立体几何错题整理
高中数学立体几何部分错题精选
高中数学立体几何部分错题精选一、选择题:1.(石庄中学)设ABCD是空间四边形,E,F分别是AB,CD的中点,则满足()A 共线B 共面C 不共面D 可作为空间基向量正确答案:B 错因:学生把向量看为直线。
2.(石庄中学)在正方体ABCD-ABCD,O是底面ABCD的中心,M、N分别是棱DD、DC的中点,则直线OM( )A 是AC和MN的公垂线B 垂直于AC但不垂直于MNC 垂直于MN,但不垂直于ACD 与AC、MN都不垂直正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。
3.(石庄中学)已知平面∥平面,直线L平面,点P直线L,平面、间的距离为8,则在内到点P的距离为10,且到L的距离为9的点的轨迹是( )A 一个圆B 四个点C 两条直线D 两个点正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。
4.(石庄中学)正方体ABCD-ABCD中,点P在侧面BCCB及其边界上运动,并且总保持A P⊥BD,则动点P的轨迹()A 线段BCB BB的中点与CC中点连成的线段C 线段BCD CB中点与BC中点连成的线段正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。
5.(石庄中学)下列命题中:1 若向量、与空间任意向量不能构成基底,则∥。
2 若∥, ∥,则∥.3 若 、 、是空间一个基底,且 =+ + ,则A、B、C、D四点共面。
4 若向量 + , + , + 是空间一个基底,则 、 、 也是空间的一个基底。
其中正确的命题有( )个。
A 1B 2C 3D 4正确答案:C 错因:学生对空间向量的基本概念理解不够深刻。
6.(磨中)给出下列命题:①分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b在面α内的射影为c,直线a⊥c,则a⊥b④有三个角为直角的四边形是矩形,其中真命题是( )正确答案:①错误原因:空间观念不明确,三垂线定理概念不清7.(磨中)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有( )A、7B、8C、9D、10正确答案:A错误原因:4+8—2=108.(磨中)下列正方体或正四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图是( )RS··PQ·R··S·PBS·S·R·CDQ·P·R··Q·P·Q·A正确答案:D错误原因:空间观点不强9.(磨中)a和b为异面直线,则过a与b垂直的平面( )A、有且只有一个B、一个面或无数个C、可能不存在D、可能有无数个正确答案:C错误原因:过a与b垂直的夹平面条件不清10.(一中)给出下列四个命题:(1)各侧面在都是正方形的棱柱一定是正棱柱.(2)若一个简单多面体的各顶点都有3条棱,则其顶点数V、面数F满足的关系式为2F-V=4.(3)若直线l⊥平面α,l∥平面β,则α⊥β.(4)命题“异面直线a、b不垂直,则过a的任一平面与b都不垂直”的否定.其中,正确的命题是 ( )A.(2)(3) B.(1)(4) C.(1)(2)(3) D.(2)(3)(4)正确答案:A11.(一中)如图,△ABC是简易遮阳棚,A,B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角应为()A.75° B.60° C.50° D.45°正确答案:C12.(蒲中)一直线与直二面角的两个面所成的角分别为α,β,则α+β满足()A、α+β<900B、α+β≤900C、α+β>900D、α+β≥900答案:B点评:易误选A,错因:忽视直线与二面角棱垂直的情况。
错题宝典高考复习易错题分类《立体几何》易错题1830
错题宝典高考复习易错题分类《立体几何》易错题测试题 2019.9 1,给出下列四个命题:(1)各侧面都是正方形的棱柱一定是正棱柱(2)若一个简单多面体的各顶点都有三条棱,则其顶点数V ,面数F 满足的关系式为2F-V=4(3)若直线L ⊥平面α,L ∥平面β,则α⊥β(4)命题“异面直线a,b 不垂直,则过a 的任一平面和b 都不垂直”的否定,其中,正确的命题是()A 、(2)(3) B、(1)(4) C 、(1)(2)(3) D 、(2)(3)(4)2,1. 有一棱长为a 的正方体骨架,其内放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为__________. 3,一个广告气球某一时刻被一束平行光线投射到水平地面上的影子是一个椭圆,椭圆的离心率为,则该时刻这平行光线对于水平平面的入射角为________。
4,已知正三棱柱底面边长是10,高是12,过底面一边AB ,作与底面ABC 成角的截面面积是___________________。
5,过球面上两已知点可以作的大圆个数是_________个。
6,判断题:若两个平面互相垂直,过其中一个平面内一点作它们的交线32e 111ABCA B C 060的垂线,则此直线垂直于另一个平面。
7,平面外有两点A,B ,它们与平面的距离分别为a,b ,线段AB 上有一点P ,且AP:PB=m:n ,则点P 到平面的距离为_________________.8,点AB 到平面距离距离分别为12,20,若斜线AB 与成的角,则AB 的长等于_____.9,与空间四边形ABCD 四个顶点距离相等的平面共有______个。
10,在棱长为1的正方体ABCD--A 1B 1C 1D 1中,若G 、E 分别为BB 1,C 1D 1的中点,点F 是正方形ADD 1A 1的中心,则四边形BGEF 在正方体六个面上的射影图形面积的最大值为________。
高三数学易错立体几何多选题 易错题难题自检题学能测试
高三数学易错立体几何多选题 易错题难题自检题学能测试一、立体几何多选题1.如图,在棱长为2的正方体ABCD A B C D ''''-中,M 为BC 边的中点,下列结论正确的有( )A .AM 与DB ''10 B .过三点A 、M 、D 的正方体ABCD A BCD ''''-的截面面积为92C .四面体A C BD ''的内切球的表面积为3π D .正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是椭圆 【答案】AB 【分析】构建空间直角坐标系,由异面直线方向向量的夹角cos ,||||AM D B AM D B AM D B ''⋅''<>=''为AM 与D B ''所成角的余弦值判断A 的正误;同样设(,,0)P x y 结合向量夹角的坐标表示,2221543x y =++⨯P 的轨迹知D 的正误;由立方体的截面为梯形,分别求,,,MN AD AM D N '',进而得到梯形的高即可求面积,判断B 的正误;由四面体的体积与内切球半径及侧面面积的关系求内切球半径r ,进而求内切球表面积,判断C 的正误. 【详解】A :构建如下图所示的空间直角坐标系:则有:(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D '', ∴(1,2,0),(2,2,0)AM D B ''==-,10cos ,10||||58AM D B AM D B AM D B ''⋅''<>===''⨯,故正确.B :若N 为CC '的中点,连接MN ,则有//MN AD ',如下图示,∴梯形AMND’为过三点A 、M 、D 的正方体ABCD A B C D ''''-的截面, 而2,2,5MN AD AM D N ''====322, ∴梯形的面积为132932222S =⨯=,故正确. C :如下图知:四面体A C BD ''的体积为正方体体积减去四个直棱锥的体积,∴118848323V =-⨯⨯⨯=,而四面体的棱长都为22,有表面积为142222sin 8323S π=⨯⨯⨯⨯=,∴若其内切圆半径为r ,则有188333r ⨯⋅=,即33r =,所以内切球的表面积为2443r ππ=.故错误. D :正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动且MAC PAC ''∠=∠,即P 的轨迹为面A B C D ''''截以AM 、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线GPK ,构建如下空间直角坐标系,232(0,0,2),(2),(0,22,0)22A M C '-,若(,,0)P x y ,则232(,,0),(0,22,2),(,,2)22AM AC AP x y '=-=-=-,∴15cos ||||512AM AC MAC AM AC '⋅'∠==='⨯222cos ||||43AP AC PAC AP AC x y '⋅'∠=='++⨯22215543x y =++⨯,整理得22(102)9216(0)y x y +-=>,即轨迹为双曲线的一支,故错误.故选:AB 【点睛】关键点点睛:应用向量的坐标表示求异面直线的夹角,并结合等角的余弦值相等及向量数量积的坐标表示求动点的轨迹,综合立方体的性质求截面面积,分割几何体应用等体积法求内切球半径,进而求内切球的表面积.2.在正三棱柱111ABC A B C -中,2AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+- B .三棱锥11D AB C -3C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为363AD BD BC ===,11111122DB C S BB B C =⨯⨯=, 所以1111111162333226D AB C A DB C DB C V V AD S --==⨯⨯=⋅⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.3.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4πC .三棱锥11A BDE -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD.【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.4.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD 【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI 10,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅= 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时22133532D N ⎛⎫=+= ⎪⎝⎭,223110EF =+=,故梯形1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,其长度为10,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅=,故D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD选项,通过//BM平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.5.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+-()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.6.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π 【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为217,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,3BF =,22312CF CB BF =+=+=,22112DF DA AF =+=+=,2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2222214222DF CF ⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 11472222CDF S =⨯⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC 平面ADF ,点C 到平面ADF 的距离为3BF =, 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,11173323h ⨯⨯=⨯⨯, 所以21h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以215122ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -外接球的球心,其半径52, 三棱锥C BEF -外接球的体积为33445553326V r πππ⎛⎫==⨯= ⎪ ⎪⎝⎭,故D 错误, 故选:ABC. 【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.7.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =11221334212A BEF BEF V S AO -∆∴=⨯=⨯⨯=A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯== 12HG FT ∴==选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=,22AR = 由余弦定理得13cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.8.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =, 2232cos ,288AB AM AB AM AB AMa a ⋅⎡<>===⎢⋅⨯++⎣⎦, 所以,直线AB 与平面α所成角的正弦值范围为3232⎣⎦,A 选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,易知1A BD 是边长为22的等边三角形,其面积为()12322234A BD S =⨯=△,周长为22362⨯=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH 2//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为622362334⨯=则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,()1,0,2E ∴,所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,()1,1,0EF =,而()2,2,0DB =,12EF DB ∴=,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=,()()()2222212205BF =-+-+-=,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,2222222MC AC DN AD ∴===+, 11222MC CC =≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC.【点睛】本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.。
最新最全立体几何易错题复习分析完整版.doc
立体几何易错题分析1. 下列正方体或正四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图是( )正解:D错因:空间感不强.2. 如果,a b 是异面直线,P 是不在,a b 上的任意一点,下列四个结论:(1)过P 一定可作直线L 与,a b 都相交;(2)过P 一定可作直线L 与,a b 都垂直;(3)过P 一定可作平面α与,a b 都平行;(4)过P 一定可作直线L 与,a b 都平行,其中正确的结论有( )A 、0个B 、1个C 、2个D 、3个正解:B .(2)正确错解:C 认为(1)(3)对D 认为(1)(2)(3)对错因:认为(2)错误的同学,对空间两条直线垂直理解不深刻,认为作的直线应该与a,b 都垂直相交;而认为(1)(3)对的同学,是因为设能借助于两个平行平面衬托从而对问题的分析欠严密.正解:C错因:将平面图形折成空间图形后线面位置关系理不清,易瞎猜.3. 判断题:若两个平面互相垂直,过其中一个平面内一点作它们的交线的垂线,则此直线垂直于另一个平面. ( )正解:本题不对.错因:未能认真审题或空间想象力不够,忽略过该点向平面外作垂线的情况.4. α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是( ).A .α和β都垂直于平面gB .α内不共线的三点到β的距离相等C .m l ,是平面α内的直线且ββ//,//m lD .m l ,是两条异面直线且ββαα//,//,//,//l m m l正解:D对于βα,,A 可平行也可相交;对于B ,三个点可在β平面同侧或异侧;对于m l C ,,在平面α 内可平行,可相交.对于D 正确证明如下:过直线m l ,分别作平面与平面βα,相交,设交线分别为11,m l 与 22,m l ,由已知βα//,//l l 得21//,//l l l l ,从而21//l l ,则β//1l ,同理β//1m ,Q R · · S ·P · · P · B S · R · · S · P Q · R · C · R P · · · D Q AQ Sβα//∴。
