回归分析SPSS操作ppt课件

合集下载

软件SPSS的回归分析功能-PPT课件

软件SPSS的回归分析功能-PPT课件


“残差”复选框组:

“模型拟合度”复选框:
“R方变化”复选框:
• 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检 验:R,R2和调整的R2, 标准误及方差分析表。 • 显示模型拟合过程中R2、F值和p值的改变情况。 • 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自 变量间的相关矩阵。
【选项】按钮
• 注意:选项按钮只需要在选择方法为逐步回归后,才需要打开
• “步进方法标准”单选钮组:设置纳入和排除标准,可按P值或F 值来设置。 • “在等式中包含常量”复选框:用于决定是否在模型中包括常数 项,默认选中。 • “缺失值”单选钮组:用于选择对缺失值的处理方式,可以是不 分析任一选入的变量有缺失值的记录(按列表排除个案)而无论 该缺失变量最终是否进入模型;不分析具体进入某变量时有缺失 值的记录(按对排除个案);将缺失值用该变量的均数代替(使 用均值替代)。


“描述性”复选框:
“部分相关和偏相关性”复选框:
• 显示自变量间的相关、部分相关和偏相关系数。


“共线性诊断”复选框:
• 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差 膨胀因子(VIF)等。

以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
【绘制】按钮
step4:线性回归结果

【Anova】 (analysisofvariance方差分析)
• 此表是所用模型的检验结果,一个标准的方差分析表。 • Sig.(significant )值是回归关系的显著性系数,sig.是F值的实际显著 性概率即P值。当sig. <= 0.05的时候,说明回归关系具有统计学意义。 如果sig. > 0.05,说明二者之间用当前模型进行回归没有统计学意义, 应该换一个模型来进行回归。 • 由表可见所用的回归模型F统计量值=226.725 ,P值为0.000,因此我 们用的这个回归模型是有统计学意义的,可以继续看下面系数分别检验 的结果。 • 由于这里我们所用的回归模型只有一个自变量,因此模型的检验就等价 与系数的检验,在多元回归中这两者是不同的。

《SPSS回归分析》ppt课件

《SPSS回归分析》ppt课件

.
-3.666
.002
从表中可知因变量与自变量的三次回归模型为: y=-166.430+0.029x-5.364E-7x2+5.022E-12x3
9.2 曲线估计
➢拟合效果图
从图形上看出其拟合效果非常好。
8.3 曲线估计
说明:
曲线估计是一个自变量与因变量的非线性回归过程,但 只能处理比较简单的模型。如果有多个自变量与因变量呈非 线性关系时,就需要用其他非线性模型对因变量进行拟合, SPSS 19中提供了“非线性”过程,由于涉及的模型很多,且 非线性回归分析中参数的估计通常是通过迭代方法获得的, 而且对初始值的设置也有较高的要求,如果初始值选择不合 适,即使指定的模型函数非常准确,也会导致迭代过程不收 敛,或者只得到一个局部最优值而不能得到整体最优值。
8.1 回归分析概述
(3)回归分析的一般步骤
第1步 确定回归方程中的因变量和自变量。 第2步 确定回归模型。 第3步 建立回归方程。 第4步 对回归方程进行各种检验。
➢拟合优度检验 ➢回归方程的显著性检验 ➢回归系数的显著性检验
第5步 利用回归方程进行预测。
主要内容
8.1 回归分析概述 8.2 线性回归分析 8.3 曲线估计 8.4 二元Logistic回归分析
8.3 曲线估计
(2) 统计原理
在曲线估计中,有很多的数学模型,选用哪一种形式的回 归方程才能最好地表示出一种曲线的关系往往不是一个简单的 问题,可以用数学方程来表示的各种曲线的数目几乎是没有限 量的。在可能的方程之间,以吻合度而论,也许存在着许多吻 合得同样好的曲线方程。因此,在对曲线的形式的选择上,对 采取什么形式需要有一定的理论,这些理论是由问题本质决定 的。

spss中的回归分析PPT课件

spss中的回归分析PPT课件

6、Statistics(统计)对话框 单击“Statistics”按钮,进入统计对话框如图:
第19页/共134页
Estimates(默认选择项):回归系数的估计值(B)及其标准误(Std.Error)、 常数(Constant);标准化回归系数(Beta);B的t值及其双尾显著性水平(Sig.)。
第5页/共134页
H0:1 0, 2 0,, k 0

