大物习题答案第6章 波动光学教学内容

合集下载

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理下册波动光学习题解答 杨体强

大学物理下册波动光学习题解答  杨体强

动摇光教习题解问之阳早格格创做1-1 正在杨氏真验拆置中,二孔间的距离等于通过光孔的光波少的100倍,接支屏与单孔屏相距50cm.供第1 级战第3级明纹正在屏上的位子以及它们之间的距离.解:设二孔间距为d,小孔至屏幕的距离为D,光波波少为λ,则有=100dλ. (1)第1级战第3级明条纹正在屏上的位子分别为(2)二搞涉条纹的间距为1-2 正在杨氏单缝搞涉真验中,用0λ的氦氖激光束笔直=6328A映照二小孔,二小孔的间距为1.14mm,小孔至屏幕的笔直距离为1.5m.供正在下列二种情况下屏幕上搞涉条纹的间距. (1)所有拆置搁正在气氛中;(2)所有拆置搁正在n=1.33的火中.解:设二孔间距为d,小孔至屏幕的距离为D,拆置所处介量的合射率为n,则二小孔出射的光到屏幕的光程好为所以相邻搞涉条纹的间距为(1)正在气氛中时,n=1.于是条纹间距为(2)正在火中时,n=1.33.条纹间距为1-3 如图所示,S、2S是二个相搞光源,它们到P面的距离分别为r战2r.路径1S P笔直脱过一齐薄度为1t、合射率为11n 的介量板,路径2S P 笔直脱过薄度为2t ,合射率为2n 的另一齐介量板,其余部分可瞅搞真空.那二条路径的光程好是几? 解:光程好为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用搞涉局里测定气体合射率的本理性结构,正在1S 孔后里搁置一少度为l 的透明容器,当待测气体注进容器而将气氛排出的历程中幕上的搞涉条纹便会移动.由移过条纹的根数即可推知气体的合射率.(1)设待测气体的合射率大于气氛合射率,搞涉条纹怎么样移动?(2)设 2.0l cm =,条纹移过20根,光波少为589.3nm ,气氛合射率为1.000276,供待测气体(氯气)的合射率.解:(1)条纹进与移动.(2)设氯气合射率为n,气氛合射率为n 0=1.002760,则有:所以0k n =n + 1.00027600.0005893 1.0008653lλ=+= 1-5 用波少为500 nm 的单色光笔直映照到由二块光教仄玻璃形成的气氛劈尖上.正在瞅察反射光的搞涉局里中,距劈尖棱边1=1.56 cm 的A 处是从棱边算起的第四条暗条纹核心.(1)供此气氛劈尖的劈尖角θ;(2)改用600 nm 的单色光笔直映照到此劈尖上,仍瞅察反射光的搞涉条纹,A 处是明条纹仍旧暗条纹?(3)正在第(2)问的情形从棱边到A处的范畴内公有几条明纹,几条暗纹?1-6 正在单缝搞涉拆置中,用一很薄的云母片(n=1.58)覆盖其中的一条狭缝,那时屏幕上的第七级明条纹恰佳移动到屏幕中央整级明条纹的位子.如果进射光的波少为5500A,则那云母片的薄度应为几?解:设云母片的薄度为e,则由云母片引起的光程好为按题意得=7δλ1-7 波少为500nm的单色仄止光射正在间距为0.2mm的单狭缝上.通过其中一个缝的能量为另一个的2倍,正在离狭缝50cm 的光屏上产死搞涉图样.供搞涉条纹间距战条纹的可睹度.1-8 一仄里单色光笔直映照正在薄度匀称的薄油膜上,油膜覆盖正在玻璃板上,油的合射率为1.20,玻璃的合射率为1.50.若单色光的波少可由光源连绝可调,可光侧到500nm 到700nm 那二个波少的单色光正在反射中消得,试供油膜层的薄度.问: 油膜上、下二表面反射光的光程好为2ne ,由反射相消条件有12(21)()22ne k k k λλ=+=+ (0,1,2,)k =⋅⋅⋅ ① 当15000λ=o A 时,有111112()25002ne k k λλ=+=+ ②当27000λ=oA 时,有222212()35002ne k k λλ=+=+ ③ 果21λλ>,所以21k k <;又果为1λ与2λ之间没有存留3λ谦脚3312()2ne k λ=+式 即没有存留 231k k k <<的情形,所以2k 、1k 应为连绝整数, 即 211k k =- ④由②、③、④式可得:得 13k = 2112k k =-=可由②式供得油膜的薄度为11250067312k e nλ+== 1-9 透镜表面常常镀一层MgF 2(n=1.38)一类的透明物量薄膜,手段利用搞涉去落矮玻璃表面的反射.为了使透镜正在可睹光谱的核心波少(550nm )处爆收极小的反射,则镀层必须有多薄?解:由于气氛的合射率n=1,且有12n n n <<,果为搞涉的互补性,波少为550nm 的光正在透射中得到加强,则正在反1-10 用单色光瞅察牛顿环,测得某一明环的直径为3nm ,正在它中边第5个明环的直径为4.6mm ,所用仄凸镜的凸里直率半径为1.03m ,供此单色光的波少.解:第k 级明环半径为:1-11 正在迈克我逊搞涉仪的一侧光路中拔出一合射率为n=1.40的透明介量膜,瞅察到搞涉条纹移动了7条,设进射光波少为589.0nm ,供介量膜的薄度.解: 拔出薄度为d 的介量膜后,二相搞光的光程好的改变量为2(n-1)d,进而引起N 条条纹的移动,根据劈尖搞涉加强的条件1-12 正在单缝妇琅禾费衍射中,波少为λ的单色光笔直进射正在单缝上,睹图.若对付应于汇散正在P 面的衍射光芒正在缝宽a 处的波阵里恰佳分成3个半波戴,图中AB=BC=CD ,则光芒1战光芒2正在P 面的相位好为几?P 面是明纹仍旧暗纹?解:(1)相位好为2=πϕδλ∆,而3=2λδ,所以相位好为π. (2)由妇琅战费单缝衍射条纹的明暗条件不妨推断出P 面为明纹.1-13 波少为600nm λ=的单色光笔直进射到一光栅上,测得第二级主极大的衍射角为030,且第三级是缺级. (1)光栅常数d 等于几?(2)光栅上狭缝大概的最小宽度a 等于几?(3)依照上述选定的d 战a 的值,供正在屏幕上大概浮现的局部主极大的级次.解:由衍射圆程:sin d k θλ=,(2)光栅缺级级数谦脚:若第三级谱线缺级,透光缝大概的最小宽度为:(3)屏幕上光栅衍射谱线的最大级数:0dsin 90k λ=,k =4dλ∴=屏幕上光栅衍射谱线的缺级级数:屏幕上大概出现的局部主极大的级数为:210±±,,共5个条纹.1-14 波少为600.0nm 的单色光笔直进射正在一光栅上,第二、第三级明条纹分别出当前衍射角θ谦脚sin 0.20θ=与sin 0.30θ=处,第四级缺级,试问:(1)光栅上相邻二缝的间距是多大?(2)光栅狭缝的最小大概宽度a 是多大?(3)按上述选定的a 、d 值,试列出屏幕上大概浮现的局部级数解:(1)由光栅圆程波少为600nm 的第二级明条纹谦脚:解得光栅相邻二缝的间距为:(2)第四级缺级,道明该目标上的搞涉极大被衍射极小调造掉了,果调造掉的搞涉极大级数为:当k=4时,与'=1k ,得到狭缝最小宽度为:6a= 1.5104d m -=⨯ (3) 与sin 1.0θ=,得所以有大概瞅到的最大级数为9±.又由于48±±,级缺级,故屏幕上大概浮现的局部级数为0,1235679±±±±±±±,,,,,,. 1-15 用黑光(波少从400.0nm 到700.0nm)笔直映照正在每毫米中有500条刻痕的光栅上,光栅后搁一焦距f=320毫米的凸透镜,试供正在透镜焦仄里处光屏上第一级光谱的宽度是几?解:光栅常数 1d 0.002500mm ==, 由光栅圆程 sin d k θλ=,采用k=1,所以10400=sin 11.537k dλθ-=,0700=20.487θ 果此第一级光谱衍射角宽度:0=8.95=0.1562rad θ∆第一级光谱宽度:L=f 50mm θ∆=.1-16 波少为05000A 的仄止光芒笔直天进射于一宽度为1mm 的狭缝,若正在缝的后里有一焦距为100cm 的薄透镜,使光芒焦距于一屏幕上,试问从衍射图形的核心面到下列格面的距离怎么样?(1)第一极小;(2)第一明文的极大处;(3)第三极小. 解:(1)由暗纹公式:a sin 22k λϕ=± 第一极小即为:k=1,故有: 所以2-9-310010x 50010=0.5mm a 110f λ-⨯≈±=±⨯⨯±⨯ (2)由明纹公式:a sin (2+1)2k λϕ=±第一极大即为:k=1,故有: 所以3x 0.75mm 2a f λ≈±=±(3) 由暗纹公式:a sin 22k λϕ=± 第三极小即为:k=3,故有: 所以3x 1.5mm a f λ≈±=±1-17 正在迎里驰去的汽车上,二盏前灯相距122cm ,试问汽车离人多近的场合,眼睛恰可辨别那二盏灯?设夜间人眼瞳孔直径为5.0mm ,进射光波少05500A =λ(那里仅思量人眼瞳孔的衍射效力).解:有辨别率公式: 1.22=Dλδφ 人眼可辨别的角度范畴是:-9-3-31.2250010==0.134210rad 510δφ⨯⨯⨯⨯ 由闭系tan =l s δφ,得到:31.2s=8.94tan 0.134210l l km δφδφ-≈==⨯ 1-18 NaCl 的晶体结构是简朴的坐圆面阵,其分子量M=58.5,稀度317.2g=ρ,(1)试证相邻离子间的仄衡距离为式中mol N A /1002.623⨯=为阿伏加德罗常数;(2)用X 射线映照晶里时,第二级光谱的最大值正在掠射角炎1°的目标出现.试估计该X 射线的波少.解:(1)晶胞的棱边少为d,那么二离子间的仄衡距离0d 2d =.现估计晶胞的棱边少d,由于每个晶胞波包罗四个NaCl 分子,那么稀度ρ为那里,NaCl 分子的品量由下式给出:所以晶胞的棱边少有底下二式联坐得那么相邻二离子的仄衡距离0d 为(2)根据布推格圆程:正在j=2时,有0002d sin = 2.819sin10.00492nm αλ==1-29 四个理念偏偏振片堆叠起去,每片的通光轴相对付前一个皆是逆时针转化030.