立体几何易错点梳理
立体几何易错点梳理
(一)空间平面的性质:
1. 平面是有特定形状的空间,具有宽度、长度和深度。
2. 平面可以看做是展开后的立体物体,由平行线段和弧线组成。
3. 空间平面中有几何体,比如四边形、正方形等等。
(二)立体几何常见易错点:
1. 程序性错误:容易出现计算错误、定义不一致等问题。
2. 绘图错误:由于绘图过程中的误差,容易出现坐标计算错误、三角定理错误等问题。
3. 计算结果不准:容易出现解析解不正确或者数值计算结果不准确等问题。
4. 判断错误:容易出现判断是平面还是立体几何形状不清晰等问题。
2018届高考数学一轮复习错题笔记七立体几何
笔记七立体几何易错点36三视图识图出错典例36若某空间几何体的三视图如图所示,则该几何体的体积为.【错因分析】本题易出错的地方有两处,(1)由三视图还原几何体时出错;(2)在计算几何体的体积时出错.【正确解答】由三视图知该几何体为水平放置的三棱柱,底面为两直角边分别为1和,高为,故V=12×1××1.故填1.易错点37错误理解异面直线所成的角典例37已知在空间四边形ABCD中,AB=CD=3,点E,F分别是边BC和AD 上的点,并且BE∶EC=AF∶FD=1∶2,EF=7,求异面直线AB和CD所成的角.【错因分析】对异面直线所成的角的概念和范围不熟悉,造成计算结果出现错误.异面直线所成的角的范围是(0,90°].【正确解答】如图,在BD上取靠近点B的三等分点G,连接FG,GE,在△BCD中,可得BGGD =BEEC,故有EG∥DC,同理在△ABD中,可得GF∥AB,所以∠EGF或其补角就是异面直线AB和CD所成的角,在△BCD中,由GE∥CD,CD=3,EGCD =13,得EG=1,在△ABD中,由FG∥AB,AB=3,FGAB =23,得FG=2,在△EFG中,由EG=1,FG=2,EF=由余弦定理可得cos∠EGF=EG 2+FG2-EF22EG·FG=-12,所以∠EGF=120°,所以异面直线AB和CD所成的角为60°.易错点38线面位置关系定理使用不当典例38正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点.BD1,给出下面四个命题:点P在对角线BD1上,且BP=23①A,P,M三点共线;②C1Q∥平面APC;③MN∥平面APC;④平面MNQ∥平面APC.其中的所有正确命题的序号为()A.②③B.①④C.①②D.③④【错因分析】考生对空间线面关系模糊,定理不熟悉,未能推出MN在平面APC内而导致错误.证明有关线线,线面、面面平行或垂直时使用定理应注意找足条件,书写规范,推理严谨.【正确解答】①由已知条件易证△APB∽△D1MP,又由点P在对角线BD1上和AB∥D1C1可得A,P,M三点共线,故①正确;②由①知,C,P,N也三点共线,将平面APC延展,可知点M,N在平面APC上,又因为AN∥C1Q,所以C1Q∥平面APC,故②正确;③由②知,M,N都在平面APC上,故MN⊂平面APC,故③错误;④由③知MN⊂平面APC,由②知点Q在平面APC外面,所以平面MNQ与平面APC相交,故④错误.故选C.易错点39 线面角计算错误典例39 如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点,若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成的角的正弦值.【错因分析】本题在求得平面DCEF 的一个法向量(0,0,2)DA = 及(1,1,2)MN =-- 后,可得cos ,MN DA = .MN DA M N D A= 考生就会误认为.其实是错误的,计算线面角我们容易出错的有以下三点:①误以为直线的方向向量与平面的法向量所成的角就是线面角;②误以为直线的方向向量与平面的法向量所成的角的余弦就是线面角的正弦,而忘了加绝对值;③不清楚线面角的范围.【正确解答】设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴建立如图所示的空间直角坐标系,则M (1,0,2),N (0,1,0),可得MN=(-1,1,-2). 又∵DA=(0,0,2)为平面DCEF 的法向量, ∴cos <MN ,DA >=MN ·DA |MN ||DA|=- 63. ∴MN 与平面DCEF 所成的角的正弦值为|cos <MN ,DA >|= 63.易错点40 二面角计算错误典例40 如图,四棱锥S-ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,AD= 2,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°.(1)证明:M 为侧棱SC 的中点;(2)求二面角S-AM-B 的余弦值.【错因分析】若两个平面的法向量分别为a,b,若两个平面所成的锐二面角为θ,则cos cos ,a b θ=;若两个平面所成二面角为钝角,则cos cos ,a b θ=-.考生在解此类题时,应先求出两个平面的法向量及其夹角,然后视二面角的大小而定,避免出现二面角的余弦值的正负问题.【正确解答】(1)分别以DA ,DC ,DS 为x ,y ,z 轴建立空间直角坐标系Dxyz ,则A ( 2,0,0),B ( 2,2,0),C (0,2,0),S (0,0,2).设M (0,a ,b )(a>0,b>0),则BA =(0,-2,0),BM =(- 2,a-2,b ),SM =(0,a ,b-2),SC =(0,2,-2),由题得 cos <BA ,BM >=12,SM ∥SC ,即 2· (a -2)+b 2+2=12,-2a =2(b -2).解方程组得a=1,b=1即M (0,1,1),所以M 是侧棱SC 的中点.(2)由(1)得M (0,1,1),MA =( -1,-1),又AS =(- 2,0,2),AB =(0,2,0),设n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2)分别是平面SAM 、平面MAB 的法向量,则 n 1·MA =0,n 1·AS =0且 n 2·MA =0,n 2·AB =0,即2x1-y1-z1=0,-2x1+2z1=0且2x2-y2-z2=0,2y2=0.分别令x1=x2=2,则z1=1,y1=1,y2=0,z2=2, 即n1=(2,1,1),n2= (2,0,2),所以cos<n1,n2>=2·6=63,又因为二面角S-AM-B为钝角,所以二面角S-AM-B的余弦值为-63.。
中考数学易错题系列之立体几何
中考数学易错题系列之立体几何在中考数学中,立体几何是一个较为重要的考点,也是学生容易出错的地方。
本文将针对中考数学中的立体几何易错题进行分析和解答,帮助学生加深对该知识点的理解。
一、立体几何的基本概念立体几何是研究空间图形的形状、结构和性质的数学分支。
在中考中,我们常见的立体图形有立方体、长方体、正方体、圆柱体、圆锥体和球体等。
理解这些图形的基本概念对于解决立体几何题目非常重要。
1. 立方体(Cube):所有的边长相等,六个面都是正方形。
2. 长方体(Cuboid):所有的边长不相等,六个面都是矩形。
3. 正方体(Square Pyramid):底面是正方形,侧面是由底面上的顶点引出的三角形。
4. 圆柱体(Cylinder):底面是圆形,侧面是由底面上的每一点引出的射线。
5. 圆锥体(Cone):底面是圆形,侧面是由底面上的每一点引出的直线段与顶点相连形成的曲面。
6. 球体(Sphere):所有点到圆心的距离都相等。
二、立体几何易错题解析与解答1. 在一个立方体中,对角线之间的夹角是多少度?答:立方体的对角线为立方体的空间对角线,经过对角线的两个顶点和立方体中心。
根据立方体的对称性可知,任意两条对角线夹角为90度。
2. 在一个长方体中,当六个面都给出时,求长方体的体积。
答:长方体的体积可以通过长度、宽度和高度的乘积来计算。
当六个面都给出时,我们可以找到长方体的三个边长,分别为a、b和c。
则长方体的体积V为V = a * b * c。
3. 圆柱体的体积公式是什么?答:圆柱体的体积可以通过底面积和高来计算。
圆柱的底面为圆形,半径为r,高度为h。
则圆柱体的体积V为V = π * r² * h。
4. 球体的表面积公式是什么?答:球体的表面积可以通过半径来计算。
球的半径为r,则球体的表面积S为S = 4 * π * r²。
5. 在一个圆锥体中,当给出底面半径和高时,求圆锥体的体积。
答:圆锥体的体积可以通过底面积和高来计算。
高中数学第八章立体几何初步易错知识点总结(带答案)
高中数学第八章立体几何初步易错知识点总结单选题1、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA =13×3√3×3√3×32=272,V AFD−BHC =12×3√3×32×3√3=814则该几何体的体积为V =2V AFD−BHC −V I−BCDA =2×814−272=27.故选:D.2、已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为( ) A .√3πB .√33C .√33πD .√3 答案:C分析:求出圆锥的底面半径和圆锥的母线长与高,再计算圆锥的体积. 解:设圆锥的底面半径为r ,圆锥的母线长为l , 由πl =2πr ,得l =2r ,又S =πr 2+πr ⋅2r =3πr 2=3π, 所以r 2=1,解得r =1;所以圆锥的高为ℎ=√l 2−r 2=√22−12=√3, 所以圆锥的体积为V =13πr 2ℎ=13π×12×√3=√33π. 故选:C .3、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( )A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面.故选: D.4、若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是()A.一定平行B.一定相交C.平行或相交D.以上判断都不对答案:C分析:利用面面平行的判定即得.一个平面内的两条直线分别平行于另一个平面内的两条直线,若这两条直线相交且这两条直线平行于另一个平面,则可得这两个平面平行;若这两条直线平行,则这两个平面可能相交也可能平行;故选:C.5、在长方体ABCD−A1B1C1D1中,AB=4,AD=3,AA1=5,点P在长方体的面上运动,且满足AP=5,则P的轨迹长度为()A.12πB.8πC.6πD.4π答案:C分析:由题设,在长方体表面确定P 的轨迹,应用弧长公式计算轨迹长度.如图,P 在左侧面的轨迹为弧A 1N ⏜,在后侧面的轨迹为弧NC ⏜,在右侧面的轨迹为弧MC ⏜,在前侧面内的轨迹为弧A 1M ⏜.易知|NC ⏜|=14π×4×2=2π,|MC ⏜|=14π×3×2=3π2,又sin∠A 1AN =cos∠NAD =35,cos∠A 1AM =sin∠MAB =35,∴∠A 1AN +∠A 1AM =π2,则|A 1N ⏜|+|A 1M ⏜|=14π×5×2=5π2,∴P 的轨迹长度为6π, 故选:C.6、如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,BD =2,DE =1,点P 在线段EF 上.给出下列命题:①存在点P ,使得直线DP//平面ACF ; ②存在点P ,使得直线DP ⊥平面ACF ;③直线DP 与平面ABCD 所成角的正弦值的取值范围是[√55,1];④三棱锥A−CDE的外接球被平面ACF所截得的截面面积是9π8.其中所有真命题的序号()A.①③B.①④C.①②④D.①③④答案:D分析:当点P是线段EF中点时判断①;假定存在点P,使得直线DP⊥平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出△ACF外接圆面积判断④作答.取EF中点G,连DG,令AC∩BD=O,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则DO//GF且DO=GF,即四边形DGFO是平行四边形,即有DG//FO,而FO⊂平面ACF,DG⊄平面ACF,于是得DG//平面ACF,当点P与G重合时,直线DP//平面ACF,①正确;假定存在点P,使得直线DP⊥平面ACF,而FO⊂平面ACF,则DP⊥FO,又DG//FO,从而有DP⊥DG,在Rt△DEF中,∠DEF=90∘,DG是直角边EF上的中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,则线段EF上的动点P在平面ABCD上的射影在直线BD上,于是得∠PDB是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,∠PDB=∠DPE,sin∠PDB=sin∠DPE=DEDP =√DE2+EP2=√1+EP2,而0<EP≤2,则√55≤sin∠PDB<1,当P与E重合时,∠PDB=π2,sin∠PDB=1,因此,√55≤sin∠PDB≤1,③正确;因平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,BF⊥BD,BF⊂平面BDEF,则BF⊥平面ABCD,BC=√2,在△ACF中,AF=CF=√BC2+BF2=√3,显然有FO⊥AC,sin∠FAC=FOAF =√BO2+BF2AF=√2√3,由正弦定理得△ACF外接圆直径2R=CFsin∠FAC =√2,R=2√2三棱锥A−CDE的外接球被平面ACF所截得的截面是△ACF的外接圆,其面积为πR2=9π8,④正确,所以所给命题中正确命题的序号是①③④.故选:D小提示:名师点评两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.7、已知α,β是两个不同的平面,则下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过已知平面的一条斜线有且只有一个平面与已知平面垂直C.平面α不垂直平面β,但平面α内存在直线垂直于平面βD.若直线l不垂直于平面α,则在平面α内不存在与l垂直的直线答案:B分析:举特例说明判断A;由平面的基本事实及线面垂直的性质推理判断B;推理说明判断C;举例说明判断D作答.正方体ABCD−A1B1C1D1中,直线A1B1、直线B1C1都平行于平面ABCD,而直线A1B1与B1C1相交,A不正确;如图,直线l是平面α的斜线,l∩α=O,点P是直线l上除斜足外的任意一点,过点P作PA⊥α于点A,则直线OA是斜线l在平面α内射影,直线l与直线OA确定平面β,而PA⊂平面β,则平面β⊥平面α,即过斜线l有一个平面垂直于平面α,因平面的一条斜线在此平面内的射影是唯一的,则直线l与直线OA确定的平面β唯一,所以过已知平面的一条斜线有且只有一个平面与已知平面垂直,B正确;如果平面α内存在直线垂直于平面β,由面面垂直的判断知,平面α垂直于平面β,因此,平面α不垂直平面β,则平面α内不存在直线垂直于平面β,C 不正确; 如图,在正方体ABCD −A 1B 1C 1D 1中,平面ABCD 为平面α,直线BC 1为直线l ,显然直线l 不垂直于平面α,而平面α内直线AB,CD 都垂直于直线l ,D 不正确. 故选:B8、已知正四面体P −ABC 内接于球O ,点E 是底面三角形ABC 一边AB 的中点,过点E 作球O 的截面,若存在半径为√3的截面圆,则正四面体P −ABC 棱长的取值范围是( ) A .[√2,√3]B .[√3,√6] C .[2√2,2√3]D .[2√3,2√6] 答案:C分析:根据条件设正四面体的棱长为a ,用棱长a 表示出其外接球的半径R =√64a ,过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时此时截面圆的半径为r =12a ,最大截面圆为过球心的大圆,半径为R =√64a ,根据题意则12a ≤√3≤√64a ,从而可得出答案. 如图,在正四面体P −ABC 中,设顶点P 在底面的射影为O 1, 则球心O 在PO 1上,O 1在CE 上,且|PO 1|=23|CE |,连接OE 、OC ,设正四面体的棱长为a ,则|CE |=√32a ,|PO 1|=23|CE |=√33a 则正四面体的高PO 1=√PC 2−O 1C 2=a 2−(√33a)2=√63a , 设外接球半径为R ,在Rt △OO 1C 中,OC 2=OO 12+O 1C 2,即R 2=(√63a −R)2+(√33a)2,解得R =√64a , ∴在Rt △OO 1E 中,OE =√OO 12+O 1E 2=(√612a)2+(√36a)2=√24a ,过E点作外接球O的截面,只有当OE⊥截面圆所在的平面时,截面圆的面积最小,此时截面圆的半径为r=√R2−OE2=(√64a)2−(√24a)2=12a,最大截面圆为过球心的大圆,半径为R=√64a,由题设存在半径为√3的截面圆,∴12a≤√3≤√64a,解得2√2≤a≤2√3,故选:C.小提示:关键点睛:本题考查正四棱锥的外接球的截面圆的半径范围问题,解答本题的关键是用正四棱锥棱长a表示出其外接球的半径R=√64a,得出过E点的球的截面圆的半径的范围,从而得解,属于中档题.多选题9、在正方体ABCD−A1B1C1D1中,AB=4,E,F分别为BB1,CD的中点,P是BC1上的动点,则()A.A1F⊥平面AD1EB.平面AD1E截正方体ABCD−A1B1C1D1的截面面积为18C.