对数字功率放大器的讨论

合集下载

t类数功放

t类数功放

T类数功放1. 简介T类数功放是一种音频功率放大器,采用了T类(Tripath)数字功率放大技术。

相比传统的A类、B类和D类功放,T类功放具有更高的效率和更低的失真。

它广泛应用于音响设备、汽车音响系统、家庭影院系统等领域。

2. T类数字功率放大技术原理T类数字功率放大技术是将数字信号直接转换为模拟输出信号的一种方法。

它通过将输入信号分为两个部分:PWM(脉冲宽度调制)信号和PDM(脉冲密度调制)信号,然后分别处理这两个信号,并最终将它们合并成模拟输出信号。

具体来说,T类数字功率放大器首先对输入信号进行采样和量化,得到PWM信号。

PWM信号是由一系列脉冲组成的,每个脉冲的宽度表示该时刻的输入电平值。

然后,通过比较PWM信号和一个高频三角波信号,得到PDM信号。

PDM信号是由一系列脉冲组成的,每个脉冲的密度表示该时刻的输入电平值。

接下来,T类数字功率放大器将PWM信号和PDM信号分别放大,并将它们合并成一个模拟输出信号。

具体放大的方法可以采用不同的电路设计,如H桥电路、双向开关电路等。

最终,这个模拟输出信号经过滤波器处理后,就可以驱动扬声器或其他音响设备。

3. T类数字功率放大技术的优势相比传统的A类、B类和D类功放,T类数字功率放大技术具有以下优势:3.1 高效率T类数字功放的效率通常可以达到90%以上,远高于传统功放技术。

这主要得益于其采用PWM和PDM两个信号进行处理的方式,使得功耗更低。

3.2 低失真T类数字功放在处理输入信号时,能够更准确地还原原始信号。

相比传统功放技术,在同样输出功率下,T类数字功放的失真更低。

3.3 小尺寸由于T类数字功放采用了数字处理技术,相比传统功放来说,它可以实现更小尺寸、更轻便的设计。

这对于一些对体积有限制的应用场景非常有利。

3.4 低热量由于T类数字功放的高效率特点,它产生的热量相对较低。

这不仅可以延长设备的寿命,还可以减少散热系统的成本和复杂度。

4. T类数字功放应用领域T类数字功放广泛应用于各种音响设备、汽车音响系统和家庭影院系统等领域。

D类功放的设计原理

D类功放的设计原理

D类功放的设计原理D类功放,全称为“数字功率放大器”,是一种电子功率放大器的类型,它的设计原理基于数字信号的处理和模拟功率放大电路的协同工作。

相比于传统的A类、B类、AB类功放,D类功放具有更高的功率效率,更小的尺寸和重量,更好的线性度,以及更低的功率损耗。

下面将详细介绍D类功放的设计原理。

1.PWM调制原理D类功放的核心设计原理是采用脉宽调制(PWM)技术。

PWM是一种通过调整信号的脉冲宽度来控制平均输出功率的方法。

D类功放通过将原始的模拟音频信号转换为数字信号,并通过比较器产生一个与模拟信号频率相同的矩形波,然后根据输入音频信号的幅值调整矩形波的脉宽,最后通过滤波器将调制后的PWM信号转换为模拟音频信号输出。

2.数字信号处理D类功放的设计中需要进行数字信号处理。

首先,输入的模拟音频信号需要经过模数转换器(ADC)转换为数字信号,然后通过数字信号处理器(DSP)进行数字信号的滤波、均衡、增益控制等处理,最后再经过数字模数转换器(DAC)转换回模拟信号。