非偏偏振光进射,脱过偏偏振片堆后,光强形成几?解:设进射光的光强度为0I ,出射光的强度为I ,则有:1-20 将透振目标相互仄止的二块偏偏振片M 战N 共轴仄止搁置,并正在它们之间仄止天拔出另一偏偏振片B ,B 与M 透振目标夹角为θ.若用强度为0I 的单色自然光笔直进射到偏偏振片M 上,并假设没有计偏偏振片对付光能量的吸支,试问透过检偏偏器N 出射光强度怎么样随θ而变更.解0,再通过B,N 后出射光强为1-21 布儒斯特定律提供了一个测定没有透明介电体合射率的要领.测得某一介电体的布儒斯特角为057,试供该介电体的合射率.解:根据布儒斯特定律:不妨得出介电体的合射率为02B 1=tan =5704847n i n ta .n =1-22 线偏偏振光笔直进射到一齐表面仄止于光轴的单合射波片,光的振荡里战波片光轴成025 角,问波片中的觅常光战非常光透射出去后的相对付强度怎么样?解:将进射的线偏偏振光分别背x,y 目标投影 得2020020e I sin 25tan 25=0.0178I cos 25I I ==1-23 一线偏偏振光笔直进射到一圆解石晶体上,它的振荡里战主截里成030角,二束合射光通过正在圆解石后里的一个僧科耳棱镜,其主截里与人射光的振荡目标成050角.估计二束透射光的相对付强度.解:(1)当进射光振荡里与僧科耳棱镜主截里分居晶体主截里二侧时20e1113I cos 304I I ==(2) 进射光振荡里与僧科耳棱镜主截里分居晶体主截里二侧时1-24 线偏偏振光笔直进射到一个表面战光轴仄止的波片,透射出去后,本去正在波片中的觅常光及非常光爆收了大小为π的相位好,问波片的薄度为几?已知o n =1.5442, e n =1.553,λ=500nm ;问那块波片应何如搁置才搞使透射出去的光是线偏偏振光,而且它的振荡里战进射光的振荡里成90°角? 解:(1)2d(n n )(2k 1)o e ππλ-=+(2)由(1)可知该波片为1/2波片,要透过1/2波片的线偏偏振光的振荡里战进射光的振荡里笔直即为:002=90=45θθ⇒1-25 自然光投射到互相沉叠的二个偏偏振片上,如果透射光的强度为(1)透射光束最大强度的l/3,(2)进射光束强度的1/3, 则那二个偏偏振片的透振目标之间夹角是多大?假定偏偏振片是理念的,它把自然光的强度庄重缩小一半. 解:自然光通过二个偏偏振片,透射光强为:20I I=cos 2θ 透射最大光强为0I 2(1)由题意得:0I 1I=23(2) 由200I I cos =23θ‘可知:1-26 将一偏偏振片沿45o角拔出一对付正接偏偏振器之间,自然光通过它们强度减为本去的百分之几?解:设偏偏振片P 1,P 2正接,则最后通过P 2的光强为I 2=0(消光).若正在P 1,P 2之间拔出另一齐偏偏振片P,P 与P 1夹角为θ,则最后通过P 2的光强为'22222101I =Isin cos sin sin 28I I θθθθ==当0=45θ 时,'20I 1==12.5%I 81-27 使一光强为0I 的仄里偏偏振光先后通过二个偏偏振片1P战2P ,1P 战2P 的偏偏振化目标与本进射光光矢量振荡目标的夹角分别为α战90o,则通过那二个偏偏振片后的光强I 是几?解:由马吕斯定律,偏偏振片通过第一个偏偏振片后,光强为α201cos I I =.再通过第二个偏偏振片后, 光强为:)2(sin 41sin cos )90(cos cos )90(cos 2022022021ααααααI I I I I ==-=-=1-28 正在下列五个图中,1n 、2n 为二种介量的合射率,图中进射角021arctan()in n =, 0i i ≠ ,试正在图上绘出本量存留的合射光芒战反射光芒,并用面或者短线把振荡目标表示出去. 解:1-29 三个偏偏振片1P 、2P 、3P 按此程序叠正在所有,1P 、3P 的偏偏振化目标脆持相互笔直,1P 、2P 的偏偏振化目标的夹角为α,2P 不妨进射光芒的目标为轴转化,现将光强为的单色自然光笔直进射正在偏偏振片上,0I 没有思量偏偏振片对付可透射分量的反射战吸支.(1)供脱过三个偏偏振片后的透射光强度I 与角α的函数闭系式;(2)定性绘出正在2P 转化一周的历程中透射光强I 随角α变更的函数式.解:(1) 由马吕斯定律,光强为0I 的自然光连绝脱过三个偏偏振片后的光强为:ααπα2sin 81)2(cos cos 2120220I I I =-=(2) 直线如下图所示:1-30一种介量射到第二种介量时,起偏偏振角为12i ;从第二种介量射到第一种量时,起偏偏振角为21i .若1221ii >,问哪一种介量是光稀介量?1221ii +等于几?解:(1)第一种介量为光稀介量 (2) 01221=90ii +4244281I1-31 线偏偏振光笔直进射于表面与光轴仄止的石英波片,已知 1.544on=,供:(1)若进射光振荡目标与光轴成30o角,试估计通过波片后,o 光、e 光强度之比是几?假设无吸支.(2)若波片的薄度为0.2毫米,透过二光的光程好是几? 解:(1) o 光、e 光强度之比为:(2)若波片的薄度为0.2mm ,透过二光的光程好为: 1-32 将50克含杂量的糖溶解于杂火中,造成100坐圆厘米的糖溶液,而后将此溶液拆进少10厘米的玻璃管中.今有单色线偏偏振光笔直于管端里沿管的核心轴线通过.从检偏偏器测得光的振荡里转化了32.34o,已知糖溶液的旋光系数66α=(度·厘米3/(分米·克)),试估计那种糖的浓度(即含有杂糖的百分比). 解:Cd αψ=糖的品量为:)(6.4100046.0g CV m =⨯== 糖的杂度为:%2.9506.4=1-33 怎么样用检偏偏镜、四分之一波片去鉴别百般偏偏振光.解:采用与自然光战偏偏振光波少相映的四分之一波片.令光先通过四分之一波片,再用偏偏振片瞅察,当偏偏振片转化时,透射光光强有变更的是圆偏偏振光,而光强没有变的是自然光.那是果为圆偏偏振光通过四分之一波片后形成线偏偏振光,再用偏偏振片瞅察会有消光局里.自然光通过四分之一波片,将产死无贫多个无牢固位相闭系的百般椭圆偏偏振光,其推拢后仍旧是自然光,用偏偏振片瞅察光强无变更.几许光教习题解问2-1 一根直径为8.0cm的少玻璃棒的一端磨成半径为4.0cm 的光润凸状球里,已知玻璃的合射率为1.50.如果将物体搁于棒轴上距此端里分别为无限近、16.0cm战4.0cm,供像的位子.解:根据单球里合射公式:所以(1)当1=l-∞时,供得:2=12cml,表示像正在玻璃棒内距端里12cm处;(2) 当1=16.0cml-时,供得:2=24cml,表示像正在玻璃棒内距端里24cm处;(3) 当1= 4.0cml-时,供得:2=-12cml,表示像正在玻璃棒中距端里12cm处.2-2 将上题中的玻璃棒置于某种液体中,正在棒轴上离棒的端里60.0cm处搁一物体,创造像呈正在玻璃棒内距端里100.0cm处,供液体的合射率.解:根据单球里合射公式:将R=4.0cm,l1=-60cm,l2=100cm,战n2=1.50戴进上式不妨得到:2-3 有一直率半径为20.0cm 的凸里镜,先后搁正在气氛(合射率为1.00)战火(合射率为1.33)中,供那二种情况下的焦距.解:反射镜的焦距与决于镜里的直率半径,与介量的本量无闭.所以2-4 试道明:当凸里镜对付物体成像时,无论物体搁正在那边,像经常缩小的真象.道明:根据球里镜的下斯公式: 12111l l f+= 不妨得到:121fl l l f=- 将上式戴进球里反射的横背搁大率公式,不妨得到:211m l f l l f=-=-- 对付于凸里镜,总有0f >,10l <也便是道,上式分子总为正值,分母总为背值,别且分母的千万于值经常大于分子的,所以由上式决断的横背搁大率经常小于1的正值.那表示,凸里镜所成的像经常缩小的真像,而且是正坐的.2-5 汇散透镜的焦距为10.0cm ,当像面处于主光轴上并距光心分别20.0cm 战5.0cm 时,试决定像的位子、大小、正倒战真真.解:(1)正在1=-20.0cm l 的情况下,将已知量戴进薄透镜成像公式:12111l l f-=得:2111=2010l --从中解得:2=20.0cml 此时横背搁大率为:2120 1.0020l m l =-==-- 以上截止表示,像处于薄透镜之后距离光心20.0cm 处,与物等大,是倒坐的真像;(2) 正在1=-5.0cm l 的情况下,将已知量戴进薄透镜成像公式得:2=-10.0cm l 此时横背搁大率为:2110 2.005l m l -=-==-以上截止表示,像处于薄透镜之后距离光心10.0cm 处,像是物的2倍,是正坐的真像.2-6 有二个薄透镜相距 5.0cm ,第一个薄透镜是焦距为10.0cm 的会散透镜,第二个薄透镜是焦距为-10.0cm 的收集透镜.现有一物面搁于会散透镜前圆20.0cm 处,试决定像的位子战真真.解:对付于第一个透镜(会散透镜):根据薄透镜成像的下斯公式,有111=2010l-- 供得像距为:=20.0cm l对付于第二个透镜(收集透镜):根据薄透镜的成像的下斯公式,有:2111=(205)10l --- 供得像距为:2=30.0cm l -2-7 有一焦距为10.0cm 的搁大镜,可瞅做薄透镜.如果像呈当前瞅察者的明视距离,即少远圆25.0cm 处,那么该当把被瞅察的物体搁正在什么位子?若物体的下度为1.0mm ,像的下度多大?解:根据薄透镜成像的下斯公式,有:1111=2510l -- 供得物距为1=7.1cm l -,被瞅察物体应搁正在镜前7.1cm 处.像的下度为:。