三棱锥P−AD1E的体积与P点的位置有关D .过作正方体ABCD −A 1B 1C 1D 1的外接球的截面,所得截面圆的面积的最小值为5π 答案:AB解析:建立坐标系,利用向量法可判断A ;取B 1C 1中点G ,连接D 1G,GE ,利用平面性质可知等腰梯形AD 1GE 即为截面,求出其面积即可判断;根据平行间的距离不变可判断C ;设外接球心为O ,过O 作OOʹ⊥AE ,垂足为Oʹ,则以Oʹ为圆心,O ′A 为半径的圆是过AE 面积最小的截面圆,求出其面积即可判断D. 对于A ,如图,以A 为原点,AD,AB,AA 1为坐标轴建立空间直角坐标系,则A (0,0,0),E (0,4,2),A 1(0,0,4),F (4,2,0),D 1(4,0,4), ∴AE ⃗⃗⃗⃗⃗ =(0,4,2),A 1F ⃗⃗⃗⃗⃗⃗⃗ =(4,2,−4),AD 1⃗⃗⃗⃗⃗⃗⃗ =(4,0,4),∵AE ⃗⃗⃗⃗⃗ ⋅A 1F ⃗⃗⃗⃗⃗⃗⃗ =0×4+4×2+2×(−4)=0,∴A 1F ⊥AE , ∵AD 1⃗⃗⃗⃗⃗⃗⃗ ⋅A 1F ⃗⃗⃗⃗⃗⃗⃗ =4×4+0×2+4×(−4)=0,∴A 1F ⊥AD 1, ∵AE ∩AD 1=A ,∴A 1F ⊥平面AD 1E ,故A 正确;对于B ,如图,取B 1C 1中点G ,连接D 1G,GE ,则GE//C 1B 且GE =12C 1B =2√2,可知C 1B//AD 1,所以A,D 1,G,E 共面,则等腰梯形AD 1GE 即为截面,可求得其面积为18,故B 正确;AE对于C ,可知在正方体中,BC 1//AD 1,又BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E ,所以BC 1//平面AD 1E ,因为P 是BC 1上的动点,所有P 到平面AD 1E 的距离为定值,故三棱锥P −AD 1E 的体积与P 点的位置无关,故C 错误; 对于D ,设外接球心为O ,过O 作OOʹ⊥AE ,垂足为Oʹ,则以Oʹ为圆心,O ′A 为半径的圆是过AE 面积最小的截面圆,则O (2,2,2),设Oʹ(0,y,12y),∴OOʹ⃗⃗⃗⃗⃗⃗⃗ =(−2,y −2,12y −2),AE ⃗⃗⃗⃗⃗ =(0,4,2), ∴OOʹ⃗⃗⃗⃗⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =(y −2)×4+(12y −2)×2=0,解得y =125,则OʹA =√(125)2+(65)2=6√55,故截面圆的最小面积为π×(6√55)2=36π5,故D 错误.小提示:本题考查立体几何的综合问题,属于中档题.10、如图,点E 为正方形ABCD 边CD 上异于点C 、D 的动点,将△ADE 沿AE 翻折成△SAE ,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB ⊥SE B .存在点E 和某一翻折位置,使得AE ∥平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S ﹣AB ﹣C 的大小为60° 答案:ACD分析:对于A ,当E 为CD 中时,当翻折到AD =BS =α时,SB ⊥SE ;对于B ,由CE ∥AB ,且CE <BC ,得AE 与BC 相交;对于C ,对于C ,DF ⊥AE ,交AE 于G ,S 在平面ABCD 的投影O 在FG 上,连结BO ,则∠SBO 为直线SB 于平面 ABC 所成角,由此能求出cosα=23;对于D ,过点O 作OM ⊥AB ,交AB 于点M ,则∠SMO 为二面角S﹣AB ﹣C 的平面角,由此能求出结果.对于A ,设正方形边长为a ,当E 为CD 中点时,AE =BE =√a 2+a 24=√52a ,当翻折到AD =BS =α时,SB ⊥SE ,故A 正确;对于B ,∵CE ∥AB ,且CE <BC ,∴AE 与BC 相交,∴AE 与平面SBC 相交,故B 错误; 对于C ,如图所示,DF ⊥AE ,交AE 于G ,S 在平面ABCD 的投影O 在FG 上,连结BO ,则∠SBO 为直线SB 于平面ABC 所成角,取二面角D ﹣AE ﹣B 的平面角为α,取AD =4,DE =3,则AE =DF =5,CE =BF =1,DG =125,OG =125cosα,∴只需满足SO =OB =125sinα,在△OFB 中,根据余弦定理得:(125sinα)2=12+(135−125cosα)2−2(135−125cosα)cos∠OFB ,解得cosα=23,故C 正确;对于D ,过点O 作OM ⊥AB ,交AB 于点M ,则∠SMO 为二面角S ﹣AB ﹣C 的平面角,取二面角D ﹣AE ﹣B 的平面角为60°,故只需满足DG =2GO =2OM ,设∠OAG =∠OAM =θ,π8<θ<π4,则∠DAG =π2−2θ,AG =DG tan(π2−2θ)=OGtanθ,化简,得2tanθtan2θ=1,解得tanθ=√55,验证满足,故D 正确.故选:ACD .11、如图,在棱长均相等的正四棱锥P −ABCD 中,O 为底面正方形的中心,M,N 分别为侧棱PA,PB 的中点,下列结论正确的是( )A .平面OMNB .平面PCD//平面OMNC .OM ⊥PAD .直线PD 与直线MN 所成角的大小为90° 答案:ABC分析:A 选项:连接AC ,O 为AC 中点,M 为PA 中点,可证OM ∥根据线面平行的判定可以证明∥平面OMN ;B 选项:;连接BD ,同理证明PD ∥平面OMN ,结合A 选项可证明平面PCD//平面OMN ;C 选项:由于正四棱锥P −ABCD 的棱长均相等,且四边形ABCD 为正方形,根据勾股定理可证PA ⊥PC ,结合OM ∥可证OM ⊥PA ;D 选项:先利用平移思想,根据平行关系找到异面直线PD 与直线MN 所成角的平面角,结合△PDC 为正三角形,即可求出直线PD 与直线MN 所成角. 连接AC 如图示://PC PC PC PC∵O 为底面正方形的中心, ∴O 为AC 中点,又∵M 为PA 中点,∴OM ∥又∵OM ⊂平面OMN ,PC ⊄平面OMN ,∴PC ∥平面OMN ,故A 选项正确;连接BD ,同理可证ON ∥PD ,又∵ON ⊂平面OMN ,PD ⊄平面OMN ,∴PD ∥平面OMN ,又∵PD ∩PC =P ,∥平面OMN 平面PCD ,PD ⊂平面PCD , ∴平面PCD//平面OMN ,故B 选项正确;由于正四棱锥P −ABCD 的棱长均相等,且四边形ABCD 为正方形,∴AB 2+BC 2=PA 2+PC 2=AC 2∴PA ⊥PC ,又∵OM ∥, ∴OM ⊥PA ,故C 选项正确;∵M,N 分别为侧棱PA,PB 的中点,∴MN ∥AB ∵四边形ABCD 为正方形, ∴CD ∥AB ,∴直线PD 与直线CD 所成的角即为直线PD 与直线MN 所成角∴∠PDC 即为直线PD 与直线MN 所成角,又∵△PDC 为正三角形,∴∠PDC =600, ∴直线PD 与直线MN 所成角为600.故D 选项不正确. 故选:ABC12、如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,下列结论正确的是( )A .OM ∥PDB .OM ∥平面PCDC .OM ∥平面PDAD .OM ∥平面PBA 答案:ABCPC PC PCPC分析:通过直线与平面平行的判定定理,即可判断ABC 正确;由线面的位置关系,即可得到直线在平面内,故D 错误;解:对于A ,由于O 为BD 的中点,M 为PB 的中点,则OM ∥PD ,故正确; 对于B ,由于OM ∥PD ,OM ⊄平面PCD ,PD ⊂平面PCD ,则OM ∥平面PCD ,故正确; 对于C ,由于OM ∥PD ,OM ⊄平面PAD ,PD ⊂平面PAD ,则OM ∥平面PAD ,故正确; 对于D ,由于M ∈平面PAB ,故错误. 故选:ABC .小提示:本题考查线面平行的判定定理及应用,考查直线与平面的位置关系,考查空间想象能力.13、如图,已知四棱锥P −ABCD 中,PD ⊥平ABCD ,∠DAB =∠CBD =90°,∠ADB =∠BDC =60°,E 为中点,F 在CD 上,∠FBC =30°,PD =2AD =2,则下列结论正确的是( )A .BE//面PADB .PB 与平面ABCD 所成角为30°C .四面体D −BEF 的体积为√33 D .平面PAB ⊥平面PAD 答案:ACD分析:对A ,连结EF ,DE ,通过证明EF//平面PAD 和BF//平面PAD 得出平面BEF//平面PAD 可证;对B ,易得∠PBD 即为PB 与平面ABCD 所成角,求出即可;对C ,利用V D−BEF =V E−BDF 可求;对D ,由PD ⊥AB 和AB ⊥AD 证明AB ⊥平面PAD 即可.对于A ,连结EF ,DE ,因为∠DAB =∠CBD =90°,∠ADB =2∠BDC =60°,PC所以∠DCB =30°,∠FBC =30°,故BF =CF , 同理可得DF =BF ,故DF =CF ,所以F 为CD 的中点,又E 为的中点,故EF//PD , 又平面PAD ,PD ⊂平面PAD ,故EF//平面PAD ,又因为∠ADC =60°+60°=120°,∠BFC =180°−∠FBC −∠BCF =120°, 所以∠ADC =∠BFC ,故AD//BF ,又BF ⊄平面PAD ,AD ⊂平面PAD ,故BF//平面PAD , 又EF ∩BF =F ,EF ,BF ⊂平面BEF ,所以平面BEF//平面PAD ,又BE ⊂平面BEF ,所以BE//平面PAD ,故A 正确; 对于B ,因为PD ⊥平面ABCD ,所以PB 与平面ABCD 所成的角即为∠PBD , 因为AD =1,所以BD =2,则tan∠PBD =PD BD=1,又∠PBD ∈(0,π2],故∠PBD =45°,故选项B 错误; 对于C ,S △BDF =12⋅BD ⋅DF ⋅sin60°=√3,因为PD ⊥平面ABCD ,EF//CD ,所以EF ⊥平面ABCD , 又EF =12PD ,所以ℎ=EF =1,故V D−BEF =V E−BDF =13S △BDF ⋅ℎ=13×√3×1=√33,故选项C 正确;对于D ,因为PD ⊥平面ABCD ,AB ⊂平面ABCD ,所以PD ⊥AB , 又因为AB ⊥AD ,AD ∩PD =D ,AD ,PD ⊂平面PAD , 所以AB ⊥平面PAD ,又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD ,故选项D 正确. 故选:ACD .PC EF小提示:关键点睛:解决本题的关键是正确利用线面平行、面面垂直的判断定理,正确寻找图中位置关系. 填空题14、在正三棱锥S −ABC 中,AB =BC =CA =6,点D 是SA 的中点,若SB ⊥CD ,则该三棱锥外接球的表面积为___________. 答案:54π分析:通过线面垂直的判定定理和性质可得出SA ,SB ,SC 两两垂直,则可求出外接球的半径,进而求出球的表面积.设△ABC 的中心为G ,连接SG ,BG ,∴SG ⊥平面ABC , ∵AC ⊂面ABC ,∴SG ⊥AC ,又AC ⊥BG ,BG ∩SG =G ,∴AC ⊥平面SBG , ∵SB ⊂平面SBG ,∴AC ⊥SB ,又SB ⊥CD ,AC ∩CD =C ,∴SB ⊥平面ACS . ∵SA,SC ⊂平面ACS ,∴SB ⊥SA,SB ⊥SC , ∵S −ABC 为正三棱锥,∴SA ,SB ,SC 两两垂直, ∴SA =SB =SC =3√2,故外接球直径为√(3√2)2+(3√2)2+(3√2)2=3√6, 故三棱锥S −ABC 外接球的表面积为4π×(3√62)2=54π.所以答案是:54π.小提示:本题考查三棱锥的外接球问题,解题的关键是通过线面垂直的判定定理和性质可得出SA,SB,SC两两垂直,即可求出半径.15、圆锥的底面半径为√3,母线与底面成45°角,过圆锥顶点S作截面SAB,且与圆锥的高SO成30°角,则底面圆心O到截面SAB的距离是______.答案:√32分析:确定高SO与截面SAB所成的角,如图作出点O到SE的垂线OP,并说明OP的长是点O到平面SAB的距离,然后在直角三角形中求得点面距.如图,底面直径CD⊥AB,SO⊥平面OAB,AB⊂平面OAB,则SO⊥AB,又SO∩CD=O,SO,CD⊂平面SOE,则AB⊥平面SOE,AB⊂平面SAB,所以平面SAB⊥平面SOE,所以SO在平面SAB的射影是SE,所以∠OSE是SO与平面SAB所成的角,即∠OSE=30°,又∠SCO是母线SC与底面所成的角,即∠SCO=45°,所以在直角△SOC中,SO=OC=√3,作OP⊥SE,垂足为P,则OP⊥平面SAB,且OP=12SO=√32.所以答案是:√32.16、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行解答题17、如图,四边形BCC1B1是圆柱的轴截面,AA1是圆柱的一条母线,已知AB=4,AC=2√2,AA1=3,求该圆柱的侧面积与表面积.答案:侧面积为6√6π,表面积为6√6π+12π分析:圆柱的侧面积S =2πrl ,圆柱的表面积S =2πrl +2πr 2. 易知:AB ⊥AC ,因为AB =4,AC =2√2,所以BC =√AB 2+AC 2=2√6,即r =√6,因为AA 1=3, 所以圆柱的侧面积S =2πrl =2π×√6×3=6√6π, 圆柱的表面积S 表=2πrl +2πr 2=6√6π+12π. 18、已知正方体ABCD −AʹBʹCʹDʹ.(1)G 是△BAʹCʹ的重心,求证:直线DG ⊥平面BAʹCʹ;(2)若AB =1,动点E 、F 在线段AD 、D ′C ′上,且DE =DʹF =a ,M 为AB 的中点,异面直线EF 与DM 所成的角为arccos√210,求a 的值.答案:(1)证明见解析 (2)√24分析:(1)根据空间向量,以BʹAʹ⃗⃗⃗⃗⃗⃗⃗⃗ =i →,BʹB ⃗⃗⃗⃗⃗⃗⃗ =j →,BʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →为基底,用基底向量表示其他向量,根据向量的数量积为0判断线线垂直,进而证明线面垂直.(2)以空间直角坐标系,写成点的坐标,根据向量的夹角与异面直线夹角间的关系,列出方程即可求解. (1)证明:设BʹAʹ⃗⃗⃗⃗⃗⃗⃗⃗ =i →,BʹB ⃗⃗⃗⃗⃗⃗⃗ =j →,BʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →, 显然i →⋅j →=0,j →⋅k →=0,k →⋅i →=0,因为G 是△BAʹCʹ的重心,所以BʹG ⃗⃗⃗⃗⃗⃗ =13(i →+j →+k →),故DG ⃗⃗⃗⃗⃗ =BʹG ⃗⃗⃗⃗⃗⃗ −BʹD ⃗⃗⃗⃗⃗⃗⃗ =BʹG ⃗⃗⃗⃗⃗⃗ −(BʹB ⃗⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=13(i +j +k ⃗ )−(j +i +k )=−23(i +j +k ⃗ ) AʹCʹ⃗⃗⃗⃗⃗⃗⃗ =k →−i →;DG ⃗⃗⃗⃗⃗ ⋅AʹCʹ⃗⃗⃗⃗⃗⃗⃗ =−23(k →2−i →2)=0,得DG ⃗⃗⃗⃗⃗ ⊥AʹCʹ⃗⃗⃗⃗⃗⃗⃗ , 同理DG⃗⃗⃗⃗⃗ ⋅AʹB ⃗⃗⃗⃗⃗⃗ =0,得DG ⃗⃗⃗⃗⃗ ⊥AʹB ⃗⃗⃗⃗⃗⃗ . 因为AʹCʹ⃗⃗⃗⃗⃗⃗⃗ 不平行于AʹB ⃗⃗⃗⃗⃗⃗ ,所以直线DG ⊥平面BAʹCʹ. (2)以D 为坐标原点,射线DA 、DC 、DDʹ分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,于是E(a,0,0),F(0,a,1),M (1,12,0),则EF ⃗⃗⃗⃗⃗ =(−a,a,1),DM ⃗⃗⃗⃗⃗⃗ =(1,12,0). 于是cos 〈EF⃗⃗⃗⃗⃗ ,DM ⃗⃗⃗⃗⃗⃗ 〉=|EF⃗⃗⃗⃗⃗ ⋅DM ⃗⃗⃗⃗⃗⃗⃗ ||EF⃗⃗⃗⃗⃗ |⋅|DM ⃗⃗⃗⃗⃗⃗⃗ |=12a √52⋅√2a 2+1=√210,解得a =√24,所以a 的值为√24.。
高中数学【空间几何】相关4大易错点梳理 真题分类讲解
易错点 1 柱锥台区分..................................................................................................... 2 易错点 2 斜二测画法与直观图.......................................................................................6 易错点 3 平行垂直判定与性质.......................................................................................7 易错点 4 外接球半径..................................................................................................... 10
//平
面 BCD ,同理得 HI / / 平面 BCD ,由于 GH HI H ,所以平面 GHI / / 平面 BCD ;故选项 A 正确;
第 2 页 共 31 页
对于 B 选项,如图 2, PC 为母线 m , PO 为圆锥的高,连接 CO ,即 CO 是 PC 在底面的射影,过 O 作 OC AB ,根据平面的性质得,过 O 作 OC 的垂线有且只有一条,故 B 选项正确; 对于 C 选项,由于正棱柱的中心到正棱柱的各个顶点的距离相等,故满足球心到球面上的任 意点的距离相等且等于半径,故正棱柱的中心就是其外接球的球心,故 C 选项正确;
2
22
∴在原图形中 AD 6a , BC a , S 1 a 6a 6 a 2 .故选:A.