第6页/共134页
(3)回归系数的显著性检验(t检验) 所谓回归系数的显著性检验,就是根据样 本估计的结果对总体回归系数的有关假设进行 检验。 之所以对回归系数进行显著性检验,是因 为回归方程的显著性检验只能检验所有回归系 数是否同时与零有显著性差异,它不能保证回 归方程中不包含不能较好解释说明因变量变化 的自变量。因此,可以通过回归系数显著性检 验对每个回归系数进行考察。
4、 Selection variable(选择变量):可从源变量栏中 选择一个变量,单击Rule后,通过该变量大于、小于或等于某 一数值,选择进入回归分析的观察单位。
5、Case Labels(个案标签):在左侧的源变量框中选择 一变量作为标签变量进入 Case Labels框中。
第18页/共134页
Model fit(默认选择项):列出进入或从模型中剔除的变量;显示下列拟合 优度统计量:复相关系数(R)、判定系数(R2)、调整 R2(Adjusted R Square)、 估计值的标准误以及方差分析表。
Confidence intervals:回归系数 B的 95%可信区间(95%Confidence interval for B)。
第7页/共134页
回归参数显著性检验的基本步骤。 ① 提出假设

[课件]SPSS回归分析过程详解()PPT

[课件]SPSS回归分析过程详解()PPT
SPSS回归分析过程详解 (ppt)
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:



从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
我们只讲前面3个简单的(一般教科书的讲法)
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx


a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度: 用来说明用自变量解释因变量变异的程度(所占比例)
逐步回归方法的基本思想
对全部的自变量x1,x2,...,xp,按它们对Y贡献的大小进 行比较,并通过F检验法,选择偏回归平方和显著的变 量进入回归方程,每一步只引入一个变量,同时建立 一个偏回归方程。当一个变量被引入后,对原已引入 回归方程的变量,逐个检验他们的偏回归平方和。如 果由于引入新的变量而使得已进入方程的变量变为不 显著时,则及时从偏回归方程中剔除。在引入了两个 自变量以后,便开始考虑是否有需要剔除的变量。只 有当回归方程中的所有自变量对Y都有显著影响而不需 要剔除时,在考虑从未选入方程的自变量中,挑选对Y 有显著影响的新的变量进入方程。不论引入还是剔除 一个变量都称为一步。不断重复这一过程,直至无法 剔除已引入的变量,也无法再引入新的自变量时,逐 步回归过程结束。

《SPSS数据分析教程》 ——回归分析43页PPT

《SPSS数据分析教程》 ——回归分析43页PPT
《SPSS数据分析教程》 ——回归分 析
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

用SPSS做回归分析ppt课件

用SPSS做回归分析ppt课件
从而用以进行预测或控制,达到指导生产活动的目的。
例1、某医学研究所对30个不同年龄的人的血压(高 压)进行了测量,得到如下数据:
年龄 39 47 45 47 65 45 67 42 67 56 36 50 39 21 44 血压 144 120 138 145 162 142 170 124 158 154 136 142 120 120 116 年龄 64 56 59 34 42 48 45 17 20 19 53 63 29 25 69 血压 162 150 140 110 128 130 135 114 116 124 158 144 130 125 175
初步分析作图察看按statisticsregressionlinear顺序展开对话框将y作为因变量选入dependent框中然后将其他变量选入作为自变量选入independents框中method框中选择stepwise逐渐回归作为分析方式单击statistics按钮进展需求的选择单击continue前往回归模型的建立被引入与被剔除的变量回归方程模型编号引入回归方程的自变量称号从回归方程被剔除的自变量称号回归方程中引入或剔除自变量的根据结果分析由复相关系数r0982阐明该预告模型高度显著可用于该地域大春粮食产量的短期预告常用统计量方差分析表回归方程为
在最优的方程中,所有变量对因变量Y的影响都应 该是显著的,而所有对Y影响不显著的变量都不包含 在方程中。选择方法主要有:
•逐步筛选法(STEPWISE) (最常用) •向前引入法(FORWARD) •向后剔除法(BACKWARD)等
逐步回归的基本思想和步骤:
开始
对不在方程中的变 量考虑能否引入?
能 引入变量
X1 137. 0 148. 0 154. 0 157. 0 153. 0 151. 0 151. 0 154. 0 155. 0 155. 0 156. 0 155. 0 157. 0 156. 0 159. 0 164. 0 164. 0 156. 0