(完整版)大学物理波动光学的题目库及答案

(完整版)大学物理波动光学的题目库及答案

一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m) (A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍. (E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲O y x λL C fa使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm .(C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10­9m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.水玻璃大学物理------波动光学参考答案 一、选择题 01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。

大学物理之波动光学习题与解答

大学物理之波动光学习题与解答

r1.如图,S1、S2 是两个相干光源,它们到P 点的距离分别为r1 和r2.路径S1P 垂直穿过一块厚度为t1,折射率为n1 的介质板,路径S2P 垂直穿过厚度为t2,折射率为S1t1 r1Pt21 2(A) (r2 + n2t2 ) − (r1 + n1t1 )(B) [r2 + (n2 − 1)t2 ] −[r1 + (n1 − 1)t2 ](C) (r2 − n2t2 ) − (r1 − n1t1 )S2 n2(D) n2t2 − n1t12. 如图所示,波长为λ的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面n1 λ反射的两束光发生干涉.若薄膜厚度为e,而且n1>n2>n3,则两束反射光在相遇点的相(B) 2πn2 e / λ.(A) λD / (nd) (B) nλD/d.(C) λd / (nD).(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.5.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光(A) r k = kλR .(B) r k = kλR / n .(C) r k = knλR .(D) r k = kλ /(nR)二.填空题:1.在双缝干涉实验中,两缝分别被折射率为n1 和n2 的透明薄膜遮盖,二者的厚度均为e.波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=.2. 在双缝干涉实验中,双缝间距为d,双缝到屏的距离为D (D>>d),测得中央零级明纹与第五级明之间的距离为x,则入射光的波长为.3.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距;若使单色光波长减小,则干涉条纹间距.4. 在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm,双缝与屏间的距离D=300 mm,双缝间距为d=0.134 mm,则中央明条纹两侧的两个第三级明条纹之间的距离为.n2en3n一.选择题:n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于( )位差为( )(A) 4πn2e/λ.(C) (4πn2e/λ)+π.(D) (2πn2e/λ)−π.3.把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D(D>>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是( )(D)λD/(2nd).4.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是( )程大2.5λ,则屏上原来的明纹处( )(A)仍为明条纹;(B)变为暗条纹;(C)既非明纹也非暗纹;(D)无法确定是明纹,还是暗纹6.在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为( ).一.光的干涉5. 图 a 为一块光学平板玻璃与一个加工过的平面一端接触,构成的空气劈尖,用波 长为λ的单色光垂直照射.看到反射光干涉条纹(实线为暗条纹)如图 b 所示.则干涉 图 a 条纹上 A 点处所对应的空气薄膜厚度为 e = .图 b6. 用波长为λ的单色光垂直照射到空气劈形膜上,从反射光中观察干涉条纹, 距顶点为 L 处是暗条纹.使劈尖角θ 连续变大,直到该点处再次出现暗条纹为止.劈尖角 的改变量∆θ是.7. 波长为λ的平行单色光垂直照射到劈形膜上,若劈尖角为θ (以弧度计),劈形膜的折射率为 n ,则反射光形成的干 涉条纹中,相邻明条纹的间距为 .8. 波长为λ的平行单色光垂直地照射到劈形膜上,劈形膜的折射率为 n ,第二条明纹与第五条明纹所对应的薄膜厚 度之差是 .9. 已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离 d 的过程中,干涉条纹将移动 条.10. 在迈克耳孙干涉仪的一条光路中,插入一块折射率为 n ,厚度为 d 的透明薄片.插入这块薄片使这条光路的光 程改变了 .11. 以一束待测伦琴射线射到晶面间距为 0.282 nm (1 nm = 10-9 m)的晶面族上,测得与第一级主极大的反射光相应 的掠射角为 17°30′,则待测伦琴射线的波长为 .三.计算题:屏AθL1.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1)零级明纹到屏幕中央O 点的距离.(2)相邻明条纹间的距离.2.在杨氏双缝实验中,设两缝之间的距离为 0.2 mm .在距双缝 1 m 远的屏上观察干涉条纹,若入射光是波长为 400 nm 至 760 nm 的白光,问屏上离零级明纹 20 mm 处,哪些波长的光最大限度地加强?(1 nm =10-9 m)3.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是 R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .(1) 求入射光的波长. (2) 设图中 OA =1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.4.在 Si 的平表面上氧化了一层厚度均匀的 SiO 2 薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的 AB段).现用波长为 600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中 AB 段共有 8 条暗纹,且 B处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为 3.42,SiO 2 折射率为1.50)5.在折射率为1.58 的玻璃表面镀一层MgF2(n = 1.38)透明薄膜作为增透膜.欲使它对波长为λ = 632.8 nm 的单色光在正入射时尽量少反射,则薄膜的厚度最小应是多少?一.选择题:二.光的衍射1 (A) a=2b.(B) a=b.(C) a=2b.(D) a=3 b.1.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.2.一单色平行光束垂直照射在宽度为1.0m m的单缝上,在缝后放一焦距为2.0m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为( )(1nm=10−9m)(A) 100n m(B) 400n m(C) 500n m(D) 600n m3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于( )(A)λ.(B) 1.5λ.(C) 2λ.(D) 3λ.4.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹( )(A)对应的衍射角变小.(B)对应的衍射角变大.(C)对应的衍射角也不变.(D)光强也不变.5.测量单色光的波长时,下列方法中哪一种方法最为准确?( )(A)双缝干涉.(B)牛顿环.(C)单缝衍射.(D)光栅衍射.6.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为( )二.填空题:1.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于.2.在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角ϕ= .3.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为.4.若波长为625 nm(1nm=10−9m)的单色光垂直入射到一个每毫米有800 条刻线的光栅上时,则第一级谱线的衍射角为5.衍射光栅主极大公式(a+b) sinϕ=±kλ,k=0,1,2…….在k=2 的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=6.设天空中两颗星对于一望远镜的张角为4.84×10−6 rad,它们都发出波长为550 nm 的光,为了分辨出这两颗星,望远镜物镜的口径至少要等于cm.(1 nm = 10-9 m)三.计算题:1.在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm,透镜焦距f=700 mm.求透镜焦平面上中央明条纹的宽度.(1nm=10−9m)2.某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm.缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm,求入射光的波长.3.用每毫米300 条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在0.63─0.76µm 范围内,蓝谱线波长λB 在0.43─0.49 µm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现.(1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?4.一平面衍射光栅宽2 cm,共有8000 条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10­9m)5.某种单色光垂直入射到每厘米有8000 条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线?6.用钠光(λ=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm-760 nm) 照射在该光栅上,求其第二级光谱的张角.(1 nm= 10-9 m)三.光的偏振一.空题:1.马吕斯定律的数学表达式为I = I0 cos2 α.式中I 为通过检偏器的透射光的强度;I0 为入射的强度;α为入射光方向和检偏器方向之间的夹角.2.两个偏振片叠放在一起,强度为I0 的自然光垂直入射其上,若通过两个偏振片后的光强为I0 / 8 ,则此两偏振片的偏振化方向间的夹角(取锐角)是,若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取锐角)相等.则通过三个偏振片后的透射光强度为.3.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过块理想偏振片.在此情况下,透射光强最大是原来光强的倍.4.自然光以入射角57°由空气投射于一块平板玻璃面上,反射光为完全线偏振光,则折射角为.5.一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为,反射光E 矢量的振动方向,透射光为.6.在双折射晶体内部,有某种特定方向称为晶体的光轴.光在晶体内沿光轴传播时,光和光的传播速度相等.二.计算题:1.将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60o ,一束光强为I0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.2.两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.3.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角.(1) 强度为I0 的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?波动光学解答一.光的干涉一. 选择题:1 2 3 4 5 6B A A B B B 二. 填空题:1.2π(n1 – n2) e / λ2.xd / (5D)3.变小变小4.7.32 mm35.λ26.λ / (2L)7. λ/(2nθ)8.3λ / (2n)9.2d/λ10.2( n – 1) d11.0.170 nm三.计算题:121.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈-(l 2 +r 2) - (l 1 +r 1) = 0 ∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()dD d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±= 在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆2.解:已知:d =0.2 mm ,D =1 m ,l =20 mm 依公式: λk l DdS ==∴ Ddl k =λ=4×10-3 mm =4000 nm故当 k =10 λ1= 400 nm k =9 λ2=444.4 nm k =8 λ3= 500 nm k =7 λ4=571.4 nm k =6 λ5=666.7 nm这五种波长的光在所给观察点最大限度地加强.3.解:(1) 明环半径 ()2/12λ⋅-=R k r()Rk r 1222-=λ=5×10-5 cm (或500 nm)(2) (2k -1)=2 r 2 / (R λ)对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5故在OA 范围内可观察到的明环数目为50个.4.解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7()nk e 412λ+==1.5×10-3 mm5.解:尽量少反射的条件为2/)12(2λ+=k ne ( k = 0, 1, 2, …)令 k = 0 得 d min = λ / 4n= 114.6 nm二.光的衍射一. 选择题: 1 2 3 4 5 6 B C D B D B一. 填空题:1.λ / sin θ2.±30° (答30° 也可以)3.d sin ϕ =k λ ( k =0,±1,±2,···)4.30 °5.10λ6.13.9三.计算题:1.解: a sin ϕ = λ a f f f x /sin tg 1λφφ=≈== 0.825 mm ∆x =2x 1=1.65 mm2.解:设第三级暗纹在ϕ3方向上,则有 a sin ϕ3 = 3λ此暗纹到中心的距离为x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f = 500 nm3.解: ∵ a +b = (1 / 300) mm = 3.33 μm(1) (a + b ) sin ψ =k λ∴ k λ= (a + b ) sin24.46°= 1.38 μm∵ λR =0.63─0.76 μm ;λB =0.43─0.49 μm对于红光,取k =2 , 则λR =0.69 μm对于蓝光,取k =3, 则 λB =0.46 μm红光最大级次 k max = (a + b ) / λR =4.8,取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为ψ' , 则()828.0/4sin =+='b a R λψ∴ ψ'=55.9°(2) 红光的第二、四级与蓝光重合,且最多只能看到四级,所以纯红光谱的第一、三级将出现.()207.0/sin 1=+=b a R λψ ψ1 = 11.9° ()621.0/3sin 3=+=b a R λψ ψ3 = 38.4°4.解:由光栅公式 (a +b )sin ϕ = k λ sin ϕ = k λ/(a +b ) =0.2357kk =0 ϕ =0k =±1 ϕ1 =±sin -10.2357=±13.6°k =±2 ϕ2 =±sin -10.4714=±28.1°k =±3 ϕ3 =±sin -10.7071=±45.0°k =±4 ϕ4 =±sin -10.9428=±70.5°5.解:由光栅公式(a +b )sin ϕ =k λk =1, φ =30°,sin ϕ1=1 / 2∴ λ=(a +b )sin ϕ1/ k =625 nm 若k =2, 则 sin ϕ2=2λ / (a + b ) = 1, ϕ2=90° 实际观察不到第二级谱线6.解:(1) (a + b ) sin ϕ = 3λa +b =3λ / sin ϕ , ϕ=60°a +b =2λ'/sin ϕ' ϕ'=30° 3λ / sin ϕ =2λ'/sin ϕ' λ'=510.3 nm (2) (a + b ) =3λ / sin ϕ =2041.4 nm2ϕ'=sin -1(2×400 / 2041.4) (λ=400nm)2ϕ''=sin -1(2×760 / 2041.4) (λ=760nm) 白光第二级光谱的张角 ∆ϕ = 22ϕϕ'-''= 25°三.光的偏振一.填空题:1.线偏振光(或完全偏振光,或平面偏振光) 光(矢量)振动 偏振化(或透光轴)2.60°(或π / 3)9I 0 / 32 3.2 1/44.33°5.完全(线)偏振光 垂直于入射面 部分偏振光6.寻常非常 或:非常寻常二.计算题:1.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4 透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2 I 2=I 1cos 260°=I 0 / 82.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为1211cos 21αI I =', 2222cos 21αI I ='按题意,21I I '=',于是 222121cos 21cos 21ααI I = 得 3/2cos /cos /221221==ααI I3.解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. (2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. I 1仍不变.4.解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知 tg i 1= n 1=1.33; tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°5.解:设I 为自然光强;I 1、I 2分别表示转动前后透射光强.由马吕斯定律得8/330cos 2121I I I =︒=8/60cos 2122I I I =︒=故 3)8//()8/3(/21==I I I I。

