A 处发现北偏东 45°方向,距 A 点( 3-1) n mile 的 B 处有一艘走私船,在 A 处北偏西 75°方向,与 A 距离 2 n mile 的我方缉私船,奉 命以 10 3 n mile/h 的速度追截走私船,此时走私船正以 10 n mile/h 的速度,从 B 处向北偏东 30°方向逃窜,问:缉私船沿什么方向行驶才能最快截获走私船?
D.α+β=180°
解析 根据题意和仰角、俯角的概念画出草图,如图,知α=β,故应选B.
答案 B
3.两灯塔A,B与海洋视察站C的距离都等于a km,灯塔A在C北偏东30°,B在C南偏东
60°,则A,B之间的距离为( )
A. 2a km
B. 3a km
C.a km
D.2a km
解析 △ABC 中,AC=BC=a,∠ACB=90°,AB= 2a.

《正弦定理余弦定理》课件

《正弦定理余弦定理》课件

THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。

《正余弦定理的应用》课件

《正余弦定理的应用》课件
《正余弦定理的应用》 ppt课件
目录
Contents
• 正余弦定理的基本概念 • 正余弦定理的应用场景 • 正余弦定理的实际应用案例 • 正余弦定理的扩展应用 • 总结与展望
01 正余弦定理的基本概念
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形边长和对应角正弦值之间 的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应的角的正弦值的比等于其他两 边的比,即 a/sinA = b/sinB = c/sinC = 2R,其中a、b、c分别代表三角形的三 边,A、B、C分别代表与三边对应的角,R代表三角形的外接圆半径。
余弦定理的定义
总结词
余弦定理是三角形中另一个重要的定 理,它描述了三角形边长的平方和与 对应角的余弦值之间的关系。
详细描述
余弦定理是指在一个三角形中,任意 一边的平方和等于其他两边平方和减 去2倍的这两边与它们夹角的余弦的乘 积,即 a² = b² + c² - 2bc cosA。
正余弦定理的相互关系
总结词
正弦定理和余弦定理是相互关联的,它们可以互相推导。
详细描述
根据正弦定理,我们可以推导出余弦定理。例如,在△ABC中,由正弦定理可知 a/sinA = b/sinB = c/sinC = 2R ,则 a² = (2RsinA)² = 4R²sin²A,同理 b² = 4R²sin²B,c² = 4R²sin²C。将这三个等式代入余弦定理的公式中, 即可得到余弦定理的证明。反之亦然,也可以由余弦定理推导出正弦定理。
02 正余弦定理的应用场景
三角形的边角关系问题
总结词
解决三角形边角关系问题时,正余弦定理可以提供重要的数 学工具。

正弦定理、余弦定理的综合应用 课件

正弦定理、余弦定理的综合应用 课件

规律技巧 将复杂图形,分解为三角形,通过解三角形 解决问题,当三角形中的条件不够用时,要探索与其他三角 形的联系,当条件够用时,注意选择正弦定理,还是余弦定 理,必要时也可以列出方程(组)求解.
解 在△ABD中,由余弦定理,得 AB2=AD2+BD2-2·AD·BD·cos∠ADB, 设BD=x,则142=x2+102-2×10xcos60°, 即x2-10x-96=0. ∴x1=16,x2=-6(舍去),即BD=16. 在△BCD中,由正弦定理,得 sin∠BCCDB=sin∠BDBCD. ∴BC=BDsi·ns∠in∠BCCDDB=1s6i·ns1in3350°°=8 2.
解法2:由sin2A=sin2B+sin2C,利用正弦定理,得a2= b2+c2,∴△ABC是直角三角形.又由sinA=2sinBcosC,得
a=2b·a2+2ba2b-c2,即a2=a2+b2-c2. 即b2=c2,∴b=c,故△ABC是等腰三角形. 综上知,△ABC为等腰直角三角形.
规律技巧 判定三角形形状时,如果条件中给出了边和 角的关系式,转化等式时一般有以下两个思路:①先化为角 的关系式,再化简求值;②先化为边的关系式,再化简求值.
正弦定理、余弦定理的综合应用
解三角形问题的几种类型.
在三角形的六个元素中,要知道三个(其中至少有一个为
边)才能解该三角形.据此可按已知条件分以下几种情况
已知条件
应用定理
一般解法
一边和两角 (如a,B,C)
正弦定理
由A+B+C=180°,求角 A;由正弦定理求出b与c, 在有解时只有一解
已知条件 应用定理
解 解法1:由sin2A=sin2B+sin2C,利用正弦定理,得 a2=b2+c2,故△ABC是直角三角形,且A=90°,∴B+C= 90°,B=90°-C,∴sinB=cosC.由sinA=2sinB·cosC,可得1 =2sin2B,∴sin2B=12.∵B为锐角,∴sinB= 22.从而B=45°, ∴C=45°.∴△ABC是等腰直角三角形.