3.比较器比较器是D类功放中的一个关键组件,用于将模拟音频信号与产生的PWM矩形波进行比较。

比较器的作用是根据输入信号的幅值调整PWM信号的脉宽,从而控制输出功率。

比较器通常由操作放大器和参考电压产生器组成。

4.滤波器在PWM调制之后,需要通过滤波器将调制后的PWM信号转换为模拟音频信号输出。

滤波器的作用是去除PWM信号中的高频分量,保留音频信号的低频成分。

常见的滤波器类型包括低通滤波器和带通滤波器。

5.输出级D类功放的输出级通常采用开关管(如MOSFET)构成。

开关管的特点是具有较低的开通电阻和较高的关断电阻,从而实现更小的功率损耗和更高的功率效率。

输出级通常由多个开关管组成,根据功率需求可以并联或串联排列。

输出级的设计需要考虑电压和电流的控制,包括过电压和过电流的保护。

6.反馈控制为了提高D类功放的线性度和稳定性,通常需要采用反馈控制。

通过对输出信号与输入信号进行比较,调整PWM信号的脉宽和幅值,以使输出信号尽可能接近输入信号。

NE5532 及LM311 在数字功放的运用

NE5532 及LM311 在数字功放的运用

1功放的选择传统功放主要有A 类功放、AB 类功放以及B 类功放。

A 类功放主要是小信号进行放大,需要设置偏置电压来稳定电路,因此效率较低。

B 类功放不是依靠偏置电压进行放大,而是利用当输入信号大于三极管的导通电压时,三极管则导通的原理进行放大。

由于输入信号有正负之分,因此需要用2个三极管进行放大。

由于当输入信号小于导通电压,即在-0.6V 到0.6V 的范围内,三极管不能导通,因此不能对输入信号进行放大,存在失真情况,因此提出了AB 类功放。

AB 功放工作时,由于直接对模拟信号进行放大,要求三极管处于线性放大状态,因此需要消散太多功耗,这样也存在弊端。

D 类功放克服以上弊端,采用脉冲高低电平控制开关器件导通截止,则输出信号的电压和电流均已被放大,也即功率被放大,所以功率消耗是非常小的。

2D 类功放的工作原理D 类功放的工作原理:首先利用运放自激振荡产生一个高频载波,然后将输入的低频模拟信号经过比较器调制到高频信号。

这个调制波是一系列宽度受到调制的等幅脉冲信号,且频率是随低频信号的幅度变化而变化,这个过程也叫脉冲宽度调制,简称脉宽调制。

这个系统一般由比较器构成,输入信号是三角波(载波)和低频信号,两个信号进行比较,如果低频信号大于三角波信号,比较器输出常数,如果是小于,则输出0,因此比较器输出是一系列调制的脉冲宽度调制波,输出的调制波经开关功率放大后经过滤波输出低频信号。