波动光学大学物理答案

波动光学大学物理答案

习题1313.1选择题(1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ ](A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ] (A) 间隔变小,并向棱边方向平移. (B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A](3)一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为[ ] (A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [答案:B](4)在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了[ ](A) 2 ( n -1 ) d . (B) 2nd . (C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [答案:A](5)在迈克耳孙干涉仪的一条光路中,放入一折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是 [ ](A) λ / 2 . (B) λ / (2n ). (C) λ / n . (D) λ / [2(n-1)]. [答案:D]13.2 填空题 (1)如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________. [答案:2sin /d πθλ](2)在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.[答案:0.45mm](3)波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____________nm .(1 nm=10-9 m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变 。

(完整版)大学物理--波动光学题库及其答案.doc

(完整版)大学物理--波动光学题库及其答案.doc

一、选择题:(每题3 分)1、在真空中波长为的单色光,在折射率为n 的透明介质中从 A 沿某路径传播到B,若A、 B 两点相位差为 3 ,则此路径 AB 的光程为(A) 1.5 .(B) 1.5 n.(C) 1.5 n .(D) 3 .[]2、在相同的时间内,一束波长为的单色光在空气中和在玻璃中(A)传播的路程相等,走过的光程相等.(B)传播的路程相等,走过的光程不相等.(C)传播的路程不相等,走过的光程相等.(D)传播的路程不相等,走过的光程不相等.3、如图, S1、S2是两个相干光源,它们到P 点的距离分别为 r 1 2 1 1 1 和 r .路径 S P 垂直穿过一块厚度为t ,折射率为 n的介质板,路径S2P 垂直穿过厚度为 t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) (r2 n2t 2 ) (r1 n1t1 ) S1S2[]t1 r1t2Pn1 r2n2(B) [ r2 ( n2 1)t2 ] [ r1 (n1 1)t2 ](C) (r2 n2t 2 ) (r1 n1 t1 )(D) n2 t2 n1t1 []4、真空中波长为的单色光,在折射率为n 的均匀透明媒质中,从 A 点沿某一路径传播到 B 点,路径的长度为l. A、 B 两点光振动相位差记为,则(A) l = 3 / 2,=3.(B) l= 3 / (2n),=3n.(C) l = 3 / (2 n),=3.(D) l= 3n / 2,=3n.5、如图所示,波长为的平行单色光垂直入射在折射率为n2 的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为 e,而且 n1> n2> n3,则两束反射光在相遇点的相位差为(A) 4 n e / .(B) 2 n e / .2 2(C) (4 n2 e / .(D) (2 n2 e / .[]6、如图所示,折射率为n 、厚度为 e 的透明介质薄膜2的上方和下方的透明介质的折射率分别为n1和 n3,已知 n1<n2< n3.若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2 n2 e.(B) 2 n2 e-/ 2 .(C) 2 n2 e-.(D) 2 n2 e-/ (2n2).7、如图所示,折射率为n 、厚度为 e 的透明介质薄膜的2上方和下方的透明介质的折射率分别为n1和 n3,已知 n1< n2>n .若用波长为的单色平行光垂直入射到该薄膜上,则从薄膜3上、下两表面反射的光束(用①与②示意 )的光程差是(A) 2 n e.(B) 2 n e- / 2.2 2 []n1n2 e n3① ②n1n2 en3[]① ②n1n2 e[]8 在双缝干涉实验中,两缝间距为d,双缝与屏幕的距离为 D (D>>d ) ,单色光波长为,屏幕上相邻明条纹之间的距离为(A) D/d .(B)d/D .(C) D/(2 d).(D) d/(2D ).[]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A)使屏靠近双缝.(B)使两缝的间距变小.(C)把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]10、在双缝干涉实验中,光的波长为600 nm ( 1 nm= 10-9 m) ,双缝间距为 2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm .(B) 0.9 mm .(C) 1.2 mm(D) 3.1 mm .[]11、在双缝干涉实验中, 1 2 距离相等,若单色光源 S 到两缝 S 、S则观察屏上中央明条纹位于图中O 处.现将光源 S 向下移动到示意S1图中的S 位置,则S O(A) 中央明条纹也向下移动,且条纹间距不变.S S2(B) 中央明条纹向上移动,且条纹间距不变.(C) 中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.[]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A)向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D)向上平移,且间距改变.[]13、在双缝干涉实验中,两缝间距离为d,双缝与屏幕之间的距离为 D (D >> d).波长为的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2 D / d.(B) d / D.(C) dD /.(D) D /d.[]14 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d,双缝到屏的距离为D (D >> d) ,所用单色光在真空中的波长为,则屏上干涉条纹中相邻的明纹之间的距离是(A) D / (nd)(B) n D /d.(C) d / (nD ).(D) D / (2 nd).[]15、一束波长为的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A).(B)/ (4 n).(C).(D) / (2n) .[]大学物理波动光学们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =k R .(B) r k =k R / n .(C) r k =kn R .(D) r k =k / nR .[]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为 d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n- 1 ) d.(B) 2 nd.(C) 2 ( n- 1 ) d+ / 2 .(D) nd.(E) ( n- 1 ) d.[]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长,则薄膜的厚度是(A) / 2.(B)/ (2 n).(C) / n.(D).[]2 n 119、在单缝夫琅禾费衍射实验中,波长为的单色光垂直入射在宽度为a= 4的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2个.(B) 4个.(C) 6 个.(D) 8个.20、一束波长为的平行单色光垂直入射到一单缝 AB 上,装置如图.在屏幕 D 上形成衍射图样,如果 P 是中央亮纹一侧第一个暗纹所在的位置,则[]L DAPBC 的长度为(A).(B).(C) 3 / 2 .(D) 2.[]BCf屏21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则 S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A)振动振幅之和.(B)光强之和.(C) 振动振幅之和的平方.(D)振动的相干叠加.[]22、波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为 =± / 6,则缝宽的大小为(A) .(B) .(C) 2 .(D) 3 .[]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上.所用单色光波长为=500 nm ,则单缝宽度为(A) 2.5 × 10 -m.(B) 1.0 × 10 m.25、一单色平行光束垂直照射在宽度为 1.0 mm 的单缝上, 在缝后放一焦距为 2.0 m 的会聚透镜. 已知位于透镜焦平面处的屏幕上的中央明条纹宽度为 2.0 mm ,则入射光波长约 为 (1nm=10 - 9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm[ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小. (B) 宽度变大.(C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大.[ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小; (B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ ]28、在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角 为 30°的方向上,若单缝处波面可分成 3 个半波带,则缝宽度 a 等于(A) .(B) 1.5 .(C) 2 .(D) 3 .[ ]29、在如图所示的单缝夫琅禾费衍射装置中,设 LC中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的 3,同时使入射的单色光的波长变为原来的 3 /a24,则屏幕 C 上单缝衍射条纹中央明纹的宽度 x 将变为原来的f(A) 3 / 4 倍.(B) 2 / 3 倍. y(C) 9 / 8 倍. (D) 1 / 2 倍.Ox(E) 2 倍.[]30、测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉.(B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.[] 31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b)为下列哪种情况时(a 代表每条缝的宽度 ), k=3、 6、 9 等级次的主极大均不出现?(A) a + b=2 a .(C) a + b=4 a .(B) a +b=3 a .(A) a + b=6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远 的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]使屏幕上出现更高级次的主极大,应该(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动.[]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0 × 10 - 1 mm.(B) 1.0 × 10 - 1 mm.(C) 1.0 × 10 - 2 mm.(D) 1.0 × 10 -3 mm .[]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度 a 和相邻两缝间不透光部分宽度 b 的关系为1(B) a=b .(A) a= b.2(C) a= 2b.(D) a= 3 b.[]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A)干涉条纹的间距不变,但明纹的亮度加强.(B)干涉条纹的间距不变,但明纹的亮度减弱.(C)干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0 的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I0 / 8.(D) 3 I 0 / 4 .[]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) I0/ 4 2 .(B) I0 / 4.(C) I 0 / 2.(D) 2 I0/ 2.[]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为 I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8.(B) I 0 / 4.(C) 3 I 0 / 8.(D) 3 I 0 / 4.[]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A)在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[]二、填空题:(每题 4 分)41、若一双缝装置的两个缝分别被折射率为n 1和 n2 的两块厚度均为 e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=_____________________________ .42、波长为的单色光垂直照射如图所示的透明薄膜.膜厚度为 e,两束反射光的光程差=n1 = 1.00__________________________ .n2 = 1.30 en3 = 1.5043、用波长为的单色光垂直照射置于空气中的厚度为 e 折射率为 1.5 的透明薄膜,两束反射光的光程差= ________________________ .44、波长为的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为 e,折射率为 n,透明薄膜放在折射率为n1的媒质中, n1< n,则上下两表面反射的两束反射光在相遇处的相位差= __________________ .45、单色平行光垂直入射到双缝上.观察屏上 P 点到两缝的距离分别为 r1和 r 2.设双缝和屏之间充满折射率为n 的媒质,则 P 点处二相干光线的光程差为________________ .n1ne n1S1r1pdr 2S246、在双缝干涉实验中,两缝分别被折射率为 1 2 的透明nn 和 n薄膜遮盖,二者的厚度均为e.波长为的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差= _______________________ .47、如图所示,波长为的平行单色光斜入射到S1距离为 d 的双缝上,入射角为.在图中的屏中央 O 处( S1O S2 O ),两束相干光的相位差为 dO ________________ .S248、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49 、一双缝干涉装置,在空气中观察时干涉条纹间距为 1.0 mm .若整个装置放在水中,干涉条纹的间距将为____________________ mm. ( 设水的折射率为4/3 )屏的距离 D =1.2 m ,若测得屏上相邻明条纹间距为 x = 1.5 mm ,则双缝的间距 d = __________________________ .51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ___________ ;若使单色光波长减小,则干涉条纹间距_________________ .52、把双缝干涉实验装置放在折射率为 n 的媒质中,双缝到观察屏的距离为 D ,两缝之间的距离为 d (d<<D ),入射光在真空中的波长为 ,则屏上干涉条纹中相 邻明纹的间距是 _______________________ .53、在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D (D >>d),测得中央零级明纹与第五级明之间的距离为 x ,则入射光的波长为 _________________ . 54 、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为 D ,则屏上相邻明纹的间距为 _______________ .55、用 = 600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个 (不计中央暗斑 )暗环对应的空气膜厚度为_______________________ m . (1 nm=10 - 9 m)56、在空气中有一劈形透明膜,其劈尖角 = 1.0×10 -4nm 的单色 rad ,在波长 = 700 光垂直照射下,测得两相邻干涉明条纹间距 l = 0.25 cm ,由此可知此透明材料的折射率n= ______________________ . (1 nm=10 - 9 m)57、用波长为 的单色光垂直照射折射率为 n 2 的劈形膜 (如图 )图中各部分折射率的关系是n 1< n 2< n 3 .观察反射光的干涉条纹, n 1n 2 从劈形膜顶开始向右数第 5 条暗条纹中心所对n 3应的厚度 e = ____________________ .58、用波长为 的单色光垂直照射如图所示的、折射率为n的n 12劈形膜 (n 1 > n 2 , n 3> n 2 ),观察反射光干涉.从劈形膜顶n 2n 3开始,第 2 条明条纹对应的膜厚度e = ___________________ .59、用波长为 的单色光垂直照射折射率为 n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为 l ,则劈尖角 = _______________ .60、用波长为 的单色光垂直照射如图示的劈形膜(n > n > n ),观n 1123察反射光干涉.从劈形膜尖顶开始算起,第 2 条明条纹中心所对应的膜n 2 厚度 e = ___________________________ .n 361 、已知在迈克耳孙干涉仪中使用波长为 的单色光.在干涉仪的可动反射镜移 动距离 d 的过程中,干涉条纹将移动 ________________ 条.62、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为 d 的透明薄片.插入这块薄片使这条光路的光程改变了_______________ .63 、在迈克耳孙干涉仪的可动反射镜移动了距离 d 的过程中,若观察到干涉条纹移动了 N 条,则所用光波的波长=______________ .64、波长为 600 nm 的单色平行光,垂直入射到缝宽为a= 0.60 mm 的单缝上,缝后有一焦距 f = 60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为 __________ ,两个第三级暗纹之间的距离为____________ . (1 nm= 10﹣9 m)65、 He -Ne 激光器发出=632.8 nm (1nm=10 -9 m)的平行光束,垂直照射到一单缝上,在距单缝 3 m 远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是 10 cm,则单缝的宽度 a=________ .66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________ 纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半, P 点处将是 ______________ 级 __________________ 纹.68、波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30 °,单缝处的波面可划分为 ______________ 个半波带.69、惠更斯引入__________________ 的概念提出了惠更斯原理,菲涅耳再用______________ 的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的 _________________ ,决定了 P 点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长500 nm (1 nm = 10 9 m),则单缝宽度为 _____________________m .72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的 2 倍,则中央明条纹边缘对应的衍射角=______________________ .73、在单缝夫琅禾费衍射实验中波长为的单色光垂直入射在宽度为a=2 的单缝上,对应于衍射角为 30 方向,单缝处的波面可分成的半波带数目为________ 个.74、如图所示在单缝的夫琅禾费衍射中波1.5长为 的单色光垂直入射在单缝上.若对应于 A会聚在 P 点的衍射光线在缝宽 a 处的波阵面恰1C 好分成 3 个半波带,图中 AC CD DB ,a2D 则光线 1 和 2 在 P 点的B3 4P相位差为 ______________ .75、在单缝夫琅禾费衍射实验中, 波长为 的单色光垂直入射在宽度 a=5 的单缝上.对应于衍射角 的方向上若单缝处波面恰好可分成 5 个半波带,则衍射角 =______________________________ .76、在如图所示的单缝夫琅禾费衍射装置示意图LC中,用波长为 的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则 A由单缝边缘的 A 、 B 两点分别到Pa达 P 点的衍射光线光程差是__________ .Bf77、测量未知单缝宽度 a 的一种方法是:用已知波长 的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为 l ( 实验上应保证 D ≈ 103a ,或 D 为几米 ),则由单缝衍射的原理可标出 a 与 ,D ,l 的关系为a =______________________ .78、某单色光垂直入射到一个每毫米有 800 条刻线的光栅上,如果第一级谱线的 衍射角为 30°,则入射光的波长应为 _________________ .79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________ 相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称 为 ______________ 晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是__________ 波.三、计算题: (每题 10 分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为 1.2 mm 双缝与屏相距 500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离 D = 1.2 m ,双缝间距 d = 0.45 mm ,若测 得屏上干涉条纹相邻明条纹间距为 1.5 mm ,求光源发出的单色光的波长 .83、用波长为 500 nm (1 nm=10 - 9 m) 的单色光垂直照射到由两块光学平玻璃构成的空气 劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边 l = 1.56 cm 的 A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角 ;(2) 改用 600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R= 400 cm.用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第 5 个明环的半径是 0.30 cm .A(1) 求入射光的波长.O(2) 设图中 OA= 1.00 cm ,求在半径为 OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为 0.50 m 的玻璃片.玻璃片的折射率为 1.50.在可见光范围内 (400 nm ~ 760 nm) 哪些波长的反射光有最大限度的增强?(1 nm=10 -9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10 -9 m)87、一平面衍射光栅宽 2 cm,共有8000 条缝,用钠黄光可能出现的各个主极大对应的衍射角.(1nm=10 -9m)88、如图,P1、P2为偏振化方向相互平行的两个偏振片.光强为 I 0的平行自然光垂直入射在P1上.(1) 求通过 P 后的光强 I .2 (589.3 nm) 垂直入射,试求出II0P 1P3P 2(2) 如果在 P1、P2之间插入第三个偏振片P3,(如图中虚线所示)并测得最后光强I= I 0 / 32 ,求: P3的偏振化方向与P1的偏振化方向之间的夹角(设为锐角).89、三个偏振片P 、 P 、 P 顺序叠在一起,P 、 P3 的偏振化方向保持相互垂直,P11 2 3 1与 P2的偏振化方向的夹角为,P2可以入射光线为轴转动.今以强度为I0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与角的函数关系式;(2) 试定性画出在P2转动一周的过程中透射光强I 随角变化的函数曲线.90、两个偏振片P1、 P2叠在一起,一束单色线偏振光垂直入射到P1上,其光矢量振动方向与 P1 的偏振化方向之间的夹角固定为30°.当连续穿过 P1、 P2 后的出射光强为最大出射光强的 1 / 4 时, P1 、P2的偏振化方向夹角是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为60 o,一束光强为 I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30°角.(1)求透过每个偏振片后的光束强度;(2)若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成 45 和 90 角.(1)强度为 I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2)如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n1= 1.00) ,Ⅱ为玻璃 (n2= 1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以ii角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光,Ⅰ(1) 入射角 i 是多大?r(2) 图中玻璃上表面处折射角是多大?Ⅱ(3) 在图中玻璃板下表面处的反射光是否也是线偏振I光?94、在水 (折射率 n1= 1.33) 和一种玻璃 ( 折射率 n2= 1.56 的交界面上,自然光从水中射向玻璃,求起偏角 i 0.若自然光从玻璃中射向水,再求此时的起偏角i0.95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水 (折射率为 1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角 i0= 48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为 1.56 ,求:(1)该液体的折射率.(2)折射角.97、一束自然光自空气入射到水(折射率为 1.33)表面上,若反射光是线偏振光,(1)此入射光的入射角为多大?(2)折射角为多大?98、一束自然光自水(折射率为 1.33) 中入射到玻璃表面上(如图 ). 水当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.玻璃99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为 1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33 ,求布儒斯特角.大学物理 ------波动光学参考答案一、选择题01-05 ACBCA06-10 ABABB11-15 BBDAB16-20 BADBB21-25 DCBCC26-30 ABD DD31-35 BDBDB36-40 BABAC二、填空题41. ( n 1 n 2 )e or (n 2 n 1 )e ; 42. 2.60e ; 43. 3.0e+λ/2 or 3.0e-λ/2;44. (4ne1) or(4ne 1) ; 45. n( r 2r 1 ) ; 46. 2 (n 2n 1 ) e;47. 2 d sin / ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大;49. 0.75 ; 50. 0.45mm ; 51. 变小, 变小; 52.D ; 53.dx; 54. D ;dn 5D N55. 1.2 m ; 56. 1.40 ; 57.9; 58. 3; 59.rad ; 60. ;4n 24n 22nl2n 261. 2d / ; 62. 2(n 1)d ; 63. 2d / N ; 64. 1.2mm , 3.6mm ;65. 7.60 10 2 mm ;66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4 ;69. 子波, 子波相干叠加; 70. 相干叠加; 71. 10 6 m ; 72.30 0 ; 73.2 ; 74.;75. 300 ; 76. 2 ; 77. 2D / l ; 78. 625nm ;79. 传播速度, 单轴; 80. 波动, 横波。