《spss回归与相关》PPT课件

《spss回归与相关》PPT课件

制作:王立芹
a
Met hod
St epwise
(Crit eria: Probabilit
y-of -
F-to-enter
.
<= .050,
Probabilit y-of -
F-to-remo
ve >= . 100).
St epwise
(Crit eria:
Probabilit y-of -
F-to-enter
1
Sig. (2-tailed)
.000
N
15
15
**. Correlation is significant at the 0.01 level (2-tailed).
23.11.2020 23:43:55
制作:王立芹
2.秩相关
例13-2 某医生收集12例急性脑梗死(AMI)病人, 记录了患者在抢救期间的总胆固醇,用爱丁堡-斯堪 的那维亚神经病学中SNSS量表评分标准评定患者 的神经功能缺损程度,试分析总胆固醇与神经功能 评分是否相关。
Model
B Std. Error Beta
t
1 (Consta6n.7t)74 .156
43.545
x3
.110 .027
.693 4.079
a.Dependent Variable: y
Sig. .000 .001
23.11.2020 23:43:57
制作:王立芹
R e g re s s io n S ta n d a rd iz e d R e s id u a l
23.11.2020 23:43:57
制作:王立芹 23.11.2020 23:43:57

SPSS数据分析教程回归分析PPT课件

SPSS数据分析教程回归分析PPT课件

F
SSR / SSE /(n
p p
1)
SSR /1 SSE /(n 2)
MSR MSE
回归均方 残差均方
第19页/共41页
• SPSS在回归输出结果的ANOVA表中给出SSR,SSE,SST和F统计量的取值,同时给出F值的显著性值(即 p值)。
第20页/共41页
用回归方程预测
• 在一定范围内,对任意给定的预测变量取值,可以利用求得的拟合回归方程进行预测。其预测值为: • SPSS可以提供标准化的预测值和调整的预测值
第11页/共41页
简单回归方程的求解

我们希望根据观测值估计出简单回归方程中的待定系数 ¯0和¯1,它们使得回归方程对应的响应变量的误
差达到最小,该方法即为最小二乘法。
也就是求解¯0和 ¯1, 使 得
达到最小。

把得到的解记为
,则回归方程为
n
S(0, 1) ( yi 0 1xi )2 i 1
• 选择【分析】→【回归】→【线性】。把Units选入到自变量框中;把Minuts选入到因变量框中。其他选 项保留默认值。
第23页/共41页
SPSS回归分析
第24页/共41页
回归度检验
第26页/共41页
多元线性回归
• 实际应用中,很多情况要用到多个预测变量才能更好地描述变量间的关系,如果这些预测变量在预测方程 中的系数为线性,那么回归方程称为多元线性回归方程。就方法的实质来说,处理多个预测变量的方法与 处理一个预测变量的方法基本相同。
第30页/共41页
• F检验的 被拒绝,并不能说明所有的自变量都对因变量Y有显著影响,我们希望从回归方程中剔除那些统 计上不显著的自变量,重新建立更为简单的线性回归方程,这就需要对每个回归系数做显著性检验。

SPSS回归分析应用PPT课件

SPSS回归分析应用PPT课件
第49页/共379页
表7-1 强度与拉伸倍数的试验数据
序号 1 2 3 4 5 6 7 8 9 10 11 12
拉伸倍数 2.0 2.5 2.7 3.5 4.0 4.5 5.2 6.3 7.1 8.0 9.0 10.0
第50页/共379页
强度(kg/mm2) 1.6 2.4 2.5 2.7 3.5 4.2 5.0 6.4 6.5 7.3 8.0 8.1
第4页/共379页
• 在回归分析中,因变量y是随机变量, 自变量x可以是随机变量,也可以是非随机的 确定变量;而在相关分析中,变量x和变量y都 是随机变量。
• 相关分析是测定变量之间的关系密切 程度,所使用的工具是相关系数;而回归分析 则是侧重于考察变量之间的数量变化规律,并 通过一定的数学表达式来描述变量之间的关系, 进而确定一个或者几个变量的变化对另一个特 定变量的影响程度。
b. Dependent Variable: 财 政 收 入 ( 亿 元 )
第40页/共379页
(2)回归方程的显著性检验(F检验) 回归方程的显著性检验是对因变量与所有 自变量之间的线性关系是否显著的一种假设检 验。 回归方程的显著性检验一般采用F检验,利用 方差分析的方法进行。
第41页/共379页
第42页/共379页
5、回归方程的显著性检验 F检验:检验因变量和诸自变量之间是否存在显著的 线性关系。
检验的假设为:
对给定的显著性水平 ,查F分布表确定临界值。 ,拒绝原假设,说明回归方程显著。
第43页/共379页
变差来源 平方和 自由度
回归 残差 总和
方差
F统计量
第44页/共379页
(3)回归系数的显著性检验(t检验) 所谓回归系数的显著性检验,就是根据样 本估计的结果对总体回归系数的有关假设进行 检验。 之所以对回归系数进行显著性检验,是因 为回归方程的显著性检验只能检验所有回归系 数是否同时与零有显著性差异,它不能保证回 归方程中不包含不能较好解释说明因变量变化 的自变量。因此,可以通过回归系数显著性检 验对每个回归系数进行考察。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