3原理方框图数字功放的原理框图如图一。

图一数字功放的原理框图4工作原理简介4.1通道选择及显示原理通道可以分为1通道和2通道。

选择电路采用74ls74芯片,它是一种双上升沿D 触发器芯片,一共有14个引脚。

由于输入信号是低频模拟音频信号,所以本论文多路选择分配器采用74HC4052芯片。

当D 触发器输出端为高电平,数码管显示2,同时信号进入74HC4052第10脚,该芯片数字选择端选择Y1通道信号输入和输出Y1信号,也即选择了通道2。

d类功放_增益和功率_解释说明以及概述

d类功放_增益和功率_解释说明以及概述

d类功放增益和功率解释说明以及概述1. 引言1.1 概述在现代科技发展的进程中,功率放大器作为一种重要的电子设备,在各个领域中具有广泛的应用。

其中,D类功放作为一种高效率低功耗的功率放大器,近年来受到了越来越多人的关注和研究。

本文旨在对D类功放的增益和功率进行解释说明,并概述其相关概念、特点以及影响因素。

通过对D类功放增益和功率的详细讨论和分析,可以更好地理解该类型功放器件在实际应用中的优势与限制,并对未来的技术发展提出一些建议。

1.2 文章结构本文将分为五个主要部分进行说明。

除了引言部分外,还包括:功放定义与分类、D类功放增益解释说明、D类功放功率解释说明以及结论与总结。

在第二部分中,我们将介绍功放器件的基本概念和分类,并着重介绍D类功放,在不同应用领域中的具体使用情况。

第三部分将详细讨论D类功放增益的定义、重要性以及其特点。

同时还会探讨如何调节增益以及影响增益的因素。

第四部分将重点解释功率的概念和意义,并着重说明D类功放的功率输出特点。

此外,我们还会讨论容量和负载对功率输出的影响。

最后,第五部分将对D类功放的增益和功率进行综合评价和分析,讨论其在实际应用中的优势与局限,并提出未来技术发展的展望和研究方向建议。

1.3 目的本文旨在对D类功放的增益和功率这两个关键概念进行深入解释和阐述。

通过对这些内容的详细讨论,读者可以更全面地了解D类功放器件的特点、优势和局限性。

同时,我们希望借此机会提醒读者注意增益调节方法以及容量和负载等因素对功率输出产生的影响。

最后,我们也期望能够引起更多人对于D类功放技术未来发展方向的思考,并给予一些相关建议。

通过本文内容,希望能够为读者提供有关该主题领域内基础知识与进一步探索所需的背景信息。

2. 功放定义与分类2.1 功率放大器的概念及作用功率放大器是一种电子设备,用于增加电信号的幅度,从而增强信号的功率。

它在各个领域中广泛应用,包括音频和视频系统、通信系统、雷达系统等。

[讲解]功率放大器原理

[讲解]功率放大器原理

[讲解]功率放大器原理一、功率放大器简介利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。

因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。

经过不断的电流及电压放大,就完成了功率放大。

编辑本段二、功率放大器种类传统的数字语音回放系统包含两个主要过程:(1)数字语音数据到模拟语音信号的变换(利用高精度数模转换器DAC)实现;(2)利用模拟功率放大器进行模拟信号放大,如A类、B类和AB类放大器。

从1980年代早期,许多研究者致力于开发不同类型的数字放大器,这种放大器直接从数字语音数据实现功率放大而不需要进行模拟转换,这样的放大器通常称作数字功率放大器或者D类放大器。

1、A类放大器A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。

放大器可单管工作,也可以推挽工作。

由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。

电路简单,调试方便。

但效率较低,晶体管功耗大,功率的理论最大值仅有25,,且有较大的非线性失真。

由于效率比较低现在设计基本上不在再使用。

2、B类放大器B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。

在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。

其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。

即当信号在-0.6V~ 0.6V之间时,Q1 Q2都无法导通而引起的。

新一代数字电视发射机功率放大器分析及损坏处理对策

新一代数字电视发射机功率放大器分析及损坏处理对策
方式 ,合放 式指 图像载 波信 号和伴 回退 的办 法技术 上不 可取 ,对发射 信 号 ,通过 上变频 送入放 大部 分 。 音载波 信 号用 同一个功 率放 大器放 机 的性价 比也 不利 。分析数 字 电视 在 O D 系统 中,每 个载 波之 间的频 FM
大 ,也称单通道方式 。
功率放 大 器是 数字 电视 发射 机 放 大器 的线性要 求 比模拟 电视发射 幅度 、相位和 时延 的线性 校正 。不 中 的重 要组成 部分 ,它 决定 了发射 机要 高 的多 ,除了预校 正 电路 ( 含 同制式 的发射机 、校 正 电路 是不 同 机 的功率输 出能 力 ,是 发射机 成本 在激 励器 中)要 提高 性能之 外 ,功 的。这部分 电路包含在激励器 中。 最高 的部 分 。模拟 电视 发射机 有分 率放大器 的输出功率要适 当下 降。由 2 、数字 电视发射机功率 放大器
较高的线性状态下 ,增益稳定 。
要更少 的器件 ,从而增大功放的可靠 配所 产生 的集 电极 电流 过大所 致 。
D O  ̄经受住 高于双极型 晶体 其他 的损坏 原 因有散热 器小 ,通风 发射系统 的放大部分分为激励和 性 。L M S 主放大电路 。其中激励部分为宽带功 管3 的驻波 比,能在较 高的反射功 不 良,调试者失误等造成 。 倍
AR 大后发 送 。这 就是 数字 电视与模 拟 合成器 加 以改造 ,将所用 功放模 块 P P技术。除了数字基带预失真技术
电视 发射机 的不 同点。
都组合 到一起 。如果所用 模块 不一 以外 还可 以采用 中频 的非 线性 预校
二 、数字 电视发 射机 功率 放 样,改造就比较困难 。一种简单的办 正技 术 ,在数字 电视激 励器 中采用