大学物理波动光学的试题及解答

大学物理波动光学的试题及解答

r1 r2
O
问:要使 O 点的光强由最亮变为最暗,劈尖 b 至少应向上移动
多大的距离 d(只遮住 S2) 解:双缝发射至屏上中央 O 点处两光线的光程差满足关系为
k 级亮纹: δo= (r2ek+nek)r1=( n 1)ek=kλ k 级暗纹: δo=(n 1)ek+1=kλ+(λ/2)
[C]
说明:由马吕斯定理 I1 I0 2; I 2 I1 cos2 30 3 I0 8; I 32 I 2 cos2 60 3 I0 32
1
GL.普通物理综合练习六(波动光学)解答)
二.填空题
1.如图,波长为 λ 的单色平行光斜入射到真空中的距离为 d 的双缝上, θ 为入射角.在屏中央 O 处
[D]
说明: 光栅光谱满足 (a b)sin k k 1 ; (a b)sin k k 2 , 屏上两套谱线重叠,即 sin k sin k k1 k 2 k k 1 2 (3 5)k (k、k 皆为正整数,故答案(D)满足要求)
4.三个偏振片 p1、p2 与 p3 堆叠在一起, p1 与 p3 的偏振化方向相互垂直, p2 与 p1 的偏振化方向 之间的夹角为 30° . 强度为 I0 的自然光垂直入射偏振片 p1 并依次透过偏振片 p1、p2 与 p3, 则通过三个偏振片后的光强为:
(A) I= I0/4; (B) I=3I0/8; (C) I=3I0/32; (D) I= I0/16 .
主极大明纹的级次? 解(1):由题意及光栅方程,有 (a+b) sinφk=kλ1;
(a+b) sinφk+1=(k+1)λ2 两种波长上述的主明纹重合,即 sinφk= sinφk+1, 则有 kλ1=(k+1)λ2

大物习题答案第6章波动光学报告

大物习题答案第6章波动光学报告

第6章波动光学6.1基本要求1.理解相干光的条件及获得相干光的方法.2.掌握光程的概念以及光程差和相位差的关系,了解半波损失,掌握半波损失对薄膜干涉极大值和极小值条件的影响。

3.能分析杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置4.了解迈克耳孙干涉仪的工作原理5.了解惠更斯-菲涅耳原理及它对光的衍射现象的定性解释.6.了解用波带法来分析单缝夫琅禾费衍射条纹分布规律的方法,会分析缝宽及波长对衍射条纹分布的影响.7.了解衍射对光学仪器分辨率的影响.8.掌握光栅方程,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响.9.理解自然光与偏振光的区别.10.理解布儒斯特定律和马吕斯定律.11.了解线偏振光的获得方法和检验方法.6.2基本概念1.相干光若两束光的光矢量满足频率相同、振动方向相同以及在相遇点上相位差保持恒定,则这两束光为相干光。