推荐-立体几何易错题集[整理] 精品
立体几何易错题集1. 三棱柱ABC —A 1B 1C 1中,P 为侧棱BB 1上任意一点,Q 为底面A 1B 1C 1上任意一点,四棱锥P —AA 1C 1C 的体积为V 1,三棱锥Q —ABC 的体积为V 2,则V 1:V 2是A. 3B. 2C. 3;2D. 2;32. 已知PA 、PB 、PC 是从P 点引出的三条射线,每两条的夹角都是60°,则直线PC 与平面PAB 所成角的余弦值为A.21B.36 C.33 D.23 3. 如图所示,矩形ABCD 中,AB=2AD ,E 、F 、G 分别是AB 、CD 、EF 的中点,把矩形沿EF折成60°的二面角,则异面直线AE 和BG 所成角为A. 55arccosB. 43arctanC. 43arcsinD. 53arctan4. 已知长方体ABCD —A 1B 1C 1D 1中,A1A=AB=2,若棱AB 上存在点P ,使D1P ⊥PC ,则棱AD 的长的取值范围是A. ]1,0(B. ]2,0(C. ]2,0(D. ]2,1(5. 一个三棱锥的所有棱长均为1,那么这个三棱锥在平面α上的射影的面积不可能是A.43 B.23 C.21 D.42 6. 设长方体的对角线之长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是____________.7. 正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体表面上与点A 距离是332的点抗体 合形成一条曲线,这条曲线的长度是A. π33 B.π23 C.π3D. π3658. 若一个简单的F 面体的各面都是三角形,则其顶点数是_____________9. 如图E 、F 分别为正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是________________(要求:把可能的图的序号都填上).10.四棱锥P —ABCD 的底面ABCD 是一个正方形,PD ⊥面ABCD ,则这个四棱锥的五个面内,互相垂直的平面共有A. 3对B. 4对C. 5对D. 6对11. 一座大型建筑的地下水泥桩基深a m ,由4个同中心的空心正四棱柱构成(空中俯视该桩基如图所示,阴影部分灌注水泥),自内向外的第k 个正方形的边长a k =2k (k=1,2,…,8),则制造此桩基需灌注的水泥的体积为( )A. 112a m 3B. 56a m 3C. 144a m 3D. 72a m 312. 正方体1111D C B A ABCD -中,若M 、N 分别为1AA 与1BB 的中点,则直线CM 与N D 1所成角为A. 552arccosB. 549arccosC. arccos91 D. 35arccos13. 在正方体1111D C B A ABCD -中,EF 是异面直线AC 和D A 1的公垂线,则EF 和1BD 的关系是A. 相交不垂直B. 相交垂直C. 异面直线D. 互相平行14. 在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC1、C1D1、D1D 、DC 的中点,N 为BC 的中点,点M 在四边形EFGH 及其MN内部运动,设AB 的长为a ,MN 与底面ABCD 所成的角为θ,的长为f (θ)。
高考数学压轴专题(易错题)备战高考《空间向量与立体几何》技巧及练习题附解析
【最新】高考数学《空间向量与立体几何》专题解析一、选择题1.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.6.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.7.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题8.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D 3 【答案】B 【解析】 【分析】设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A=,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8,因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .3π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =【详解】依据题意作出图形如下:设四面体P ABC -的外接球的半径为R , 因为球心O 在AB 上,所以AB 为球的直径, 所以2AB R =,且AC BC ⊥ 由23AC AB =可得:3AC R =, BC R =所以四面体P ABC -的体积为111333322ABC V S PO R R R ∆=⋅=⨯⨯⨯⨯= 解得:3R =所以球的表面积2412S R ππ== 故选:B 【点睛】本题主要考查了锥体体积公式及方程思想,还考查了球的表面积公式及计算能力,考查了空间思维能力,属于中档题。
(精选试题附答案)高中数学第八章立体几何初步易错知识点总结
(名师选题)(精选试题附答案)高中数学第八章立体几何初步易错知识点总结单选题1、在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A .π2B .π3C .π4D .π6 答案:D分析:平移直线AD 1至BC 1,将直线PB 与AD 1所成的角转化为PB 与BC 1所成的角,解三角形即可.如图,连接BC 1,PC 1,PB ,因为AD 1∥BC 1,所以∠PBC 1或其补角为直线PB 与AD 1所成的角,因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥PC 1,又PC 1⊥B 1D 1,BB 1∩B 1D 1=B 1,所以PC 1⊥平面PBB 1,所以PC 1⊥PB ,设正方体棱长为2,则BC 1=2√2,PC 1=12D 1B 1=√2, sin∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6. 故选:D2、如图,△A ′B ′C ′是水平放置的△ABC 的直观图,其中B ′C ′=C ′A ′=2,A ′B ′,A ′C ′分别与x ′轴,y ′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.3、阿基米德(Arcℎimedes,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为()A.36πB.45πC.54πD.63π答案:C解析:根据球的体积公式求出半径,根据圆柱的体积公式可求得结果.πR3=36π,所以R=3,设球的半径为R,则43所以圆柱的底面半径为R=3,圆柱的高为2R=6,所以圆柱的体积为πR2×2R=2πR3=54π.故选:C4、设α,β为两个不同的平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α,β垂直于同一平面C.α,β平行于同一条直线D.α内的任何直线都与β平行答案:D分析:根据面面平行、相交的知识确定正确选项.A选项,α内有无数条直线与β平行,α与β可能相交,A选项错误.B选项,α,β垂直于同一平面,α与β可能相交,B选项错误.C选项,α,β平行于同一条直线,α与β可能相交,C选项错误.D选项,α内的任何直线都与β平行,则α//β,D选项正确.故选:D5、如图.AB是圆的直径,PA⊥AC,PA⊥BC,C是圆上一点(不同于A,B),且PA=AC,则二面角P−BC−A 的平面角为()A.∠PAC B.∠CPA C.∠PCA D.∠CAB答案:C解析:由圆的性质知:AC⊥BC,根据线面垂直的判定得到BC⊥面PAC,即BC⊥PC,结合二面角定义可确定二面角P−BC−A的平面角.∵C是圆上一点(不同于A,B),AB是圆的直径,∴AC⊥BC,PA⊥BC,AC∩PA=A,即BC⊥面PAC,而PC⊂面PAC,∴BC⊥PC,又面ABC∩面PBC=BC,PC∩AC=C,∴由二面角的定义:∠PCA为二面角P−BC−A的平面角.故选:C6、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.7、如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120°,腰为3的等腰三角形,则该几何体的体积为()A.23B.24C.26D.27答案:D分析:作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.该几何体由直三棱柱AFD−BHC及直三棱柱DGC−AEB组成,作HM⊥CB于M,如图,因为CH=BH=3,∠CHB=120∘,所以CM=BM=3√32,HM=32,因为重叠后的底面为正方形,所以AB=BC=3√3,在直棱柱AFD−BHC中,AB⊥平面BHC,则AB⊥HM, 由AB∩BC=B可得HM⊥平面ADCB,设重叠后的EG与FH交点为I,则V I−BCDA=13×3√3×3√3×32=272,V AFD−BHC=12×3√3×32×3√3=814则该几何体的体积为V=2V AFD−BHC−V I−BCDA=2×814−272=27.故选:D.8、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解. 由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,故原平面图形的面积为12×4×4√2=8√2.故选:A9、已知直线l⊥平面α,有以下几个判断:①若m⊥l,则m//α;②若m⊥α,则m//l;③若m//α,则m⊥l;④若m//l,则m⊥α;上述判断中正确的是()A.①②③B.②③④C.①③④D.①②④答案:B分析:根据线面的位置关系,线面垂直的性质定理,线面平行的性质定理及线面垂直的性质逐项分析即得.对于①,当m⊂平面α也可以有m⊥l,但m不平行于平面α,故①错;对于②,根据线面垂直的性质定理可知②正确;对于③,根据线面平行的性质定理可得存在n⊂α且m∥n.而直线l⊥平面α,故可根据线面垂直的性质得出l⊥n,故l⊥m正确;对于④,根据直线l⊥平面α,可在平面α内找到两条相交直线p,n,且l⊥p,l⊥n,又m∥l,所以m⊥p,m⊥n,故根据线面垂直的判定定理可知,m⊥α正确.即②③④正确.故选:B.10、小明同学用两个全等的六边形木板和六根长度相同的木棍搭成一个直六棱柱ABCDEF−A1B1C1D1E1F1,由于木棍和木板之间没有固定好,第二天他发现这个直六棱柱变成了斜六棱柱ABCDEF−A1B1C1D1E1F1,如图所示.设直棱柱的体积和侧面积分别为V1和S1,斜棱柱的体积和侧面积分别为V2和S2,则().A.V1S1>V2S2B.V1S1<V2S2C.V1S1=V2S2D.V1S1与V2S2的大小关系无法确定答案:A分析:根据柱体体积、表面积的求法,分别表示出V1S1和V2S2,分析即可得答案.设底面面积为S,底面周长为C,则V1=S⋅AA1,S1=C⋅AA1,所以V1S1=SC,设斜棱柱的高为ℎ,则V2=S⋅ℎ,S2=AB×ℎAB+BC×ℎBC+CD×ℎCD+DE×ℎDE+EF×ℎEF+FA×ℎFA >(AB+BC+CD+DE+EF+FA)×ℎ=Cℎ,所以V2S2<SℎCℎ=SC=V1S1.故选:A填空题11、如图,在直四棱柱ABCD−A1B1C1D1中,当底面ABCD满足条件___________时,有A1C⊥B1D1.(只需填写一种正确条件即可)答案:AC⊥BD(答案不唯一)分析:直四棱柱ABCD−A1B1C1D1,A1C1是A1C在上底面A1B1C1D1的投影,当A1C1⊥B1D1时,可得A1C⊥B1D1,当然底面ABCD满足的条件也就能写出来了.根据直四棱柱ABCD−A1B1C1D1可得:BB1∥DD1,且BB1=DD1,所以四边形BB1D1D是矩形,所以BD∥B1D1,同理可证:AC∥A1C1,当AC⊥BD时,可得:A1C1⊥B1D1,且CC1⊥底面A1B1C1D1,而B1D1⊂底面A1B1C1D1,所以CC1⊥B1D1,而A1C1∩CC1=C1,从而B1D1⊥平面A1CC1,因为A1C⊂平面A1CC1,所以A1C⊥B1D1,所以当AC⊥BD满足题意.所以答案是:AC⊥BD.12、在长方体的12条棱之中,我们把两条异面的棱称为“一对”,则12条棱中,共有___________对异面直线.答案:24分析:由异面直线的定义可得答案.解:在长方体ABCD−A1B1C1D1中,AB与DD1,CC1、A1D1,B1C1构成异面直线,共构成4对异面直线,每一条棱=24对异面直线,都构成4对异面直线,长方体共有12条棱,再排除重复计算共有4×122所以答案是:24.13、空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个答案:32分析:按照四个点的位置不同分类讨论,即可求解首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,所有这两种情况共有8个,综上满足条件的这样的平面共有4×8=32个,所以答案是:3214、如图,在棱长为2的正方体ABCD−A1B1C1D1中,P为线段A1B上的动点(不含端点),则下列结论正确的是____.①平面A1D1P⊥平面BB1P;②DC1⊥PC;,π);③∠APD1的取值范围是[π2.④三棱锥C1−D1PC的体积为定值43答案:①②④分析:由正方体的特征知A1D1⊥平面AA1B1B,DC1⊥对角面A1BCD1,由面面垂直的判定和线面垂直的性质可知①②正确;当点P为线段A1B的一个四等分点且靠近点B时,由长度关系可求得cos∠APD1>0,知③错误;由体积桥和三棱锥体积公式可确定④正确.对于①,∵几何体是正方体,∴A1D1⊥平面AA1B1B,又A1D1⊂平面A1D1P,∴平面A 1D 1P ⊥平面BB 1P ,①正确;对于②,在正方体ABCD −A 1B 1C 1D 1中,DC 1⊥对角面A 1BCD 1,PC ⊂对角面A 1BCD 1,∴ DC 1⊥PC ,②正确; 对于③,当点P 为线段A 1B 的一个四等分点且靠近点B 时, 可得:AP =√102,D 1P =√342,AD 1=2√2,由余弦定理得:cos∠APD 1=AP 2+D 1P 2−AD 122AP⋅D 1P=52+172−82×√102×√342=√85>0,此时∠APD 1<π2,③错误;对于④,∵△D 1C 1C 的面积是定值S =12×2×2=2,点P 到面D 1C 1C 的距离为BC =2, ∴三棱锥C 1−D 1PC 的体积V =13×2×2=43,④正确. 所以答案是:①②④.15、一个正四棱锥的顶点都在同一球面上,若该棱锥的高为2,底面边长为2,则该球的表面积为______. 答案:9π分析:画出正四棱锥及对角截面,找到外接球的球心,设OE =ℎ,利用PO =OB =r 建立方程,求出ℎ=12,进而求出半径和球的表面积.如图所示,正四棱锥P -ABCD ,PE 为正四棱锥的高,因为正四棱锥的顶点都在同一球面上,所以外接球球心一定在该棱锥的高上,设球心为O ,半径为r ,连接EB ,OB ,则EB 为正方形ABCD 对角线的一半,PO =OB =r . 因为棱锥的高为2,底面边长为2,所以PE =2,BE =√2,设OE =ℎ,则OP =|2−ℎ|,由勾股定理得:OB 2=OE 2+EB 2=ℎ2+2,所以ℎ2+2=|2−ℎ|2,解得:ℎ=12,所以r =|2−ℎ|=32,所以该球的表面积为4πr =4π×(32)2=9π所以答案是:9π.解答题16、如图所示的几何体由三棱锥P−ADQ和正四棱锥P−ABCD拼接而成,PQ⊥平面ADQ,AB//PQ,PQ=1,AB=2,AQ=√5,O为四边形ABCD对角线的交点.(1)求证:OP//平面ADQ;(2)求二面角O−AP−D的正弦值.答案:(1)证明见解析(2)√155分析:(1)取AD中点M,连QM,OM,证得PO//QM即可得解.(2)在正四棱锥P−ABCD中作出二面角O−AP−D的平面角,借助直角三角形计算即可.(1)取AD中点M,连QM,OM,如图,因O 是正四棱锥P −ABCD 底面中心,即O 是BD 中点,则OM //AB //PQ ,OM =12AB =1=PQ , 于是得PQMO 是平行四边形,PO //QM ,而PO ⊄平面ADQ ,DM ⊂平面ADQ , 所以PO //平面ADQ . (2)在正四棱锥P −ABCD 中,DO ⊥AO ,PO ⊥平面ABCD ,DO ⊂平面ABCD ,则PO ⊥DO ,而PO ∩AO =O ,PO,AO ⊂平面POA ,因此,DO ⊥平面POA ,而PA ⊂平面POA ,则DO ⊥PA ,过O 作OE ⊥PA 于E ,连DE ,如图,DO ∩OE =O ,DO,OE ⊂平面DOE ,则有PA ⊥平面DOE ,即PA ⊥DE ,从而得∠DEO 是二面角O −AP −D 的平面角, 因PQ ⊥平面ADQ ,则PQ ⊥AQ ,AP =√PQ 2+AQ 2=√6,而AO =12AC =√2,则PO =2,OE =PO⋅AO PA=2√33, Rt △DOE 中,DO =√2,DE =√DO 2+OE 2=√303,于是得sin∠DEO =DODE =√155, 所以二面角O −AP −D 的正弦值√155. 17、如图,在正方体ABCD −A 1B 1C 1D 1中,E 为DD 1的中点,F 为CC 1的中点.(1)求证:BD1//平面AEC;(2)求证:平面AEC//平面BFD1.答案:(1)证明见解析(2)证明见解析分析:(1)连接BD交AC于点O,利用中位线的性质可得出BD1//OE,利用线面平行的判定定理可证得结论成立;(2)证明出D1F//平面AEC,利用面面平行的判定定理可证得结论成立.(1)证明:连接BD交AC于点O,则O为BD的中点,因为E为DD1的中点,则BD1//OE,∵BD1⊄平面AEC,OE⊂平面AEC,因此,BD1//平面AEC.(2)证明:因为CC1//DD1且CC1=DD1,E为DD1的中点,F为CC1的中点,所以,CF//D1E,CF=D1E,所以,四边形CED1F为平行四边形,所以,D 1F //CE ,∵D 1F ⊄平面AEC ,CE ⊂平面AEC ,所以,D 1F //平面AEC , 因为BD 1∩D 1F =D 1,因此,平面AEC //平面BFD 1.18、在△ABC 中,角A,B,C 所对的边分别是a,b,c ,AD 为∠BAC 的角平分线,已知c =2且a 2+c 2−b 2=(23−2cosA)bc ,AD =65√5. (1)求△ABC 的面积;(2)设点E,F 分别为边AB,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG ⃑⃑⃑⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ 的最小值. 