《SPSS数据分析教程》 ——回归分析43页PPT

《SPSS数据分析教程》 ——回归分析43页PPT
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非Leabharlann 《SPSS数据分析教程》 ——回归分析
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
谢谢你的阅读

spss第五讲回归分析PPT课件

spss第五讲回归分析PPT课件
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)


0




0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值

9-3(回归分析)—SPSS之回归分析课件PPT

9-3(回归分析)—SPSS之回归分析课件PPT

4、S形曲线
y
a
1 bex
y
b>1 b=1
b<1
x
a>0 b>0
y
O
x
步骤
1、调入数据。 2、由graphs=>scatter做散点图观察数据满足何种曲线。 3、依次选取菜单:
Analyze=>regression=>curve estimation 4、将自变量选入independent框中,因变量选入
第2节 曲线回归
应用回归分析
一、可ห้องสมุดไป่ตู้性化的曲线有很多,例如以下几种:
1、 2、 3、 4、 5、 6、
二、以下几种常用的曲线:
1、双曲线 y a b x
y
y
x
a>0 b<0
应用回归分析
a>0 b>0
x
2、指数曲线 y=aebx
应用回归分析
y
b<0
y
b>0
x
x
3、幂函数曲线 y=axb
应用回归分析
dependent框中。 5、在models框中选择合适的曲线。 6、Plot Models :绘制回归线;
Display ANOVA table:输出各个模型的方差分析表和 各回归系数显著性检验结果
步骤
7. save:保存变量. Save Variables:保存预测值,残差,预测区间 Predict Cases:预测个案 Predict from estimation period through last case: 通过最后一个个案预测周期 Predict through:预测条件
实例分析
例1: 教育支出的相关因素分析
(1)画教育支出和年人均消费性支出的关系 (2)利用二次,三次,复合,幂函数模型进行分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化残差 学生化残差
本对话框用来定义存储 进入数据文件的新变量
图5 “Linear Regression: Save”对话框
预测区间
均数的置信区间 个体的容许区间
Yˆi t 2,vse
1 n
(xi x)2 x2 nx 2
Yˆi t 2,vse
实现步骤
图1 在菜单中选择“Linear”命令
因变量
自变量
指定回归方法
全部选入
图2 “Linear Regression”对话框
与回归系数相 关的统计量
提供决定系数、估计 标准误、ANOVA表等
异常值诊断
报告残差超过2个标 准差的被试
图3 “Linear Regression: statistics”对话框
回归分析
1
1
回归分析基本概念
2
一元线性回归分析
3
多元线性回归分析
1
回归分析基本概念
回归分析主要解决以下几方面的问题:
通过分析大量的样本数据,确定变量之间的数学关系式。
对所确定的数学关系式的可信程度进行各种统计检验,并 区分出对某一特定变量影响较为显著的变量和影响不显著的 变量。 利用所确定的数学关系式,根据一个或几个变量的值来预 测或控制另一个特定变量的取值,并给出这种预测或控制的 精确度。
异常值 a 不影响 异常值 b 影响
• 第i个观察值的学生化残差
resid studentized

yi yˆi S yi yˆi

s
yi yˆi
1(1 n
(
xi ( xi
x
)2 x)
2
)
n
yi yˆi 2
s i1 n2
S yi yˆi 考虑了用来计算残差的 yˆi 值有不同的方差。这种
b1