能够发出相干光的光源称为相干光源。

2.光程光程是在光通过介质中某一路程的相等时间内,光在真空中通过的距离。

若介质的折射率为n,光在介质中通过的距离为L,则光程为nL。

薄透镜不引起附加光程差。

光程差∆与相位差ϕ∆的关系2πϕλ∆=∆。

3.半波损失光在两种介质表面反射时相位发生突变的现象。

当光从光疏介质(折射率较小的介质)射向光密介质(折射率较大的介质)时,反射光的相位较之入射光的相位跃变了π,相当于反射光与入射光之间附加了半个波长的光程差,所以称为半波损失。

4.杨氏双缝干涉杨氏双缝干涉实验是利用波阵面分割法来获得相干光的。

用单色平行光照射一窄缝S ,窄缝相当于一个线光源。

S 后放有与其平行且对称的两狭缝S 1和S 2,两缝之间的距离很小。

两狭缝处在S 发出光波的同一波阵面上,构成一对初相位相同的等强度的相干光源,在双缝的后面放一个观察屏,可以在屏幕上观察到明暗相间的对称的干涉条纹,这些条纹都与狭缝平行,条纹间的距离相等。

5.薄膜干涉薄膜干涉是利用分振幅法来获得相干光的。

大物习题答案第6章 波动光学

大物习题答案第6章  波动光学

第6章波动光学6.1基本要求1.理解相干光的条件及获得相干光的方法.2.掌握光程的概念以及光程差和相位差的关系,了解半波损失,掌握半波损失对薄膜干涉极大值和极小值条件的影响。

3.能分析杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置4.了解迈克耳孙干涉仪的工作原理5.了解惠更斯-菲涅耳原理及它对光的衍射现象的定性解释.6.了解用波带法来分析单缝夫琅禾费衍射条纹分布规律的方法,会分析缝宽及波长对衍射条纹分布的影响.7.了解衍射对光学仪器分辨率的影响.8.掌握光栅方程,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响.9.理解自然光与偏振光的区别.10.理解布儒斯特定律和马吕斯定律.11.了解线偏振光的获得方法和检验方法.6.2基本概念1.相干光若两束光的光矢量满足频率相同、振动方向相同以及在相遇点上相位差保持恒定,则这两束光为相干光。

能够发出相干光的光源称为相干光源。

2.光程光程是在光通过介质中某一路程的相等时间内,光在真空中通过的距离。

若介质的折射率为n,光在介质中通过的距离为L,则光程为nL。

薄透镜不引起附加光程差。

光程差∆与相位差ϕ∆的关系2πϕλ∆=∆。

3.半波损失光在两种介质表面反射时相位发生突变的现象。

当光从光疏介质(折射率较小的介质)射向光密介质(折射率较大的介质)时,反射光的相位较之入射光的相位跃变了π,相当于反射光与入射光之间附加了半个波长的光程差,所以称为半波损失。

4.杨氏双缝干涉杨氏双缝干涉实验是利用波阵面分割法来获得相干光的。

用单色平行光照射一窄缝S ,窄缝相当于一个线光源。

S 后放有与其平行且对称的两狭缝S 1和S 2,两缝之间的距离很小。

两狭缝处在S 发出光波的同一波阵面上,构成一对初相位相同的等强度的相干光源,在双缝的后面放一个观察屏,可以在屏幕上观察到明暗相间的对称的干涉条纹,这些条纹都与狭缝平行,条纹间的距离相等。

5.薄膜干涉薄膜干涉是利用分振幅法来获得相干光的。

大学物理--波动光学题库及其答案

大学物理--波动光学题库及其答案

一、选择题:(每题3分)1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ ]5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2>n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 13λn 3n 3[ ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它S S '们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [ ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ ]20、一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2. (B) λ. (C) 3λ / 2 . (D) 2λ . [ ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加. [ ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ . [ ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变. [ ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm ,则单缝宽度为(A) 2.5×10-5 m . (B) 1.0×10-5 m .(C) 1.0×10-6 m . (D) 2.5×10-7 . [ ]25、一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为 (1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm(D) 600 nm [ ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大. [ ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小. [ ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成 3个半波带,则缝宽度a 等于(A) λ. (B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 . (C) 单缝衍射. (D) 光栅衍射. [ ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲λ使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm . (C) 1.0×10-2 mm . (D) 1.0×10-3mm . [ ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]38、一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D) 2I 0 / 2. [ ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4.(C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光. [ ]二、填空题:(每题4分)41、若一双缝装置的两个缝分别被折射率为n 1和n 2的两块厚度均为e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差δ=_____________________________.42、波长为λ的单色光垂直照射如图所示的透明薄膜.膜厚度为e ,两束反射光的光程差δ = __________________________.43、用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.44、波长为λ的平行单色光垂直照射到如图所示的透明薄膜上,膜厚为e ,折射率为n ,透明薄膜放在折射率为n 1的媒质中,n 1<n ,则上下两表面反射的两束反射光在相遇处的相 位差 ∆φ=__________________.45、单色平行光垂直入射到双缝上.观察屏上P 点到两缝的距离分别为r 1和r 2.设双缝和屏之间充满折射率为n 的媒质,则P 点处二相干光线的光程差为________________.46、在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.47、如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ.在图中的屏中央O 处(O S O S 21=),两束相干光的相位差为________________.48、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1)________________________________________.(2) ________________________________________.49、一双缝干涉装置,在空气中观察时干涉条纹间距为1.0 mm .若整个装置放 在水中,干涉条纹的间距将为____________________mm .(设水的折射率为4/3)50、在双缝干涉实验中,所用单色光波长为λ=562.5 nm (1nm =10-9 m),双缝与观察n 11 λp d r 1 r 2 S 2 S 1 n屏的距离D =1.2 m ,若测得屏上相邻明条纹间距为∆x =1.5 mm ,则双缝的间距d =__________________________.51、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________;若使单色光波长减小,则干涉条纹间距_________________.52、把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相邻明纹的间距是_______________________.53、在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央 零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.54、在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝 的距离为D ,则屏上相邻明纹的间距为_______________ .55、用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)56、在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材料的折射率n =______________________.(1 nm=10-9 m)57、用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________________.58、用波长为λ的单色光垂直照射如图所示的、折射率为n 2的劈形膜(n 1>n 2 ,n 3>n 2),观察反射光干涉.从劈形膜顶开始,第2条明条纹对应的膜厚度e =___________________.59、用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.60、用波长为λ的单色光垂直照射如图示的劈形膜(n 1>n 2>n 3),观察反射光干涉.从劈形膜尖顶开始算起,第2条明条纹中心所对应的膜厚度e =___________________________.61、已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移 动距离d 的过程中,干涉条纹将移动________________条.n 1n 2n 3 n 1n 2n 3 n 1n 2n 362、在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_______________.63、在迈克耳孙干涉仪的可动反射镜移动了距离d的过程中,若观察到干涉条纹移动了N条,则所用光波的波长λ =______________.64、波长为600 nm的单色平行光,垂直入射到缝宽为a=0.60 mm的单缝上,缝后有一焦距f'=60 cm的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm=10﹣9 m)65、He-Ne激光器发出λ=632.8 nm (1nm=10-9 m)的平行光束,垂直照射到一单缝上,在距单缝3 m远的屏上观察夫琅禾费衍射图样,测得两个第二级暗纹间的距离是10 cm,则单缝的宽度a=________.66、在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分为_________________ 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是______________________________纹.67、平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为___________ 个半波带.若将单缝宽度缩小一半,P点处将是______________级__________________纹.68、波长为λ的单色光垂直入射在缝宽a=4 λ的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带.69、惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.70、惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P的_________________,决定了P点的合振动及光强.71、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为30°的方位上,所用单色光波长λ=500 nm (1 nm = 10-9 m),则单缝宽度为_____________________m.72、在单缝夫琅禾费衍射实验中,如果缝宽等于单色入射光波长的2倍,则中央明条纹边缘对应的衍射角ϕ =______________________.73、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a=2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个.74、如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为______________.75、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =______________________________.76、在如图所示的单缝夫琅禾费衍射装置示意图中,用波长为λ的单色光垂直入射在单缝上,若P 点是衍射条纹中的中央明纹旁第二个暗条纹的中心,则由单缝边缘的A 、B 两点分别到 达P 点的衍射光线光程差是__________.77、测量未知单缝宽度a 的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D 处测出衍射花样的中央亮纹宽度为l (实验上应保证D ≈103a ,或D 为几米),则由单缝衍射的原理可标出a 与λ,D ,l 的关系为a =______________________.78、某单色光垂直入射到一个每毫米有800 条刻线的光栅上,如果第一级谱线的 衍射角为30°,则入射光的波长应为_________________.79、在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的 ____________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.80、光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是 __________波.三、计算题:(每题10分)81、在双缝干涉实验中,所用单色光的波长为600 nm ,双缝间距为1.2 mm 双缝与屏相距500 mm ,求相邻干涉明条纹的间距.82、在双缝干涉实验中,双缝与屏间的距离D =1.2 m ,双缝间距d =0.45 mm ,若测得屏上干涉条纹相邻明条纹间距为1.5 mm ,求光源发出的单色光的波长λ.83、用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?aλλP84、图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.85、用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强?(1 nm=10-9 m)86、两块长度10 cm 的平玻璃片,一端互相接触,另一端用厚度为0.004 mm 的纸片隔开,形成空气劈形膜.以波长为500 nm 的平行光垂直照射,观察反射光的等厚干涉条纹,在全部10 cm 的长度内呈现多少条明纹?(1 nm=10-9 m)87、一平面衍射光栅宽2 cm ,共有8000条缝,用钠黄光(589.3 nm)垂直入射,试求出可能出现的各个主极大对应的衍射角.(1nm=10­9m)88、如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上.(1) 求通过P 2后的光强I .(2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).89、三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.90、两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?91、将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.92、将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?93、如图所示,媒质Ⅰ为空气(n 1=1.00),Ⅱ为玻璃(n 2=1.60),两个交界面相互平行.一束自然光由媒质Ⅰ中以i角入射.若使Ⅰ、Ⅱ交界面上的反射光为线偏振光, (1) 入射角i 是多大?(2) 图中玻璃上表面处折射角是多大? (3) 在图中玻璃板下表面处的反射光是否也是线偏振光?94、在水(折射率n 1=1.33)和一种玻璃(折射率n 2=1.56的交界面上,自然光从水中射向玻璃,求起偏角i 0.若自然光从玻璃中射向水,再求此时的起偏角0i .95、一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.96、一束自然光以起偏角i 0=48.09°自某透明液体入射到玻璃表面上,若玻璃的折射率为1.56 ,求:(1) 该液体的折射率.(2) 折射角.97、一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?98、一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.99、一束自然光自水中入射到空气界面上,若水的折射率为1.33,空气的折射率为1.00,求布儒斯特角.100、一束自然光自空气入射到水面上,若水相对空气的折射率为 1.33,求布儒斯特角.大学物理------波动光学参考答案一、选择题01-05 ACBCA 06-10 ABABB 11-15 BBDAB 16-20 BADBB21-25 DCBCC 26-30 ABD D D 31-35 BD B DB 36-40 BABAC水玻璃二、填空题41. e n n )(21- or e n n )(12-; 42. e 60.2; 43.3.0e +λ/2 or 3.0e -λ/2; 44. πλ)14(+e n or πλ)14(-e n; 45. )(12r r n -; 46. λπen n )(212-;47. λθπ/sin 2d ; 48. (1) 使两缝间距变小,(2)使屏与两缝间距变大; 49. 75.0; 50. mm 45.0; 51. 变小, 变小; 52.dn D λ; 53. D dx 5; 54. N D ; 55. m μ2.1; 56. 40.1; 57. 249n λ; 58. 243n λ; 59. rad nl2λ; 60. 22n λ; 61. λ/2d ; 62. d n )1(2-; 63. N d /2; 64. mm 2.1,mm 6.3;65. mm 21060.7-⨯; 66. 6,第一级明纹; 67. 4,第一, 暗; 68. 4;69. 子波, 子波相干叠加; 70. 相干叠加; 71. m 610-; 72. 030±; 73. 2; 74. π; 75. 030; 76. λ2; 77. l D /2λ; 78. nm 625;79. 传播速度, 单轴; 80. 波动, 横波。