答案:(1)245 (2)4825分析:(1)结合余弦定理和正弦定理边化角可得sinC =13sinB ,进而得到c =13b ;利用正弦定理可推导得到BD CD=13,设BD =t ,在△ABD 和△ACD 中,利用余弦定理可构造方程求得t ;在△ABC 中利用余弦定理可求得cos∠BAC ,进而得到sin∠BAC ,利用三角形面积公式可求得结果;(2)设|AE ⃑⃑⃑⃑⃑ |=m (0<m ≤2),|AF ⃑⃑⃑⃑⃑ |=n (0<n ≤6),AG ⃑⃑⃑⃑⃑ =λAD ⃑⃑⃑⃑⃑ ,由向量线性运算可得AG ⃑⃑⃑⃑⃑ =3λ4AB ⃑⃑⃑⃑⃑ +λ4AC ⃑⃑⃑⃑⃑ ;由E,F,G 三点共线可得AG ⃑⃑⃑⃑⃑ =μAE ⃑⃑⃑⃑⃑ +(1−μ)AF ⃑⃑⃑⃑⃑ ,进而可构造方程组得到μ=n m+n ,结合平面向量线性运算和向量数量积运算性质可将AG ⃑⃑⃑⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ 表示为485⋅(126+m 2−1),由m 范围可求得最小值. (1)由余弦定理可得:a 2+c 2−b 2=2accosB ,则2accosB =(23−2cosA)bc , ∴acosB =13b −bcosA ,由正弦定理得:sinAcosB =13sinB −cosAsinB , ∴sinAcosB +cosAsinB =sin (A +B )=sin (π−C )=sinC =13sinB ,则c =13b ; 又c =2,∴b =6, ∵ABsin∠ADB =BDsin∠BAC2,AC sin∠ADC =CDsin∠BAC 2,又sin∠ADC =sin (π−∠ADB )=sin∠ADB ,∴c b =AB AC =BD CD =13,设BD =t ,则CD =3t ,∵cos∠BAC 2=AB 2+AD 2−BD 22AB⋅AD=AD 2+AC 2−CD 22AD⋅AC,即4+365−t 24×6√55=36+365−9t 212×6√55,解得:t =2√105,∴BC =4t =8√105, ∴cos∠BAC =AB 2+AC 2−BC 22AB⋅AC=4+36−128524=35,则sin∠BAC =45,∴S △ABC =12AB ⋅ACsin∠BAC =12×2×6×45=245.(2)设|AE⃑⃑⃑⃑⃑ |=m (0<m ≤2),|AF ⃑⃑⃑⃑⃑ |=n (0<n ≤6),由(1)知:BD ⃑⃑⃑⃑⃑⃑ =13DC ⃑⃑⃑⃑⃑ ; ∴AD ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ +14BC ⃑⃑⃑⃑⃑ =AB⃑⃑⃑⃑⃑ +14(AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=34AB ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ ; 设AG ⃑⃑⃑⃑⃑ =λAD ⃑⃑⃑⃑⃑ ,则AG ⃑⃑⃑⃑⃑ =3λ4AB ⃑⃑⃑⃑⃑ +λ4AC ⃑⃑⃑⃑⃑ , ∵E,F,G 三点共线,∴可令AG ⃑⃑⃑⃑⃑ =μAE ⃑⃑⃑⃑⃑ +(1−μ)AF ⃑⃑⃑⃑⃑ =mμ2AB⃑⃑⃑⃑⃑ +(1−μ)n 6AC ⃑⃑⃑⃑⃑ , 则{3λ4=mμ2λ4=(1−μ)n 6 ,解得:μ=n m+n ,∴AG ⃑⃑⃑⃑⃑ =mn 2m+2n AB ⃑⃑⃑⃑⃑ +mn 6m+6n AC ⃑⃑⃑⃑⃑ ; 又EF ⃑⃑⃑⃑⃑ =AF ⃑⃑⃑⃑⃑ −AE⃑⃑⃑⃑⃑ =n 6AC ⃑⃑⃑⃑⃑ −m 2AB ⃑⃑⃑⃑⃑ ,AB ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =|AB ⃑⃑⃑⃑⃑ |⋅|AC ⃑⃑⃑⃑⃑ |cos∠BAC =365, ∴AG ⃑⃑⃑⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =(mn 2m+2n AB ⃑⃑⃑⃑⃑ +mn 6m+6n AC ⃑⃑⃑⃑⃑ )⋅(n 6AC ⃑⃑⃑⃑⃑ −m 2AB ⃑⃑⃑⃑⃑ ) =−m 2n 4m+4n AB ⃑⃑⃑⃑⃑ 2+mn 236m+36n AC ⃑⃑⃑⃑⃑ 2+mn (n−m )12m+12n AB ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =−m 2n m+n+mn 2m+n+3mn (n−m )5m+5n =−8m 2n+8mn 25m+5n =85⋅mn (n−m )m+n ;∵S △AEF =12S △ABC =12mnsin∠BAC =25mn =125,∴mn =6,∴AG ⃑⃑⃑⃑⃑ ⋅EF⃑⃑⃑⃑⃑ =485⋅n−m m+n=485⋅6m −m 6m+m =485⋅6−m 26+m2=485⋅(126+m 2−1),∵0<m ≤2,∴当m =2时,(AG ⃑⃑⃑⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ )min =485×(126+4−1)=4825.19、如图,ABCD为空间四边形,点E,F分别是AB,BC的中点,点G,H分别在CD,AD上,且DH=13AD,DG=13CD.(1)求证:E,F,G,H四点共面;(2)求证:EH,FG必相交且交点在直线BD上.答案:(1)证明见解析(2)证明见解析分析:(1)根据线段成比例得出直线与直线平行,利用平行直线确定一个平面可证结论;(2)根据平面的公理进行证明.(1)证明:连接AC,因为E,F分别是AB,BC的中点,DH=13AD,DG=13CD;所以EF//AC,HG//AC,所以EF//HG,所以E,F,G,H四点共面.(2)证明:易知HG=13AC,又EF=12AC,所以HG≠EF,结合(1)的结论可知,四边形EFGH是梯形,因此直线EH,FG不平行.设它们交点为P,P∈平面ABD,同理P∈FG,所以P∈平面BCD,又平面ABD∩平面BCD=BD,因此P∈BD,即EH,FG必相交且交点在直线BD上.。
高考数学一轮复习立体几何易错知识点
高考数学一轮复习立体几何易错知识点立体几何是3维欧氏空间的几何的传统名称,下面是立体几何易错知识点,请考生学习把握。
56.你把握了空间图形在平面上的直观画法吗(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你把握了吗线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是如何样的每种平行之间转换的条件是什么58.三垂线定理及其逆定理你记住了吗你明白三垂线定理的关键是什么吗(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时差不多上三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行而导致证明过程跨步太大。
60.求两条异面直线所成的角、直线与平面所成的角和二面角时,假如所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
61.异面直线所成角利用平移法求解时,一定要注意平移后所得角等于所求角(或其补角),专门是题目告诉异面直线所成角,应用时一定要从题意动身,是用锐角依旧其补角,依旧两种情形都有可能。
62.你明白公式:和中每一字母的意思吗能够熟练地应用它们解题吗63.两条异面直线所成的角的范畴:0《90直线与平面所成的角的范畴:0o二面角的平面角的取值范畴:018064.你明白异面直线上两点间的距离公式如何运用吗65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的不变量与不变性。
“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
高三数学易错立体几何多选题 易错题难题综合模拟测评学能测试试题
高三数学易错立体几何多选题 易错题难题综合模拟测评学能测试试题一、立体几何多选题1.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF 平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·102DB n d n-+∴===, ∴点1B 到平面DEF 的距离为2,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||AE =AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 所成角的正弦值的最大值为153015【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:22|||sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α2215301515=, 故D 正确故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.4.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.5.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A D A B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB , 所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D ,则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.6.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1A C 的中点.点P 是1BC 上的动点,则下列说法正确的是( )A .当点P 运动到1BC 中点时,直线1A P 与平面111ABC 5 B .无论点P 在1BC 上怎么运动,都有11A P OB ⊥C .当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且113PQ QA = D .无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30° 【答案】ABD 【分析】构造线面角1PA E ∠,由已知线段的等量关系求1tan EPPA E AE∠=的值即可判断A 的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,22111152AE A B B E BB =+= ∴15tan PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q为中位线的交点∴根据中位线的性质有:112PQQA=,故C错误选项D中,由于11//A B AB,直线1A P与AB所成角即为11A B与1A P所成角:11B A P∠结合下图分析知:点P在1BC上运动时当P在B或1C上时,11B A P∠最大为45°当P在1BC中点上时,11B A P∠最小为23arctan30>=︒∴11B A P∠不可能是30°,故D正确故选:ABD【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小7.M,N分别为菱形ABCD的边BC,CD的中点,将菱形沿对角线AC折起,使点D不在平面ABC内,则在翻折过程中,下列结论正确的有()A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭【答案】ABD 【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D. 【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫⎪⎝⎭.故选项D 正确;故选:ABD 【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC ,所成角的余弦值为66D .若点E 到平面11ACC A的距离等于2EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,102B a b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,122a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,因为2111cos ,6||||aBC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA 所成角C 正确. 对于选项D,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有1E F EB =,又因为在1CE F ∆中,3112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.。
专题10 空间几何体-高中数学经典错题深度剖析及针对训练
【标题 01】棱柱棱锥的定义理解片面【习题 01】下列命题中正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有一个面是多边形,其余各面都是三角形的几何体叫棱锥.D .有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥.【经典错解】 B【详细正解】对于 A , 举反例,如三棱台.对于 B ,也举反例,两个平行六面体反向相接,满足两个面平 行,其余各面都是平行四边形,但是它不是棱柱.棱柱的定义是有两个面互相平行,其余各面都是平行四边形,并且每相邻两个四边形的公共边都互相平行.对于C ,也举反例,把两个正四棱锥底面重合得到一个几何体,满足题意,但是并不是棱锥,棱锥强调的是各个侧面是有公共顶点的三角形.所以选 D .【习题 01 针对训练】①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;④长方体一定是正四棱柱;⑤各个面都是三角形的几何体是三棱锥;⑥以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.其中正确的命题个数是 () A .0 B .1 C .2 D .3【标题 02】把矩形纸片围成圆柱侧面时没有分类讨论 【习题 02】用一张长12cm ,宽8cm 的矩形纸片围成圆柱形的侧面,则这个圆柱的体积是. 【经典错解】因为圆柱的底面周长为12cm ,则底面半径 R = 6cm , h = 8cm ,此时圆柱的体积 V = R 2 h = 288 cm 3【详细正解】∵侧面展开图是长12cm ,宽8cm 的矩形,若圆柱的底面周长为12cm ,则底面半径 R = 6 cm , h = 8cm ,此时圆柱的体积V = R 2h = 288 cm 3 若圆柱的底面周长为8cm ,则底面半径 R = 4 cm , h = 12cm ,此时圆柱的体积V = R 2 h = 192 cm 3192288 故填 或 .【习题 02 针对性训练】一个长方形纸片,长为6,宽为4,若将该纸片围成一个圆柱体的侧面,求围成的圆柱的表面积. 【标题 03】三视图看错了得到的空间图形是错误的【习题 03】如图水平放置的三棱柱的侧棱长为 1,且侧棱 AA 1 平面 A 1B 1C 1 ,主视图是边长为 1 的正方 形,俯视图为一个等边三角形,则该三棱柱的左视图面积为 .【经典错解】由题意得:该三棱柱是正三棱柱,底面是边长为 1 的正三角形,侧棱长为 1.该三棱柱的左视图是一个正方形,边长为 1,所以该三棱柱的左视图面积为 1.【详细正解】由题意得:该三棱柱是正三棱柱,底面是边长为 1 的正三角形,侧棱长为 1;该三棱柱的左 视图是一个矩形,边长分别为1与3,所以该三棱柱的左视图面积为 3 .2 2【深度剖析】(1)经典错解错在三视图看错了得到的空间图形是错误的.(2)左视图是一个矩形,长是 1,宽是等边三角形的高3 + 7 +45 + 2 2 + 7 +13 ,但是错解把等边三角形的边长看成了矩形的宽.主要是空间想象能力有点欠2缺.【习题 03 针对训练】若某空间几何体的三视图如图所示,则该几何体的体积是()A .32B .16C .24D .48【标题 04】空间想象力缺乏没有对 A , B , C , D 四个点的位置分类讨论 【习题 04】在 A , B , C , D 四个点中,任意三点都不共线,那么 A , B , C , D 四点可以确定平面 个.A. 3B. 4C. 5D.以上都不对【经典错解】当 A , B , C , D 是三棱锥 A - BCD 的四个顶点时,它们可以确定平面 4 个,所以选择 B .【习题 04 针对训练】三条直线两两相交,可以确定平面的个数是. A.1 B.3 C. 4 D.以上都不对【标题 05】缺少空间想象力没有对直线 AB 的位置分类讨论【习题 05】已知 A , B 是直线l 外的两点,过 A , B 且与l 平行的平面的个数有 个.A.0B. 1C.无数个D.以上都有可能【经典错解】当 AB 和l 平行时,可以经过直线 AB 作无数个平面和直线l 平行,所以选择C .【详细正解】当 AB 和l 平行时,可以经过直线 AB 作无数个平面和直线l 平行;当直线 AB 和直线l 异面时,过 A , B 有一个与l 平行的平面;当直线 AB 与l 相交时,过 A , B 且与l 平行的平面没有;所以选择 D .(该题的探究可以放到长方体中更直观)【深度剖析】(1)经典错解错在缺少空间想象力没有对直线 AB 的位置分类讨论.(2)解答立体几何中有 关的个数问题时,注意逻辑分类,考虑周全,不要遗漏.【习题 05 针对训练】若不在同一直线上的三个点 A , B , C 到平面距离相等,且 A , B , C ∉,则平面 ABC 与. A. 平行 B. 相交 C. 重合 D. 平行或相交【标题 06】三视图图中把三角形的高看错了 【习题 06】某几何体的三视图如图所示,则它的表面积为( )A .B .C .D . 4 2 2 2【习题 06 针对训练】一个四棱锥的三视图如图所示,则该几何体的体积= ,表面积= . 2 + 5 +1。