数字功放和模拟功放优缺点对比

数字功放和模拟功放优缺点对比

数字功放和模拟功放优缺点对比数字功放的根本电路是早已存在的D类放大器(国内称丁类放大器)。

以前,由于价钱和技术上的缘由,这种放大电路只是在实验室或高价位的测试仪器中应用。

这几年的技术开展使数字功放的元件集成到一两块芯片中,价钱也在不时降落。

理论证明,D类放大器的效率可到达100%。

但是,迄今还没有找到理想的开关元件,难免会产生一局部功率损耗,假如运用的器件不良,损耗就会更大些。

但是不论怎样,它的放大效率还是到达90%以上。

由于功耗和体积的优势,数字功放首先在能源有限的汽车声响和请求较高的重低音有源音箱中得到应用。

随着DVD家庭影院、迷你声响系统、机顶盒、个人电脑、LCD电视、平板显现器和挪动电话等消费类产品一日千里的开展,特别是SACD、DVDAudio等一些高采样频率的新音源规格的呈现,以及声响系统从平面声到多声道环绕系统的进化,都加速了数字功放的开展。

近年来,数字功放的价钱呈不时降落的趋向,有关这方面的专利也层出不穷。

一、D类输出功率和耗费功率与AB类功率放大器耗费比例采用低频音频信号调制一个固定高频频率的脉宽的一种放大器被人们称为D类放大器又有人称为数字音频放大器,他最大的特性是效率特别高(理论上能够到达100%,实践在85%以上),采用十分小的电子器件就能够制造出很大功率的音频放大器。

小功率,即1W-3W的功率放大器而言,在相同播放内容的情况下,AB类功率放大器与D类功率放大器的功率效率各约为AB=15%及D=75%。

在播放1W音乐的情况下,AB类功率放大器需求耗费6.7W的功率,但D 类功率放大器在同样的播放条件下只耗费1.33W。

因而,运用D类功率放大器可延长电池的运用时间达5倍(6.7W/1.33W)。

低功率的运用除了手机,DVD、MP3及PMP之外还有一些盛行产品如iPod、手机、及数字相框。

那么中功率的状况下,即10W-30W的功率放大器而言在相同播放内容以语音为主的情况下,AB类功率放大器与D类功率放大器的功率效率分别为AB=25%及D=80%。

功率放大器(功放)知识

功率放大器(功放)知识

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。

一套良好的音响系统功放的作用功不可没。

功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。

功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。

由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。

分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。

甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。

甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。

单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。

乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。

乙类放大器的优点是效率高,缺点是会产生交越失真。

甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。

甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。

丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。

许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。

这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。

按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。

单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。

数字功率放大器的工作原理是什么

数字功率放大器的工作原理是什么

数字功率放大器的工作原理是什么数字功率放大器其实就是D类功率放大器。

传统功率放大器都是模拟功率放大器,也就是说利用模拟电路对信号进行功率放大,放大处理的是连续信号,而D类功率放大器是一种数字功率放大器,其功率输出管处于开关工作状态,即在饱和导通和截止两种状态间变化,用一种固定频率的矩形脉冲来控制功率输出管的饱和导通或截止。

一般D类功率放大器中的矩形脉冲频率(其作用相当于采样频率)为100~200kHz,每台D类功率放大器生产出来后其矩形脉冲的频率就固定为一具体频率了,也就是脉冲周期固定了。