r
sY sX
标准化回归系数
zˆY rzx
zˆY zx
(2)第二部分 异常值分析
resid standardized
yˆi yi s
where s std dev of residuals
n
yi yˆi 2
s i1 n2
如果标准化残差超过2/-2,称为异常值outliers。 当样本量比较小,异常值又会影响回归系数的估计时,应 该关注异常值的影响。
1 1 n
(xi x)2 x2 nx 2
2.3 结果和讨论
(1)输出的结果文件中的第一部分:
X与Y的简单相关系数
估计标准误
Se
ei2 n2
( yi yˆi )2 n2
• 1)决定系数R2
R2 SSR 1 SSE SST SST
它表示在因变量y的总变异中可由回归方程所解释部分的 比例。 0<R2≤1, 越接近于1, 说明回归方程效果越好。
表1强度与拉伸倍数的试验数据
序号 1 2 3 4 5 6 7 8 9 10 11 12
拉伸倍数 2.0 2.5 2.7 3.5 4.0 4.5 5.2 6.3 7.1 8.0 9.0 10.0
强度(kg/mm2) 1.6 2.4 2.5 2.7 3.5 4.2 5.0 6.4 6.5 7.3 8.0 8.1
2
一元线性回归分析
2.1 统计学上的定义和计算公式
定义:一元线性回归分析是分析某一个因素 (自变量)是如何影响另一事物(因变量)的过程, 所进行的分析是比较理想化的。其实,在现实生活 中,任何一个事物(因变量)总是受到其他多种事 物(多个自变量)的影响。
2.2 SPSS中实现过程
研究问题
合成纤维的强度与其拉伸倍数有关,测得试验 数据如表9-1所示。求合成纤维的强度与拉伸倍数之 间是否存在显著的线性相关关系。
n
(xi - x)2 (x - x)2
• 个体的容许区间(参考值范围):
均数界值×标准差 ∑ Yˆi ±tα 2,vse
1 1+ n +
(xi - x)2 (x -x)2
可信区间与预测区间示意图
3
多元线性回归分析
3.1 统计学上的定义
定义:在上一节中讨论的回归问题只涉及了一 个自变量,但在实际问题中,影响因变量的因素往 往有多个。例如,商品的需求除了受自身价格的影 响外,还要受到消费者收入、其他商品的价格、消 费者偏好等因素的影响;影响水果产量的外界因素 有平均气温、平均日照时数、平均湿度等。
2)校正的决定系数Adj R2
Adj R2
1
MSE MST
0<AdjR2≤1, 越接近于1, 说明回归方程效果越好。
即使自变量对Y无显著意义,R2也随方程中的变 量个数增加而增加。Adj R2可以惩罚复杂模型。
结果显示:回归方程显著,即合成纤维的强度受拉伸倍数的显著影响
截距 回归系数
F=t2
3.2 逐步回归
• 研究者往往是根据自己的经验或借鉴他人 的研究结果选定若干个自变量,这些自变 量对因变量的影响作用是否都有统计学意 义还有待于考察。
• 在建立回归方程的过程中有必要考虑对自 变量进行筛选,挑选出若干个与因变量作 用较大的变量建立回归方程。剔除那些对 因变量没有影响的变量,从而建立一个较 理想和稳定的回归方程。
调整能够使残差分析更加敏感地发现方差不齐。
学生化残差超过2和-2的点可认为是异常值
(3)第三部分 数据窗口的存储
未标准化残差 标准化残差 学生化残差
预测区间
均数的置信区间 个体的容许区间
1.7 利用回归方程进行估计和预测
• 均数的置信区间:
均数界值×标准误 ∑ Yˆi ±tα 2,vse
1 +
逐步回归的思想:
• 1. 开始方程中没有自变量,然后按自变量 对y的贡献大小由大到小依次挑选进入方程, 每选入一个变量,都要对进行检验,决定变 量的取或舍。
2. 每一步都作一次如下的检验:
H0 : p个自变量为好 H1 : p+1个自变量为好
采用F作为统计量。
SSE (H0 )-SSE (H1 ) F=
SSE(H1 )/ (n-p-2)
其中SSE (H0 )表示用p个变量回归的残差平方和 SSE (H1 )表示用p+1个变量回归的残差平方和。
标准化预测值 标准化残差
剔除残差 调整预测值 学生化残差 学生化剔除残差
标准化残差图
直方图
输出标准化残差相对
正态概率图 于因变量的散布图
图4 “Linear Regression:Plots”对话框
• 对应x值的残差图
y yˆ
0 x
良好模式
y yˆ
0
x
方差不齐
y yˆ
0
x
不满足线性回归假设
相关文档
最新文档