最新专题13立体几何中的向量方法(易错起源)-2018年高考数学(理)备考黄金易错点Word版含解析
专题13立体几何中的向量方法1.【2017课标1,理18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【答案】(1)见解析;(2)以F 为坐标原点, FA 的方向为x 轴正方向, AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得A ⎫⎪⎪⎝⎭, P ⎛ ⎝⎭, B ⎫⎪⎪⎝⎭, C ⎛⎫ ⎪ ⎪⎝⎭.所以PC ⎛=-⎝⎭, ()2,0,0CB =,2PA ⎛= ⎝⎭, ()0,1,0AB =. 设(),,n x y z =是平面PCB 的法向量,则{n PC n CB ⋅=⋅=,即0{ 0x y z +==, 可取(0,1,n =-.设(),,m x y z =是平面PAB 的法向量,则0{ 0m PA m AB ⋅=⋅=,即0 0x z y ==, 可取()1,0,1n =. 则cos ,3n m n m n m ⋅==-, 所以二面角A PB C --的余弦值为2.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ)30CBP ∠=︒.(Ⅱ)60︒. 【解析】(Ⅰ)因为AP BE ⊥, AB BE ⊥,AB , AP ⊂平面ABP , AB AP A ⋂=,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE BP ⊥,又120EBC ∠=︒, 因此30CBP ∠=︒(Ⅱ)以B 为坐标原点,分别以BE , BP , BA 所在的直线为x , y , z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,3A ()2,0,0E ,()G ,()C -,故()2,0,3AE =-,()AG =, ()2,0,3CG =, 设()111,,m x y z =是平面AEG 的一个法向量. 由0{m AE m AG ⋅=⋅=可得1111230,{0,x z x -=+=取12z =,可得平面AEG的一个法向量()3,2m =. 设()222,,n x y z =是平面ACG 的一个法向量. 由0{n AG n CG ⋅=⋅=可得22220,{230,x x z +=+=取22z =-,可得平面ACG的一个法向量()3,2n =-.所以1cos ,2m n m n m n ⋅==⋅. 因此所求的角为60︒.3.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3π ;【解析】(I )设,AC BD 交点为E ,连接ME .因为PD 平面MAC ,平面MAC ⋂平面PBD ME =,所以PD ME . 因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(II )取AD 的中点O ,连接OP , OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则(P , ()2,0,0D , ()2,4,0B -,()4,4,0BD =-,(2,0,PD =.设平面BDP 的法向量为(),,n x y z =,则0{ 0n BD n PD ⋅=⋅=,即440{ 20x y x -=-=.令1x =,则1y =,z =于是()2n =.平面PAD 的法向量为()0,1,0p =,所以1cos ,2n p n p n p ⋅==. 由题知二面角B PD A --为锐角,所以它的大小为3π.(III)由题意知1,2,2M ⎛- ⎝⎭, ()2,4,0D ,3,2,2MC ⎛=- ⎝⎭. 设直线MC 与平面BDP 所成角为α,则2sin cos ,n MC n MC n MCα⋅===所以直线MC 与平面BDP . 4.【2017天津,理17】如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为21,求线段AH 的长.【答案】 (1)证明见解析(2 (3)85 或12【解析】如图,以A 为原点,分别以AB , AC , AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明: DE =(0,2,0),DB =(2,0, 2-).设(),,n x y z =,为平面BDE 的法向量, 则0{n DE n DB ⋅=⋅=,即20{ 220y x z =-=.不妨设1z =,可得()1,0,1n =.又MN =(1,2, 1-),可得0MN n ⋅=.因为MN ⊄平面BDE ,所以MN //平面BDE .(Ⅲ)解:依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得()1,2,NH h =--,()2,2,2BE =-.由已知,得cos ,21NH BE NH BE NH BEh ⋅===2102180h h -+=,解得85h =,或12h =. 所以,线段AH 的长为85或12. 5.【2017江苏,22】 如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17(2 【解析】在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{}1,,AE AD AA 为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2,AA 1=3,120BAD ∠=︒.则())())(110,0,0,1,0,0,2,0,,,A BD EA C -.(1) ()(113,1,3,3,1,A B AC =--=,则(1111113,1,1cos ,77A B AC A B AC A B AC -⋅⋅===-.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)平面A 1DA 的一个法向量为()3,0,0AE =.设(),,m x y z =为平面BA 1D 的一个法向量, 又()()13,1,3,3,3,0A B BD =--=-,则10,{0,m A Bm BD ⋅=⋅=即330,{30.x y z y --=+=不妨取x =3,则2y z ==,所以()2m=为平面BA 1D 的一个法向量,从而3,4AE m cosAE m AE m⋅⋅===,设二面角B -A 1D -A的大小为θ,则3cos 4θ=. 因为[]0,θπ∈,所以sin θ==因此二面角B -A 1D -A . 6.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II)19- 【解析】(Ⅰ)由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF ⊥平面ΕFDC .(Ⅱ)过D 作DG ΕF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长,建立如图所示的空间直角坐标系G xyz -.由(Ⅰ)知D F E ∠为二面角D AF E --的平面角,故60DFE ∠=,则2DF =,3DG =,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//AB EF ,所以//AB 平面EFDC . 又平面ABCD平面EFDC DC =,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,60C ΕF ∠=.从而可得(C -.所以(ΕC =,()0,4,0ΕΒ=,(3,ΑC =--,()4,0,0ΑΒ=-. 设(),,x y z =n 是平面ΒC Ε的法向量,则00ΕC ΕΒ⎧⋅=⎪⎨⋅=⎪⎩n n,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,=n .设m 是平面ΑΒCD 的法向量,则00ΑC ΑΒ⎧⋅=⎪⎨⋅=⎪⎩m m ,同理可取()4=m .则cos ,⋅==n m n m n m .故二面角E -BC -A 的余弦值为.7.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DE F ∆沿EF 折到D EF '∆位置,OD ' (Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故AC EF ∥.因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得04DO B ==.由EF AC ∥得14OH AE DO AD ==.所以1OH =,==3D H DH '. 于是222223110D H OH D O ''+=+==,故D H OH '⊥.又D H EF '⊥,而OH EF H =,所以D H ABCD '⊥平面.(Ⅱ)如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,x y z =m 是平面ABD '的法向量,则0AB AD ⎧⋅=⎪⎨'⋅=⎪⎩m m ,即11111340330x y x y z -=⎧⎨++=⎩,所以可取()4,3,5=-m .设()222,,x y z =n 是平面ACD '的法向量,则00AC AD ⎧⋅=⎪⎨'⋅=⎪⎩n n ,即222260330x x y z =⎧⎨++=⎩,所以可取()0,3,1=-n .于是5c o s ,⋅<>===m n m n m nsin ,<>=m n .因此二面角B D A C '--8.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)3(Ⅲ)21【解析】依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面O E F 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩ .不妨设1x =,可得()21,1,1n =-. 因此有222cos ,OA n OA n OA n ⋅<>==-⋅,于是23s i n ,O A n <>=,所以,二面角O EF C --9.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.【答案】(1)见解析;(2)3;(3)存在,14AM AP = 【解析】(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥, 所以⊥AB 平面PAD ,所以PD AB ⊥, 又因为PD PA ⊥,所以⊥PD 平面PAB ; (2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=n .又)1,1,1(-=,所以33,cos -=>=<. 所以直线PB 与平面PCD 所成角的正弦值为33.-中,平面BCFE⊥平10.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEF面ABC,=90∠,BE=EF=FC=1,BC=2,AC=3.ACB(I)求证:EF⊥平面ACFD;(II)求二面角B-AD-F的平面角的余弦值.【答案】(I)证明见解析;(II).4【解析】(Ⅰ)延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥. 又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK △为等边三角形,且F 为CK 的中点,则BF CK ⊥. 所以BF ⊥平面ACFD .(Ⅱ)方法一:过点F 作FQ AK ⊥于Q ,连结BQ .因为BF ⊥平面ACK ,所以BF AK ⊥,则AK ⊥平面BQF ,所以BQ AK ⊥. 所以BQF ∠是二面角B AD F --的平面角.在Rt ACK △中,3AC =,2CK =,得FQ =在Rt BQF △中,FQ =,BF =cos BQF ∠=.所以二面角B AD F --的平面角的余弦值为4. 方法二:如图,延长AD ,BE ,CF 相交于一点K ,则BCK △为等边三角形. 取BC 的中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以,KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B ,()1,0,0C -,K ,()1,3,0A --,1(,0,22E ,1F(,0,22-.因此,()0,3,0AC =,(AK =,()2,3,0AB =.设平面ACK 的法向量为()111,,x y z =m ,平面ABK 的法向量为()222,,x y z =n .由00AC AK ⎧⋅=⎪⎨⋅=⎪⎩m m,得11113030y x y =⎧⎪⎨+=⎪⎩,取)1=-m ;由00AB AK ⎧⋅=⎪⎨⋅=⎪⎩n n,得2222223030x y x y +=⎧⎪⎨+=⎪⎩,取(3,=-n .于是,cos ,⋅==⋅m n m n m n . 所以,二面角B AD F --易错起源1、利用向量证明平行与垂直例1、如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12. (1)OM →=⎝⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1),由⎩⎪⎨⎪⎧n 1·DF →=0,n 1·DM →=0.得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量 BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·BA →=0,OM →·FC →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·(BC →-BF →)=-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .【变式探究】如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .证明 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1), ∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .(2)由(1)可知PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A , ∴DC ⊥平面PAD . ∵DC ⊂平面PDC , ∴平面PAD ⊥平面PDC . 【名师点睛】用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 【锦囊妙计,战胜自我】设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)则有: (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 易错起源2、利用空间向量求空间角例2、如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧ x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t -10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255. 【变式探究】如图,在直三棱柱ABC —A 1B 1C 1中,底面△ABC 是直角三角形,AB =AC =1,AA 1=2,点P 是棱BB 1上一点,满足BP →=λBB 1→ (0≤λ≤1).(1)若λ=13,求直线PC 与平面A 1BC 所成角的正弦值; (2)若二面角P —A 1C —B 的正弦值为23,求λ的值. 解 以点A 为坐标原点O ,分别以AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为AB =AC =1,AA 1=2,则A (0,0,0),B (1,0,0),C (0,1,0),A 1(0,0,2),B 1(1,0,2),P (1,0,2λ).(1)由λ=13得,CP →=⎝⎛⎭⎪⎫1,-1,23,A 1B →=(1,0,-2),A 1C →=(0,1,-2), 设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧ n 1·A 1B →=0,n 1·A 1C →=0, 得⎩⎪⎨⎪⎧ x 1-2z 1=0,y 1-2z 1=0.不妨取z 1=1,则x 1=y 1=2,从而平面A 1BC 的一个法向量为n 1=(2,2,1).设直线PC 与平面A 1BC 所成的角为θ,则sin θ=|cos 〈CP →,n 1〉|=⎪⎪⎪⎪⎪⎪⎪⎪CP →·n 1|CP →|·|n 1|=2233, 所以直线PC 与平面A 1BC 所成的角的正弦值为2233.则cos 〈n 1,n 2〉=9-4λ34λ2-8λ+9,又因为二面角P —A 1C —B 的正弦值为23, 所以9-4λ34λ2-8λ+9=53, 化简得λ2+8λ-9=0,解得λ=1或λ=-9(舍去),故λ的值为1.【名师点睛】(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.【锦囊妙计,战胜自我】设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同).(1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2), 则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2), 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)面面夹角设平面α、β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 易错起源3、利用空间向量求解探索性问题例3、如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.解 (1)由题意,易得DM ⊥DA ,DM ⊥DC ,DA ⊥DC .