矩形脉冲在一个周期内的宽度(或者说占空比)受到音频模拟信号的控制而改变,从而改变了功率输出管在一个脉冲周期内的导通时间,脉冲越宽(占空比越大),功率输出管在一个(采样)脉冲周期内导通时间越长,则输出电压就越高,输出功率就越大。

调制波形原理图见图,称为脉冲宽度调制(PWM),它是一种对模拟信号电平进行数字编码的方法。

数字功率放大器的特点是效率远远比传统的模拟功率放大器高得多,可以达到80%多甚至达90%多。

由于D类功率放大器比AB类功率放大器在功率输出管上损耗的功率小得多,产生的热量也少得多,所以D类功率放大器的散热器可以减小,重量可以减轻。

数字功率放大器的电源部分采用开关电源,因此整机效率将进一步提高,所以可以设计出输出功率相当大的数字功率放大器。

早期的D类功率放大器的失真比较大,经过不断改进,目前失真已经降到比较低的水平,可以满足专业音响的要求。

但是由于D类功率放大器功率输出管的开关频率很高,功率又很大,所以难免会有信号泄漏,这样也就容易引起信息的泄漏,所以在一些需要保密的场合还是以不采用D类功率放大器为好。

目前一些数字功率放大器产品已经同时具有模拟输入口和数字输入口,既适合模拟信号输入,也可以数字信号输入,应用更灵活。

数字放大器的基本工作原理

数字放大器的基本工作原理
器。 亦称为 开关放大器 。 因此也可 把数字放大器 看成 是一 个一 比特 D AC的功率放大器 ,即一比特功率 D AC。图 1 是 数字放大器的基率 组成 。
图 2 功 率 开关 电 路 的组 成 ( 以 沟 道 M OS —FE 为 例 T
对 直流电源进行通断、 控制负载 电流的功率 开关电路可
二、功率开关电路
●7 ● 4 20 年 5 02 第 期
_■ ■■ ——_■一 _
¨

维普资讯


e 赣 号 ^
形器 的整形特性 ( £调 △

制特性 ) 图6 如 所示 的那样变化 。
如果 不 作 噪 声整 形 的话 , 量化噪声是均匀分布 的。 进行 若 噪声整形的次数越多, 低频 量化 噪声将 越少 , 相应地高 频噪声将
输人信号处理电路在输人信号为模拟信号时 , 对输人 的 模 拟信 号作电平调 整和信号放大等处理 , 使输人信号在幅度 方面能满足后级 电路的要求 , 并根据需要对输人信号进 行均 衡处理。当输人信号为数字信号时 , 输人信 号处理电路则作 为数 字接 口电路, 对输人信 号进 行解码处理 和相 应的加工处
极型三极管 。但 由于没有 载波存储效应 的 F T更适台用于 E
高速开羌 ,所 很- 就转而采用 v— E ( 向 F T,又名 FT 纵 E ST)和 MOS F T。现在 MO — E 已成为 了主流 。 I —E SFT
在采用 MO — E S F T的方式 中,叉分用 P沟道 F T和 基本工作原理
口 从 余
本 文就数字放大器的基 本组成 、 分类、 类数字放大器 各
的工作原理及优 缺点进行较详细 的介绍 。

全数字功率放大器的最新动向

全数字功率放大器的最新动向
负 电位
在数宁放火器为单 电源供 电, 开关 式采用P ( w 脉冲
( i 一 2 0 5  ̄
B B . E 0 . D

Fj

器件 L J 怍 饱和 f 通)和截止 ( ) 断 两种擞端的工 怍状惫, 不使H ・ J 问的线性工 怍状惫。 因此输 出器件的线性好坏对输 信 没有任何影响 。 驱动电路依照输人的数字信号拧制各
在去年 l , 电视机 、 } 在 1 微型结构的通 用音 频_品的功率 产 放大器部 分已有人开始果用数字放大器了 即使是在高保真 音响领域 .也有 采用数字放大器的趋 势 面 先读读 一 些有关数字放大器的基本知识