正弦定理与余弦定理的应用(优秀课件)

正弦定理与余弦定理的应用(优秀课件)
正弦定理是三角形中一个基本的数学定理,用于描述三角形各边与其对应角的正弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应的角的正弦值的比等于三角形的外接圆直径与另一条边 与其对应的角的正弦值的比。数学公式表示为:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c分别代表 三角形的三边,A、B、C分别代表与边a、b、c相对的角,R代表三角形的外接圆半径。
三角函数值的计算
总结词
利用正弦定理和余弦定理解三 角形,进而计算三角函数值。
详细描述
通过已知的边长和角度,利用 正弦定理和余弦定理解三角形 ,进而计算三角函数值。
总结词
利用正弦定理和余弦定理解决 三角形中的角度问题。
详细描述
通过已知的边长和角度,利用 正弦定理和余弦定理解三角形 ,进而解决三角形中的角度问
总结词
利用正弦定理和余弦定理解决经济学中的供需关系和价格波动问题,如预测商品价格、 分析供需平衡等。
详细描述
在经济学中,供需关系决定了商品的价格。通过正弦定理和余弦定理,我们可以分析供 需双方的周期性变化,预测商品价格的波动趋势,为企业制定生产和销售策略提供依据。
05
正弦定理与余弦定理的综 合应用
详细描述
利用正弦定理和余弦定理,可以 推导出海伦公式,从而方便地计 算出三角形的面积。
三角形形状的判断
总结词
通过比较三角形的边长和角度,可以利用正弦定理和余弦定理来判断三角形的 形状。
详细描述
根据正弦定理和余弦定理的性质,可以判断出三角形是否为等腰三角形、直角 三角形或等边三角形等。
03
正弦定理与余弦定理在三 角函数问题中的应用
THANKS
感谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变3:已知 (a2 bc)x2 2 b2 c2 x 1 0
是关于x 的二次方程,其中 a,b,c 是△ABC的
三边,若方程有两相等的实数根,求A的度数?
题型二、确定三角形的形状
例题:在△ABC中,若 a cos A b cos B
判断△ABC的形状
变式:在△ABC中,若 B 且b2 ac
练习:
三条线段长度为2,x,6 (1)求构成直角三角形时,x的取值范围 (2)求构成锐角三角形时,x的取值范围 (3)求构成钝角三角形时,x的取值范围
题型六、长度问题
课堂练习
1.三角形的三边分别为4,6,8,则此三角形 为( C )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不存在
2.设a,a+1,a+2是钝角三角形的三边,求a的 取值范围. 1<a<3
判断△ABC的形状
3
练习:在△ABC中,如果 lg a lg c lg sin B lg 2 ,
并且B为锐角,试判断此三角形的形状特征。
解:由 lg a lg c lg sin B lg 2 ,
得:sin B 2 B=45o
2
a c
2 2
sin A sin C
2 2
,将A=135o-C代入上式,得
变式3、已知△ABC的面积 S a2 b2 c2
求C角的大小?
4
变式4、已知△ABC的三边长 a 3,b 5,c 6
求△ABC的面积
P16 例7、例8
结论:P20 A组 13 B组 1 2
题型五、范围问题
例8,a ,a+1,a+2 构成钝角三角形,求a 的取值范围。 变式:锐角三角形的三边长为2,x,3, 求x的取值范围。
总结
1.正弦定理可解决的两类问题; 2.正弦定理可解决的两类问题; 3.求面积,外接圆半径; 4.利用正余弦定理证明或判断三角形的形状.
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
正余弦定理的应用
数学组 付亚晖
题型一、证明三角恒等式问题
例1、在△ABC中,求证:
(1) a2 b2 sin2 A sin2 B ;
c2
sin2 C
(2)a2 b2 c2 2(bc cos A ca cos B ab cosC)
变式、在△ABC中,若a : b : c 1: 3 : 5 则 2sin A sin B 的值为多少?
sin C
题型一、正、余弦定理综合应用问题
例2.已知 4 sin2 A C cos 2B 7
2
2
(1)求角B的度数;
(2)若 b 3, a c 3 ,且a>c, 求a和c的值.
变1:已知 (a c)(a c) bc b2,求A.
变2:已知 sin2 A sin2 B sin B sin C sin2 C,求A.
2 sin C 2sin(135 C) sin C sin C cosC
∴C=90o ,综上所述,△ABC是等腰直角三角形。
题型四、面积问题
变式1.△ABC的面积为 3 ,且b 2,c 3求A
变式2、在△ABC中,a
2 2,b
3,
cos
C
1
,
3
求△ABC的面积及外接圆半径ac?sin A sin B sin C
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
相关文档
最新文档