如图所示,以点D 为坐标原点,DA ,DC ,DM 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.则D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0),所以NE →=(-12,0,-1),AM →=(-1,0,1). 设异面直线NE 与AM 所成角为θ,则cos θ=|cos 〈NE →,AM →〉|=|NE →·AM →||NE →|·|AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN ,连接AE .因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),λ∈[0,1],又EA →=(12,-1,0), 所以ES →=EA →+AS →=(12,λ-1,λ). 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧ -12+λ=0,λ-+λ=0,解得λ=12,此时AS →=(0,12,12),|AS →|=22. 经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 【变式探究】如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面于直线AB ,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP .(1)设点M 为棱PD 的中点,求证:EM ∥平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于25?若存在,试确定点N 的位置;若不存在,请说明理由.(1)证明 由已知,平面ABCD ⊥平面ABPE ,且BC ⊥AB ,则BC ⊥平面ABPE ,所以BA ,BP ,BC两两垂直,故以点B 为原点,BA →,BP →,BC →分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.则P (0,2,0),D (2,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,E (2,1,0),C (0,0,1),所以EM →=⎝⎛⎭⎪⎫-1,0,12. 易知平面ABCD 的一个法向量n =(0,1,0),所以EM →·n =(-1,0,12)(0,1,0)=0, 所以EM →⊥n ,又EM ⊄平面ABCD ,所以EM ∥平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25. 理由如下:PD →=(2,-2,1),CD →=(2,0,0),设平面PCD 的法向量为n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧ n 1·PD →=0,n 1·CD →=0,得⎩⎪⎨⎪⎧ 2x 1-2y 1+z 1=0,2x 1=0,取y 1=1,得平面PCD 的一个法向量等于n 1=(0,1,2),假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成的角α的正弦值等于25. 设PN →=λPD → (0≤λ≤1),则PN →=λ(2,-2,1)=(2λ,-2λ,λ),BN →=BP →+PN →=(2λ,2-2λ,λ).所以sin α=|cos 〈BN →,n 1〉|=|BN →·n 1||BN →||n 1|=25×λ2+-2λ2+λ2=25×9λ2-8λ+4=25. 所以9λ2-8λ-1=0, 解得λ=1或λ=-19(舍去). 因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值等于25. 【名师点睛】空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.【锦囊妙计,战胜自我】存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.。
【精品整理】2020年高考数学(文)之纠错笔记专题08 立体几何
专题08 立体几何易错点1 对空间几何体的结构认识不准确致错有一种骰子,每一面上都有一个英文字母,如图是从3个不同的角度看同一粒骰子的情形,请画出骰子的一个侧面展开图,并根据展开图说明字母H对面的字母是.【错解】P【错因分析】空间想象能力差而乱猜一气,实际上可以动手制作模型,通过折叠得出答案.【试题解析】将原正方体外面朝上展开,得其表面字母的排列如图所示,易得H对面的字母是O.【参考答案】O1.对于平面图形折叠或空间图形展开的问题,空间想象能力是解题的关键,正确识图才能有效折叠平面图形、展开空间图形.而对于简单几何体的展开图,可以通过制作模型来解答.2.关于空间几何体的结构特征问题的注意事项:(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.已知某圆柱的底面周长为12,高为2,矩形ABCD是该圆柱的轴截面,则在此圆柱侧面上,从A到C的路径中,最短路径的长度为A.B.C.3D.2【答案】A【解析】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从A到C的最短路径为线段AC,AC==故选:A.易错点2 不能正确画出三视图或还原几何体而致错一个几何体的三视图如图所示,则该几何体的直观图可以是【错解】A或B或C【错因分析】选A,俯视图判断出错,从俯视图看,几何体的上、下部分都是旋转体;选B,下部分几何体判断出错,误把旋转体当多面体;选C,上部分几何体判断出错,误把旋转体当多面体.【试题解析】由三视图可知几何体上部是一个圆台,下部是一个圆柱,选D.【参考答案】D1.当已知三视图去还原成几何体时,要充分关注图形中关键点的投影,先从俯视图来确定是多面体还是旋转体,再从正视图和侧视图想象出几何体的大致形状,然后通过已知的三视图验证几何体的正确性,最后检查轮廓线的实虚.2.三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.下列四个几何体的三视图中,只有正视图和侧视图相同的几何体是A.①②B.①③C.①④D.②④【答案】D【解析】分析题中简单几何体可知,②④中几何体的正视图和侧视图相同.故选D.易错点3 空间几何体的直观图与原图面积之间的关系如图是水平放置的平面图形的直观图,则原平面图形的面积为A .3B .2C .6D .【错解】B【错因分析】错解中把直观图认为是原平面图形,则平面图形的面积为123sin 45=22⨯⨯⨯o .实际上,题图为直观图,必须根据直观图还原得到平面图形,再利用三角形的面积公式求解.【试题解析】原平面图形如图,即Rt △OAB ,其中OA =O ′A ′=3,OB =2O ′B ′=4,故原平面图形的面积为134=62⨯⨯,选C.【方法点晴】本题主要考查了平面图形的直观图及其原图形与直观图面积之间的关系,属于基础题,解答关键是牢记原图形与直观图的面积比为SS ='. 【参考答案】C1.斜二测画法中的“三变”与“三不变”:“三变”y ⎧⎪⎨⎪⎩坐标轴的夹角改变与轴平行的线段的长度变为原来的一半图形改变;“三不变”x z ⎧⎪⎨⎪⎩平行性不改变与,轴平行的线段的长度不改变相对位置不改变.2.原图形与直观图的面积比为SS =',即原图面积是直观图面积的4倍.3.已知梯形ABCD 是直角梯形,按照斜二测画法画出它的直观图A B C D ''''(如图所示),其中2A D ''=,4B C ''=,1A B ''=,则直角梯形DC 边的长度是AB. CD.【答案】B【解析】由直观图作出梯形ABCD 是直角梯形,如图:Q 按照斜二测画法画,可得出它的直观图,2,4,1A'B'C'D'A'D'B'C'A'B'===,∴直角梯形ABCD 中,,2,4,22AB BC AD A'D'BC B'C'AB A'B'⊥======, 过D 作DE BC ⊥,交BC 于E ,则2,422DE AB EC BC AD ===-=-=,∴直角梯形DC = B .【名师点睛】本题主要考查斜二测画法的基本原理与性质,以及由直观图还原平面图形,意在考查对基础知识掌握的熟练程度,属于中档题.本题容易忽视了图形中的平行关系,从而得不到原图中边与坐标轴的平行关系,判断不出直角三角形而导致错误.易错点4 空间几何体的表面积或体积计算不全致错一个多面体的三视图如图所示,则该多面体的表面积为A .B .C .21D .18【错解】B 或C 或D【错因分析】由三视图可知原几何体应该是一个正方体截取两个全等的小正三棱锥,B 项计算三角形面积时出错;截取小正三棱锥,即除去了六个全等的等腰直角三角形,但C项忽略了几何体多了两个等边三角形面;由三视图可知原几何体应该是一个正方体截取两个全等的小正三棱锥的组合体,D项计算三角形面积时出错,且计算时还少加了三棱锥的底面.【试题解析】由三视图可知原几何体如图所示,是一个正方体截取两个全等的小正三棱锥.正方体的表面积为S=24,两个全等的三棱锥是以正方体的相对顶点为顶点,侧面是三个全等的直角边长为1的等腰直角三角形,其侧面面积的和为3的表面积为故选A.【参考答案】A1.柱体、锥体、台体的表面积(1)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.(3)求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.2.柱体、锥体、台体的体积空间几何体的体积是每年高考的热点之一,题型既有选择题、填空题,也有解答题,难度较小,属容易题. 求柱体、锥体、台体体积的一般方法有:(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.4.如图所示,已知等腰梯形ABCD的上底AD=2 cm,下底BC=10 cm,底角∠ABC=60°,现绕腰AB旋转一周,则所得的旋转体的体积是A.246π B.248πC.249π D.250π【答案】B【解析】过D作DE⊥AB于E,过C作CF⊥AB于F,所得旋转体是以CF为底面半径的圆锥和圆台,挖去以A为顶点,以DE为底面半径的圆锥的组合体.由于AD =2 cm ,BC =10cm ,∠ABC =60°,在Rt △BCF 中,BF =5 cm ,FC =5 3 cm. 由AD ∥BC 得,∠DAE =∠ABC =60°.在Rt △ADE 中,DE = 3 cm ,AE =1 cm.又在等腰梯形ABCD 中可求得AB =8 cm ,AF =AB -BF =8-5=3(cm),EF =AE +AF =4 cm.所以旋转后所得几何体的体积为V =13π·BF ·FC 2+13π·EF ·(DE 2+FC 2+DE ·FC )-13π·AE ·DE 2=13π×5×(53)2+13π×4×[(3)2+(53)2+3×53]-13π×1×(3)2=248π(cm 3),即所得的旋转体的体积为248π cm 3.本题易将所得旋转体漏掉扣除以圆台上底面为底面,高为1 cm 的圆锥的体积而错选C.易错点5 问题考虑不全面致错已知半径为10的球的两个平行截面圆的周长分别是12π和16π,则这两个截面圆间的距离为 . 【错解】2如图,设球的大圆为圆O ,C ,D 分别为两截面圆的圆心,AB 为经过点C ,O ,D 的直径,由题中条件可得两截面圆的半径分别为6和8.在Rt △COE 中,221068OC =-=.在Rt △DOF 中,221086OD =-=.所以CD =OC −OD =8−6=2,故这两个截面圆间的距离为2.【错因分析】错解中由于对球的结构把握不准,考虑问题不全面而导致错误.事实上,两个平行截面既可以在球心的同侧,也可以在球心的两侧.【试题解析】如上图,设球的大圆为圆O ,C ,D 为两截面圆的圆心,AB 为经过点C ,O ,D 的直径,由题中条件可得两截面圆的半径分别为6和8.当两截面在球心同侧时,22221061082CD OC OD =-=---=; 当两截面在球心两侧时,222210610814CD OC OD =+--=. 综上可知,两截面圆间的距离为2或14. 【参考答案】2或141.球的有关问题(1)确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径. (2)球与几种特殊几何体的关系:①长方体内接于球,则球的直径是长方体的体对角线长; ②正四面体的外接球与内切球的球心重合,且半径之比为3∶1;③直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;④球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径; ⑤球与圆台的底面和侧面均相切,则球的直径等于圆台的高.(3)与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.(4)有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离d 与球的半径R 及截面圆的半径r 之间满足关系式:d =2.求解空间几何体表面积和体积的最值问题有两个思路:一是根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;二是利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.5.如图所示,在长方体中,14cm,2cm,3cm,AB AD AA ===则在长方体表面上连接1A C 、两点的所有曲线长度的最小值为__________.【解析】将长方体的面分别展开平铺,当四边形11AA D D 和四边形11DD C C 在同一平面内时,最小距离为四边形11AAC C =;当四边形11AA B B 和四边形11BB C C 在同一平面内时,最小距离为四边形11AAC C 的对角线,=四边形ABCD 和四边形11CDD C 在同一平面内时,最小距离为四边形11ABC D 的对角线,=.将空间几何体的表(侧)面展开,化折(曲)为直,使空间图形问题转化为平面图形问题,即空间问题平面化,是解决立体几何问题最基本的、最常用的方法,将空间图形展开成平面图形后,弄清几何中的有关点和线在展开图中的相应关系是解题的关键.该题考查的是几何体的表面距离的最值问题,结合平面内连接两点的直线段是最短的,所以将长方体的侧面沿着不同的方向展开,使得两个点落在同一平面内,利用勾股定理来求解,选出最小的那个就是,容易出错的地方在于考虑不全面,沿着一个方向展开求得结果,从而出现错误.易错点6 应用公理或其推论时出错已知A,B,C,D,E五点中,A,B,C,D共面,B,C,D,E共面,则A,B,C,D,E五点一定共面吗?【错解】A,B,C,D,E五点一定共面.因为A,B,C,D共面,所以点A在B,C,D所确定的平面内,因为B,C,D,E共面,所以点E也在B,C,D所确定的平面内,所以点A,E都在B,C,D所确定的平面内,即A,B,C,D,E五点一定共面.【错因分析】错解忽略了公理2中“不在一条直线上的三点”这个重要条件.实际上B,C,D三点有可能共线.【试题解析】(1)如果B,C,D三点不共线,则它们确定一个平面α.因为A,B,C,D共面,所以点A在平面α内,因为B,C,D,E共面,所以点E在平面α内,所以点A,E都在平面α内,即A,B,C,D,E五点一定共面.(2)若B,C,D三点共线于l,若A∈l,E∈l,则A,B,C,D,E五点一定共面;若A,E中有且只有一个在l上,则A,B,C,D,E五点一定共面;若A,E都不在l上,则A,B,C,D,E五点可能不共面.【参考答案】见试题解析.在立体几何中,空间点、线、面之间的位置关系不确定时,要注意分类讨论,避免片面地思考问题.对于确定平面问题,在应用公理2及其三个推论时一定要注意它们成立的前提条件.1.证明点共线问题,就是证明三个或三个以上的点在同一条直线上,主要依据是公理3.常用方法有:①首先找出两个平面,然后证明这些点都是这两个平面的公共点,根据公理3知这些点都在这两个平面的交线上;②选择其中两点确定一条直线,然后证明其他点也在这条直线上.2.证明三线共点问题,一般先证明待证的三条直线中的两条相交于一点,再证明第三条直线也过该点.常结合公理3,证明该点在不重合的两个平面内,故该点在它们的交线(第三条直线)上,从而证明三线共点.3.证明点或线共面问题,主要有两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.6.如图,已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.【解析】(1)如图,连接B1D1.∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF、BD确定一个平面,即D,B,F,E四点共面.(2)正方体AC 1中,设平面A 1ACC 1确定的平面为α,又设平面BDEF 为β. ∵Q ∈A 1C 1,∴Q ∈α.又Q ∈EF ,∴Q ∈β.则Q 是α与β的公共点,同理P 是α与β的公共点, ∴α∩β=PQ .又A 1C ∩β=R ,∴R ∈A 1C . ∴R ∈α,且R ∈β,则R ∈PQ . 故P ,Q ,R 三点共线.易错点7 忽略空间角的范围或不能正确找出空间角致误如图,已知空间四边形ABCD 中,AD =BC ,M ,N 分别为AB ,CD 的中点,且直线BC 与MN 所成的角为30°,则BC 与AD 所成的角为 .【错解】120°如图,连接BD ,并取中点E ,连接EN ,EM ,则EN ∥BC ,ME ∥AD ,故ENM ∠为BC 与MN 所成的角,∠MEN 为BC 与AD 所成的角,∴∠ENM=30°.又由AD =BC ,知ME =EN ,∴∠EMN =∠ENM =30°, ∴1803030120MEN ∠=︒-︒-︒=︒,即BC 与AD 所成的角为120°.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤oo,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角.【试题解析】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°. 【参考答案】60°求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤o o .1.求异面直线所成的角的常见策略: (1)求异面直线所成的角常用平移法.平移法有三种类型,利用图中已有的平行线平移,利用特殊点(线段的端点或中点)作平行线平移,利用补形平移.