大学物理波动光学习题答案

大学物理波动光学习题答案

第七章波动光学习题答案1.从一光源发出的光线,通过两平行的狭缝而射在距双缝100 cm的屏上,如两狭缝中心的距离为0.2 mm,屏上相邻两条暗条纹之间的距离为3 mm,求光的波长(Å为单位)。

已知 D=100cm a=0.2mm δx=3mm 求λ[解]λ=aδx/D=3×10-3×0.2×10-3/100×10-2=0.6×10-6m=6000 Å2.用波长为7000 Å的红光照射在双缝上,距缝1 m处置一光屏,如果21个明条纹(谱线以中央亮条为中心而对称分布)共宽2.3 cm,求两缝间距离。

[解]明条纹间距cm a=6.084.用波长为4800 Å的蓝光照射在缝距为0.1 mm的双缝上,求在离双缝50 cm处光屏上干涉条纹间距的大小。

[解]=2.4mm5.什么是光程?在不同的均匀媒质中,单色光通过相等光程时,其几何路程是否相同? 需要时间是否相同?[解]光程=nx。

在不同的均匀媒质中,单色光通过相等光程时,其几何路程是不同。

需要时间相同6.在两相干光的一条光路上,放入一块玻璃片,其折射率为1.6,结果中央明条纹移到原是第六级明条纹处,设光线垂直射入玻璃片,入射光波长为6.6×103 Å。

求玻璃片厚度。

已知 n=1.6 λ=6.6×103Å求 d[解]光程差MP-d+nd-NP=0∵ NP-MP=6λ∴(n-1)d=6λd=6λ/(n-1)=6.6×10-6m7.在双缝干涉实验中,用钠光灯作光源(λ=5893 Å),屏幕离双缝距离D=500mm,双缝间距a=1.2mm,并将干涉实验装置整个地浸在折射率1.33的水中,相邻干涉条纹间的距离为多大?若把实验装置放在空气中,干涉条纹变密还是变疏?(通过计算回答)已知n水=1.33 λ=5893 Å D=500 mm a=1.2mm 比较δx水和δx空气[解]δx水=Dλ/na=500×5893×10-10×10-3/(1.2×10-3×1.33)=1.85×10-4mδx空气=Dλ/a=500×5893×10-10×10-3/(1.2×10-3)=2.46×10-4m∴干涉条纹变疏8.用白光垂直照射到厚度为4×10-5 cm的薄膜上,薄膜的折射率为1.5。

大学物理第六章习题解答和分析

大学物理第六章习题解答和分析

6-1频率为Hz 41025.1⨯=ν的平面简谐纵波沿细长的金属棒传播,棒的弹性模量211/1090.1m N E ⨯=,棒的密度33/106.7m Kg ⨯=ρ.求该纵波的波长.分析 纵波在固体中传播,波速由弹性模量与密度决定。

解:波速ρ/E u =,波长νλ/u =0.4m λ==6-2一横波在沿绳子传播时的波方程为:))(5.2cos(04.0SI x t y ππ-= (1)求波的振幅、波速、频率及波长; (2)求绳上的质点振动时的最大速度;(3)分别画出t=1s 和t=2s 的波形,并指出波峰和波谷.画出x=1.0m 处的质点的振动曲线并讨论其与波形图的不同.分析 与标准方程比较即可确定其特征参量。

解:(1)用比较法,由)2cos()5.2cos(04.0x t A x t y λπϕωππ-+=-=得0.04A m = /2 2.5/2 1.25Hz νωπππ=== 2, 2.0m ππλλ== 2.5/u m s λν== (2)0.314/m A m s νω==(3)t=1(s)时波形方程为:)5.2cos(04.01x y ππ-= t=2(s)时波形方程为:)5cos(04.02x y ππ-= x=1(m)处的振动方程为:)5.2cos(04.0ππ-=t y6-3 一简谐波沿x 轴正方向传播,t=T/4时的波形图如题图6-3所示虚线,若各点的振动以余弦函数表示,且各点的振动初相取值区间为(-π,π].求各点的初相.题图6-2分析 由t=T/4时的波形图(图中虚线)和波的传播方向,作出t=0时的波形图。

依旋转矢量法可求t=0时的各点的相位。

解:由t=T/4时的波形图(图中虚线)和波的传播方向,作出 t=0时的波形图(图中实线),依旋转矢量法可知 质点1的初相为π; 质点2的初相为π/2; 质点3的初相为0; 质点4的初相为-π/2.6-4 有一平面谐波在空间传播,如题图6-4所示.已知A 点的振动规律为)t cos(A y ϕ+ω=,就图中给出的四种坐标,分别写出它们波的表达式.并说明这四个表达式中在描写距A 点为b 处的质点的振动规律是否一样?分析 无论何种情况,只需求出任意点x 与已知点的相位差,同时结合相对坐标的传播方向(只考虑相对于坐标方向的正负关系)即可求解波的表达。

波动光学大学物理标准答案

波动光学大学物理标准答案

(2)在双缝干涉实验中,所用单色光波长为 =562.5 nm(1nm = 10-9 m),双缝与观察屏的距离 D = 1.2 m ,若测得屏上相邻明条纹间距为x = 1.5 mm ,则双缝的间距d =习题1313.1选择题 (1)在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 [ ](A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄. (D) 改用波长较小的单色光源. [答案:C](2)两块平玻璃构成空气劈形膜, 左边为棱边,用单色平行光垂直入射. 棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移. (C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [答案:A] 若上面的平玻璃以(3) 一束波长为 的单色光由空气垂直入射到折射率为 n 的透明薄膜上,透明薄膜放在空气 中,要使反射光得到干涉加强,则薄膜最小的厚度为 [](A) . (B) / (4 n).(C) . (D) / (2 n). [答案:B] (4)在迈克耳孙干涉仪的一条光路中,放入一折射率为 n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了 [ ] (A) 2 ( n-1 ) d . (B) 2 nd (C) 2 ( n-1 ) d+ / 2. (D) nd . (E) ( n-1 ) d .[答案:A] (5)在迈克耳孙干涉仪的一条光路中,放入一折射率为 的光程差的改变量为一个波长 ,则薄膜的厚度是 n 的透明介质薄膜后,测出两束光 [ :(A) . (B) / (2 n). (C) n . (D) / [2( n-1)]. [答案:D] 13.2填空题 (1 )如图所示,波长为 为d 的双缝上,入射角为 的平行单色光斜入射到距离 .在图中的屏中央 0处 (S 1O S 20 ),两束相干光的相位差为 [答案:2 dsin /][答案:0.45mm](3)波长 =600 nm的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为___________ nm . (1 nm=10-9m)[答案:900nm ](4)在杨氏双缝干涉实验中,整个装置的结构不变,全部由空气中浸入水中,则干涉条纹的间距将变_____________ 。

波动光学习题参考答案

波动光学习题参考答案
(4.60+3.00)(4.60-3.00) = 4×5×1030
=5.19×10-4 (mm) =590 (nm)
结束 返回
18、 一柱面平凹透镜A,曲率半径为R放在平玻 璃片B上,如图所示。现用波长为l 的单色平行光 自上方垂直往下照射,观察A和B间空气薄膜的反 射光的干涉条纹,如空气膜的最大厚度d =2l , (1)分析干涉条纹的特点(形状、分布、级次高 低),作图表示明条纹; (2)求明条纹距中心线的距离; (3)共能看到多少条明条纹; (4)若将玻璃片B向下 A 平移,条纹如何移动? d 若玻璃片移动了l /4, B 问这时还能看到几条明条纹?
结束 返回
解:由暗纹条件 解:
l = (k 1 )l 2ne = (2k+1) 2 +2
设 l 1 =500nm 为第k级干涉极小
l2 =700nm 为第(k-1)级干涉极小
1 1 1 l (k + 2 ) 1 = (k 1) 2 + 2 l2
l 1+ l 2 500+700 k= = 2(700-200) 2( l2 l1 )
x ´为k 级新的明条纹位置

原来的光程差为 d = r 2 r 1 = dsinj = d x = kl D d b + d (x ´ x ) =0 两式相减得到: D´ D D Δ x ´= b (x ´ x ) <0 D´
即条纹向下移动,而条纹间距不变
D´ S 2
o
D
结束 返回
7、 用单色光源S照射双缝,在屏上形 成干涉图样,零级明条纹位于O 点,如图所 示。若将缝光源 S 移至位置S ´,零级明条 纹将发生移动。欲使零级明条纹移回 O 点, 必须在哪个缝处覆盖一薄云母片才有可能? 若用波长589nm的单 色光,欲使移动了4个 屏 S1 明纹间距的零级明纹 S´ O 移回到O点,云母片的 S 厚度应为多少?云母片 S2 的折射率为1.58。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章波动光学6.1基本要求1.理解相干光的条件及获得相干光的方法.2.掌握光程的概念以及光程差和相位差的关系,了解半波损失,掌握半波损失对薄膜干涉极大值和极小值条件的影响。

3.能分析杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置4.了解迈克耳孙干涉仪的工作原理5.了解惠更斯-菲涅耳原理及它对光的衍射现象的定性解释.6.了解用波带法来分析单缝夫琅禾费衍射条纹分布规律的方法,会分析缝宽及波长对衍射条纹分布的影响.7.了解衍射对光学仪器分辨率的影响.8.掌握光栅方程,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响.9.理解自然光与偏振光的区别.10.理解布儒斯特定律和马吕斯定律.11.了解线偏振光的获得方法和检验方法.6.2基本概念1.相干光若两束光的光矢量满足频率相同、振动方向相同以及在相遇点上相位差保持恒定,则这两束光为相干光。