(2)求异面直线所成角的步骤①一作:即根据定义作平行线,作出异面直线所成的角; ②二证:即证明作出的角是异面直线所成的角; ③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角. (3)判定空间两条直线是异面直线的方法①判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. ②反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 2.求直线与平面所成的角的方法: (1)求直线和平面所成角的步骤 ①寻找过斜线上一点与平面垂直的直线;②连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角; ③把该角归结在某个三角形中,通过解三角形,求出该角. (2)求线面角的技巧在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,射影一般都是一些特殊的点,比如中心、垂心、重心等. 3.求二面角大小的步骤:简称为“一作二证三求”.作平面角时,一定要注意顶点的选择.7.如图,在长方体1111ABCD A B C D -中,若1AB BC ==,12BB =,则异面直线1A B 和1AD 所成角的余弦值为A B .35C D .45【答案】D【解析】连接1D C ,由题得11//A D BC ,故四边形11A BCD 是平行四边形,11//A B D C ,则1AD C ∠的余弦值即为所求,由1AB BC ==,12BB =可得11AD DC ==AC =故有22212ADC =+-∠,解得14cos 5AD C ∠=, 故选D.【名师点睛】本题考查异面直线的夹角的余弦值和余弦定理,常见的方法是平移直线,让两条直线在同一平面中,再求夹角的余弦值.易错点8 对线面位置关系不能正确应用定理作出判断如果两条平行直线a,b中的a∥α,那么b∥α.这个命题正确吗?为什么?【错解】这个命题正确.∵a∥α,∴在平面α内一定存在一条直线c,使a∥c.又∵a∥b,∴b∥c,∴b∥α.【错因分析】忽略了b⊂α这种情况,从而导致错误,本题条件中的直线b与平面α有两种位置关系:b∥α和b⊂α.【试题解析】这个命题不正确.若b⊄α,∵a∥α,∴在平面α内必存在一条直线c,使a∥c.又∵a∥b,∴b∥c,∴b∥α.若b⊂α,则不满足题意.综上所述,b与α的位置关系是b∥α或b⊂α.【参考答案】见试题解析.错误的原因是利用线面平行的判定定理时,忽略了定理使用的前提条件必须是平面外的一条直线与平面内的一条直线平行.1.点、线、面之间的位置关系可借助正方体为模型,以正方体为主线,直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.2.熟练应用线面位置关系中的判定定理与性质定理即可顺利解决此类问题.8.下列命题中,错误的是A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一直线的两个平面一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,且l 不在平面α内,则在平面α内不存在与l 平行的直线 【答案】B【解析】由直线与平面相交的性质,知一条直线与两个平行平面中的一个相交,则必与另一个平面相交,故A 正确;平行于同一直线的两个平面有两种位置关系,可能平行,也可能相交,B 错误;如果一个平面α内存在直线垂直于平面β,则平面α一定垂直于平面β,故C 正确.若直线l 不平行于平面α,且l 不在α内,则l 与α相交,则在平面α内不存在与l 平行的直线.故选B .易错点9 证明线面位置关系时不能正确应用定理致错如图,a b ∥,点P 在,a b 所确定的平面γ外,PA a ⊥于点A ,AB b ⊥于点B . 求证:PB b ⊥.【错解】因为PA a ⊥,a b ∥,所以PA b ⊥. 所以PA γ⊥,所以PB b ⊥.【错因分析】本题错解的原因在于没有正确使用线面垂直的判定定理,由,,PA a PA b ⊥⊥ 得PA γ⊥,而忽略了“垂直于平面内两条相交直线”这一条件,即a b ≠∅I . 【试题解析】因为,PA a a b ⊥∥,所以PA b ⊥. 又,AB b PA AB A ⊥=I ,所以b ⊥平面PAB . 因为PB PAB ⊂平面,所以PB b ⊥. 【参考答案】见试题解析.应用直线与平面垂直的判定定理时,要熟记定理的应用条件,不能忽略“两条相交直线”这一关键点.1.判断或证明线面平行的常用方法有: ①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a b a b a ααα⊄⊂⇒,,∥∥); ③利用面面平行的性质(a a αβαβ⊂⇒∥,∥);④利用面面平行的性质(a a a a αβαβαβ⊄⊄⇒∥,,,∥∥). 2.判定面面平行的常见策略:①利用定义:即证两个平面没有公共点(不常用). ②利用面面平行的判定定理(主要方法).③利用垂直于同一条直线的两平面平行(客观题可用).④利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用). 3.证明直线和平面垂直的常用方法: ①线面垂直的定义; ②判定定理;③垂直于平面的传递性(a b a b αα⊥⇒⊥∥,); ④面面平行的性质(a a ααββ⊥⇒⊥,∥); ⑤面面垂直的性质. 4.判定面面垂直的常见策略: ①利用定义(直二面角).②判定定理:可以通过直线与平面垂直来证明平面与平面垂直.③在运用面面垂直的性质定理时,若没有与交线垂直的直线,则一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样就把面面垂直转化为线面垂直,进而转化为线线垂直.9.如图,在四棱锥P ABCD -中,AD BC ∥,且2PA PD ==,2AD BC ==,PA CD ⊥,点E 在PC 上,且2PE EC =.(1)求证:平面PAD ⊥平面PCD ; (2)求证:直线PA ∥平面BDE . 【答案】(1)见解析;(2)见解析【解析】(1)因为2PA PD ==,AD = 所以222PA PD AD +=,所以PA PD ⊥,又PA CD ⊥,且PD CD D =I ,PD ⊂平面PCD ,CD ⊂平面PCD , 所以PA ⊥平面PCD , 又PA ⊂平面PAD , 所以平面PAD ⊥平面PCD .(2)连接AC 交BD 于点F ,连接EF , 在四边形ABCD 中,AD BC ∥,2AD BC =,ADF △∽CBF △,所以2AD AFBC FC ==, 又2PE EC =,即2PE AFEC FC==, 所以PA EF ∥,又直线EF ⊂平面BDE ,直线PA ⊄平面BDE , 所以直线PA ∥平面BDE .【名师点睛】(1)证明面面垂直:先正线面垂直,线又属于另一个面,即可证明面面垂直;(2)证明线面平行,在面内找一个线与已知直线平行即可.一、空间几何体的结构及其三视图与直观图1.空间几何体的结构(1)多面体①底面互相平行.②侧面都是平行四边形.③每相邻两个平行四边形的公共边互相平行.(2)旋转体2.空间几何体的三视图(1)三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.(2)三视图的画法规则①排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.如下图:②画法规则ⅰ)正视图与俯视图的长度一致,即“长对正”;ⅰ)侧视图和正视图的高度一致,即“高平齐”;ⅰ)俯视图与侧视图的宽度一致,即“宽相等”.③线条的规则ⅰ)能看见的轮廓线用实线表示;ⅰ)不能看见的轮廓线用虚线表示.(3)常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴使∠xOz=90°,且∠yOz=90°.②画直观图时,把它们画成对应的轴O′x′,O′y′,O′z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确。
高考数学复习:立体几何易错易混考点
2019年高考数学复习:立体几何易错易混考点立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行而导致证明过程跨步太大。
60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
61.异面直线所成角利用平移法求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?63.两条异面直线所成的角的范围:0《90直线与平面所成的角的范围:0o二面角的平面角的取值范围:018064.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的不变量与不变性。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
66.立几问题的求解分为作,证,算三个环节,你是否只注重了作,算,而忽视了证这一重要环节?我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:
1.(石庄中学)设ABCD是空间四边形,E,F分别是AB,CD的中点,则 满足( )
A 共线 B 共面 C 不共面 D 可作为空间基向量
正确答案:B错因:学生把向量看为直线。
2.(石庄中学)在正方体ABCD-A B C D ,O是底面ABCD的中心,M、N分别是棱DD 、D C 的中点,则直线OM( )
正确答案:①
错误原因:空间观念不明确,三垂线定理概念不清
7.(磨中)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有( )
A、7 B、8 C、9 D、10
正确答案:A
错误原因:4+8—2=10
8.(磨中)下列正方体或正四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图是( )
A、(2)(3) B、(1)(4) C、(1)(2)(3) D、(2)(3)(4)
正确答案:(A)
错误原因:易认为命题(1)正确
二填空题:
1.(如中)有一棱长为a的正方体骨架,其放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为__________.
错解:学生认为球最大时为正方体的切球,所以球的直径为a,球的表面积为 。这里学生未能弄清正方体骨架是一个空架子,球最大时与正方体的各棱相切,直径应为 ,所以正确答案为: 。
错解:认为正确。错误原因是空间想像力不行。忽略P在其中一条线上,或a与P确定平面时恰好与b平行,此时就不能过P作平面与a平行。
9.(磨中)与空间四边形ABCD四个顶点距离相等的平面共有______个。
正确答案:7个
错误原因:不会分类讨论
10.(磨中)在棱长为1的正方体ABCD——A1B1C1D1中,若G、E分别为BB1,C1D1的中点,点F是正方形ADD1A1的中心,则四边形BGEF在正方体六个面上的射影图形面积的最大值为________。
2.(如中)一个广告气球某一时刻被一束平行光线投射到水平地面上的影子是一个椭圆,椭圆的离心率为 ,则该时刻这平行光线对于水平平面的入射角为________。
错解:答 。错误原因是概念不清,入射角应是光线与法线的夹角,正确答案为: 。
3.(如中)已知正三棱柱 底面边长是10,高是12,过底面一边AB,作与底面ABC成 角的截面面积是___________________。
15.(蒲中)在平面角为600的二面角 有一点P,P到α、β的距离分别为PC=2cm,PD=3cm,则P到棱l的距离为____________
答案: cm
点评:将空间问题转化为平面问题利用正弦定理求解,转化能力较弱。
4若向量 + , + , + 是空间一个基底,则 、 、 也是空间的一个基底。其中正确的命题有( )个。
A 1 B 2 C 3 D 4
正确答案:C错因:学生对空间向量的基本概念理解不够深刻。
6.(磨中)给出下列命题:①分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b在面α的射影为c,直线a⊥c,则a⊥b④有三个角为直角的四边形是矩形,其中真命题是( )
C 线段BC D CB中点与B C 中点连成的线段
正确答案:A错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。
5.(石庄中学)下列命题中:
1若向量 、 与空间任意向量不能构成基底,则 ∥ 。
2若 ∥ , ∥ ,则 ∥ .
3若 、 、 是空间一个基底,且 = + + ,则A、B、C、D四点共面。
A、0个 B、1个 C、2个 D、3个答案:B错解:C 认为(1)(3)对
D 认为(1)(2)(3)对
错因:认为(2)错误的同学,对空间两条直线垂直理解不深刻,认为作的直线应该与a,b 都垂直相交;而认为(1)(3)对的同学,是因为设能借助于两个平行平面衬托从而对问题的分析欠严密。
22.(薛中)空间四边形中,互相垂直的边最多有( )
误解:A、B、C。由过D或E作面ABC得平行面,所截体计算而得。
18.(江安中学)球的半径是R,距球心4R处有一光源,光源能照到的地方用平面去截取,则截面的最大面积是( )。
A.
B.
C.
D.
正解:B。
如图,在 中, 于
则 即
又
以 为半径的圆的面积为
误解:审题不清,不求截面积,而求球冠面积。
19.(江安中学)已知AB是异面直线的公垂线段,AB=2,且 与 成 角,在直线 上取AP=4,则点P到直线 的距离是( )。
正确答案:30°
错误原因:分析不出哪些线段射影长不变,哪些线段射影长改变。
13.(磨中)把半径为r的四只小球全部放入一个大球,则大球半径的最小值为__________。
正确答案:( )r
错误原因:错误认为四个小球球心在同一平面上
14.(一中)AB垂直于 所在的平面, ,当 的面积最大时,点A到直线CD的距离为。正确答案:
误解:B
往往只考虑距离相等,不考虑两侧。
17.(江安中学)一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D、E、F,且知SD:DA=SE:EB=CF:FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )
A.
B.
C.
D.
正解:D。
当平面EFD处于水平位置时,容器盛水最多
最多可盛原来水得1-
24.(案中)给出下列四个命题:
(1)各侧面都是正方形的棱柱一定是正棱柱
(2)若一个简单多面体的各顶点都有三条棱,则其顶点数V,面数F满足的关系式为2F-V=4
(3)若直线L⊥平面α,L∥平面β,则α⊥β
(4)命题“异面直线a,b不垂直,则过a的任一平面和b都不垂直”的否定,其中,正确的命题是 ( )
20.(丁中)若平面 外的直线 与平面 所成的角为 ,则 的取值围是( )
(A) (B) (C) (D)
错解:C
错因:直线在平面 外应包括直线与平面平行的情况,此时直线 与平面 所成的角为0
正解:D
21.(薛中)如果a,b是异面直线,P是不在a,b上的任意一点,下列四个结论:(1)过P一定可作直线L与a , b都相交;(2)过P一定可作直线L与a , b都垂直;(3)过P一定可作平面 与a , b都平行;(4)过P一定可作直线L与a , b都平行,其中正确的结论有( )
(3)若直线l⊥平面α,l∥平面β,则α⊥β.
(4)命题“异面直线a、b不垂直,则过a的任一平面与b都不垂直”的否定.
其中,正确的命题是( )
A.(2)(3)B.(1)(4)C.(1)(2)(3)D.(2)(3)(4)
正确答案:A
11.(一中)如图,△ABC是简易遮阳棚,A,B是南北方向上两个定点,正向射出的太线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角应为( )
A 一个圆 B 四个点 C 两条直线 D 两个点
正确答案:B错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。
4.(石庄中学)正方体ABCD-A B C D 中,点P在侧面BCC B 及其边界上运动,并且总保持AP⊥BD ,则动点P的轨迹( )
A 线段B C B BB 的中点与CC 中点连成的线段
A.75° B.60° C.50° D.45°
正确答案:C
12.(蒲中)一直线与直二面角的两个面所成的角分别为α,β,则α+β满足( )
A、α+β<900B、α+β≤900C、α+β>900D、α+β≥900
答案:B
点评:易误选A,错因:忽视直线与二面角棱垂直的情况。
13.(蒲中)在正方体AC1中,过它的任意两条棱作平面,则能作得与A1B成300角的平面的个数为( )
正确答案:
错误原因:不会找射影图形
11.(磨中)△ABC是简易遮阳板,A、B是南北方向上两个定点,正向射出的太线与地面成40°角,为使遮阴的阴影面ABD面积最大,遮阳板ABC与地面所成角应为_________。
正确答案:50°
错误原因:不会作图
12.(磨中)平面α与平面β相交成锐角θ,面α一个圆在面β上的射影是离心率为 的椭圆,则角θ等于_______。
正确。错误原因是未能认真审题或空间想象力不够,忽略过该点向平面外作垂线的情况。正确答案是本题不对。
6.(如中)平面 外有两点A,B,它们与平面 的距离分别为a,b,线段AB上有一点P,且AP:PB=m:n,则点P到平面 的距离为_________________.
错解为: 。错误原因是只考虑AB在平面同侧的情形,忽略AB在平面两测的情况。正确答案是: 。
错解: 。学生用面积射影公式求解: 。错误原因是没有弄清截面的形状不是三角形而是等腰梯形。正确答案是: 。
4.(如中)过球面上两已知点可以作的大圆个数是_________个。
错解:1个。错误原因是没有注意球面上两已知点与球心共线的特殊情况,可作无数个。
正确答案是不能确定。
5.(如中)判断题:若两个平面互相垂直,过其中一个平面一点作它们的交线的垂线,则此直线垂直于另一个平面。
E.
F.4
G.
H. 或
正解:A。过B作BB’∥ ,在BB’上截取BP’=AP,连结PP’,过P’作P’Q 连结PQ, PP’ 由BB’和 所确定的平面, PP’
PQ即为所求。在Rt PQP’中,PP’=AB=2,P’Q=BP’, =AP =2, PQ= 。
误解:D。认为点P可以在点A的两侧。本题应是由图解题。
答案:C
点评:将平面图形折成空间图形后线面位置关系理不清,易瞎猜。
15.(江安中学)设a,b,c表示三条直线, 表示两个平面,则下列命题中逆命题不成立的是( )。
A. ,若 ,则