能够发出相干光的光源称为相干光源。

2.光程光程是在光通过介质中某一路程的相等时间内,光在真空中通过的距离。

若介质的折射率为n,光在介质中通过的距离为L,则光程为nL。

薄透镜不引起附加光程差。

光程差∆与相位差ϕ∆的关系2πϕλ∆=∆。

3.半波损失光在两种介质表面反射时相位发生突变的现象。

当光从光疏介质(折射率较小的介质)射向光密介质(折射率较大的介质)时,反射光的相位较之入射光的相位跃变了π,相当于反射光与入射光之间附加了半个波长的光程差,所以称为半波损失。

4.杨氏双缝干涉杨氏双缝干涉实验是利用波阵面分割法来获得相干光的。

用单色平行光照射一窄缝S ,窄缝相当于一个线光源。

S 后放有与其平行且对称的两狭缝S 1和S 2,两缝之间的距离很小。

两狭缝处在S 发出光波的同一波阵面上,构成一对初相位相同的等强度的相干光源,在双缝的后面放一个观察屏,可以在屏幕上观察到明暗相间的对称的干涉条纹,这些条纹都与狭缝平行,条纹间的距离相等。

5.薄膜干涉薄膜干涉是利用分振幅法来获得相干光的。

由单色光源发出的光经薄膜上表面的反射光和经薄膜下表面反射再折射形成的光是相干光,它们在薄膜的反射方向产生干涉。

薄膜干涉的应用有增透膜,增反膜等。

6.劈尖两片叠放在一起的平板玻璃,其一端的棱边相接触,另一端被细丝隔开,在两块平板玻璃的表面之间形成一空气薄层,叫做空气劈尖。

自空气劈尖上下两面反射的光相互干涉。

形成明暗交替、均匀分布的干涉条纹。

7.牛顿环一块曲率半径很大的平凸透镜与一平玻璃相接触,构成一个上表面为球面,下表面为平面的空气劈尖。

由单色光源发出的光经劈尖空气层的上下表面反射后相互干涉,形成明暗相间且间距不等的同心圆环,因其最早是被牛顿观察到的,故称为牛顿环。

8.迈克尔孙干涉仪用互相垂直的两平面镜形成等效空气层,分振幅法产生相干光。

条纹移动数目N 与反射镜移动的距离d ∆之间的关系为2d N λ∆=⋅9.夫琅和费单缝衍射单色平行光垂射到单缝上,在屏上形成一组平行于单缝的直条纹,中央明纹最宽最亮,宽度是其它明纹的二倍。

分析方法:半波带法 10.圆孔衍射 艾里斑圆孔的夫琅和费衍射图样中央为一亮斑,称为爱里斑,周围为一些同心明暗环。

爱里斑的半角宽度为1.22Dλθ=11.最小分辨角 光学仪器的分辨本领瑞利判据规定:两个物体通过光学仪器孔径衍射后,当一个爱里斑中心刚好落在另一个爱里斑的第一级暗环上时,两个爱里斑刚好能够分辨,仪器的最小分辨角0 1.22Dλθ=在光学中,将1θ定义为光学仪器的分辨本领,即11.22Dθλ=12.衍射光栅任何具有空间周期性的衍射屏都可以看成光栅。

主极大的位置由光栅方程决定()sin a b k θλ+=± (0 1 2,)k =,, 13.自然光普通光源中各原子发光是独立的,每个波列的振幅、相位和振动方向都是随机的,在垂直于光的传播方向的平面内,在同一时刻沿各个方向振动的光矢量都有。

平均说来,光矢量具有均匀的轴对称分布,各方向光矢量振动的振幅相同,这种光称为自然光。

14.线偏振光光矢量只在一个固定平面内沿一个固定方向振动,这种光就是一种完全偏振光,叫线偏振光。

15.部分偏振光是介于偏振光与自然光之间的一种光,例如把一束偏振光与一束自然光混合,得到的光就属于部分偏振光。

在垂直于光传播方向的平面内,各方向的光振动都有,但它们的振幅不相等。

6.3基本规律1. 惠更斯—菲涅耳原理菲涅耳根据波的叠加和干涉原理,提出了“子波相干叠加”的概念,对惠更斯原理作了物理性的补充。

菲涅耳认为,从同一波面上各点发出的子波是相干波。

在传播到空间某一点时,各子波进行相干叠加的结果,决定了该处的波振幅。

2. 杨氏双缝干涉当波长为λ的单色光入射到缝间距为d 的双狭缝后,在距狭缝为D 的屏幕上会形成两缝透过的相干光叠加后的干涉条纹,以两缝中心垂线与屏幕的交点为坐标原点,则明暗条纹的位置应满足下列条件,0,1,2,(21),1,2,3,2k Dk k d x D k k d λλ⎧±=⎪⎪=⎨⎪±-=⎪⎩明纹暗纹相邻两条明纹或暗纹的间距为D x dλ∆=3. 薄膜干涉将一波长为λ的扩展光源照射到一厚度为d 、折射率为2n 、置于折射率为1n 介质的薄膜上,薄膜上下两表面的反射光在相遇点的光程差为r 22Δλ=其中i 为入射光线与薄膜表面法线之间的夹角。

由此可得出薄膜干涉的明暗纹条件r ,1,2,3()22(21),1,2,3()2k k Δk k λλλ=⎧⎪==⎨-=⎪⎩加强减弱 公式中2λ是在表面产生的附加光程差,是否要这一项,要根据薄膜及上下表面两侧介质的折射率来考虑。

4.等厚干涉劈尖反射光干涉极大(明纹)和极小(暗纹)的条件是:(光线垂直入射0i =),1,2,3()22(21),1,2,3()2k k Δnd k k λλλ=⎧⎪=+=⎨-=⎪⎩明纹暗纹相邻明(或暗)条纹中心之间的距离(简称条纹间距)相等12k k dl l l n λθθ+∆∆=-≈=在劈尖上方观察干涉图形是一些与棱边平行的、均匀分布、明暗相间的直条纹。

牛顿环的明暗纹条件(光线垂直入射0i =),1,2,3()22(21),1,2,3()2k k Δnd k k λλλ=⎧⎪=+=⎨-=⎪⎩明纹暗纹牛顿环明(暗)半径分别为1,2,3,)(0,1,2,)k r k ===明纹暗纹5.单缝夫琅和费衍射利用半波带法可得单缝夫琅和费衍射明暗纹条件0sin 21,2,32(21)2k a kk k k λθλλ⎧⎪⎪⎪∆==±=±=⎨⎪⎪±+⎪⎩中央明纹中心暗纹中心明纹中心中央明纹角宽度和线宽度分别为2a λθ∆=中央2f x aλ∆=中央其余明纹角宽度和线宽度分别为a λθ∆=f x aλ∆= 6. 光栅的夫琅和费衍射 主极大的位置由光栅方程决定()sin a b k θλ+=± (0 1 2,)k =,,忽略单缝衍射时,光栅衍射条纹为等间距、等亮度、相邻两条明纹间有宽广暗区的明亮尖锐条纹。

但由于单缝衍射的存在,衍射光强对光栅条纹光强起调制作用,使明纹的亮度不再相同,并且会出现缺级现象,缺级的条件为θ同时满足sin 'a k θλ=±()sin a b k θλ+=±即当衍射角θ同时满足光栅衍射极大和单缝衍射暗纹条件时,相应的光栅衍射极大将缺失。

缺级条件是:'a b ka k += 也就是说,a+b 与a 的比等于整数比时便有缺级现象。

7.马吕斯定律20cos I I θ=(对线偏振光),I 为通过检偏器后的光强,0I 为入射于检偏器的光强,θ为光振动方向与偏振化方向的夹角。

8.布儒斯特定律当自然光从折射率为1n 的各向同性介质向折射率为2n 的各向同性介质入射时,若入射角i 0满足201tan n i n =则反射光变成完全偏振光,且其光振动的方向垂直于入射面,这一规律称为布儒斯特定律,这一特定的入射角i 0称为布儒斯特角或起偏振角。

此时,反射线与折射线相互垂直。

0090i γ+=6.4学习指导 1重点解析(1)双缝干涉条纹的计算研究双缝干涉问题,主要是计算两束相干光的光程差,根据干涉明暗条纹的条件,就可以得到条纹的形态和分布。

例1 在杨氏双缝干涉实验中,设双缝之间的距离为d=0.2mm ,屏与双缝间的距离D =1.00m 。

(1) 当波长589.0nm λ=的单色光垂直入射时,求10条干涉条纹之间的距离。

(2) 若以白光入射,将出现彩色条纹,求第二级光谱的宽度。

分析:在杨氏双缝干涉实验中,如果入射光为单色光,则干涉条纹为等距分布的明暗相间的直条纹。

n 条条纹之间的距离为(1)(1)Dn x n dλ-∆=-。

如果入射光为白光,中心零级明纹极大处为白色,其它各级条纹均因波长不同而彼此分开,具有一定的宽度,第k 级干涉条纹的宽度为max min ()Dx kdλλ∆=- 解:(1)在杨氏双缝干涉的图样中,其干涉条纹为等距分布的明暗相间的直条纹。

相邻条纹之间的距离为9331.00589102.95100.210D x m m d λ---⨯⨯∆===⨯⨯ 10条干涉条纹之间有9个间距,所以10条干涉条纹之间的距离为2'9 2.6610x x m -∆=∆=⨯(2)第二级彩色条纹光谱宽度是指第二级紫光明纹中心位置到第二级红光明纹中心位置之间的距离。

杨氏双缝干涉明纹的位置为Dx kdλ= 所以第二级光谱的宽度为9331.002(760400)10 3.6100.210D x km m d λ---∆=∆=⨯⨯-⨯=⨯⨯(2)薄膜干涉条纹的计算在计算薄膜干涉的光程差时,特别要注意反射光的半波损失问题。

当光从折射率为1n 的媒质中垂直(或近于垂直)入射到折射率为2n 的媒质,若2n >1n ,则在界面上的反射光有半波损失。

例2 一油轮漏出的油(折射率n 1 = 1.20)污染了某海域,在海水(n 2 = 1.30)表面形成了一层薄薄的油污。

(1)如果太阳正位于海域上空,一直升飞机的驾驶员从机上向下观察,他所正对的油层厚度为460nm ,则他将观察到油层呈什么颜色?(2)如果一潜水员潜入该区域水下,又将观察到油层呈什么颜色?解 这是一个薄膜干涉问题。

太阳光垂直照射在海面上,驾驶员和潜水员看到的分别是反射光的干涉结果和透射光的干涉结果。

(1)由于油层的折射率n 1小于海水的折射率n 2但大于空气的折射率,所以在油层上,下表面反射的太阳光均发生π的相位跃变。

两反射光之间的光程差为:12r n d ∆=当r k λ∆=,即12n dkλ=,k=1,2,…. 把n 1=1.20,d=460nm 代入,干涉加强的光波波长为1k =,1121104n d nm λ== 2k =,21552n d nm λ== 3k =,1323683n dnm λ== 其中,波长为 2552nm λ=的绿光在可见范围内,所以驾驶员看到薄膜呈绿色。

相关文档
最新文档