模拟放大器和数字放大器
模拟放大器是大家所熟悉 的, 一直使用着的放大器 , 如
பைடு நூலகம்
为r 重现音频信 号, 断控制的开关频率应该 比音频 通/ 信 的额率 高很多 , 般序在数百千赫芝以上。 往罔1b所示的双 电源供 电的数字放 大器 中, () 如果输出 器件 A和 B的 导通时间相等,用低通滤波器 【 P I F)滤除高 频成分之 模拟信号为零 电位 。 当A的导通 时问较 B长时模
驱 动 位 载 的 方
式 是 采 用 图 2 示 的 所
分压 电路的 式 用 两 个电阻申联 对电源
电压 进行 丹 压 、输 电压 是 下 侧 电阻 R2 的 电压 降 。 2 艘 R是
罔 2 电 阻 抒
系统的昔 l 这种丁类放大器又有重新崛起之势.评故名为 硬. 数 字放 夫器。为了帮助读者深入了解数字放 大器 . 本文就数
量的 电 源 和 大型 的敞 热 片
{ )l I 的音额 ( a 0- Hz 慎拟】 信号波形

D类数字功率放大器

D类数字功率放大器

3.3 D类数字功放D类功放也叫丁类功放;是指功放管处于开关工作状态的功率放大器..早先在音响领域里人们一直坚守着A类功放的阵地;认为A类功放声音最为清新透明;具有很高的保真度..但A类功放的低效率和高损耗却是它无法克服的先天顽疾..后来效率较高的B类功放得到广泛的应用;然而;虽然效率比A类功放提高很多;但实际效率仍只有50%左右;这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合;仍感效率偏低不能令人满意..所以;如今效率极高的D类功放;因其符合绿色革命的潮流正受着各方面的重视;并得到广泛的应用..3.3.1 D类功放的特点与电路组成1.D类功放的特点1效率高..在理想情况下;的效率为100%实际效率可达90%左右..B类功放的效率为78.5%实际效率约50%;A类功放的效率才50%或25%按负载方式而定..这是因为的放大元件是处于开关工作状态的一种放大模式..无信号输入时放大器处于截止状态;不耗电..工作时;靠输入信号让晶体管进入饱和状态;晶体管相当于一个接通的开关;把电源与负载直接接通..理想晶体管因为没有饱和压降而不耗电;实际上晶体管总会有很小的饱和压降而消耗部分电能..2功率大..在D类功放中;功率管的耗电只与管子的特性有关;而与信号输出的大小无关;所以特别有利于超大功率的场合;输出功率可达数百瓦..3失真低..D类功放因工作在开关状态;因而功放管的线性已没有太大意义..在D类功放中;没有B类功放的交越失真;也不存在功率管放大区的线性问题;更无需电路的负反馈来改善线性;也不需要电路工作点的调试..4体积小、重量轻..D类功放的管耗很小;小功率时的功放管无需加装体积庞大的散热片;大功率时所用的散热片也要比一般功放小得多..而且一般的D类功放现在都有多种专用的IC芯片;使得整个D类功放电路的结构很紧凑;外接元器件很少;成本也不高..2.D类功放的组成与原理D类功放的电路组成可以分为三个部分:PWM调制器、脉冲控制的大电流开关放大器、低通滤波器..电路结构组成如图3.22所示..图3.22 D类功放的组成其中第一部分为PWM调制器..最简单的只需用一只运放构成比较器即可完成..把原始音频信号加上一定直流偏置后放在运放的正输入端;另外通过自激振荡生成一个三角形波加到运放的负输入端..当正端上的电位高于负端三角波电位时;比较器输出为高电平;反之则输出低电平..若音频输入信号为零时;因其直流偏置为三角波峰值的1/2;则比较器输出的高低电平持续的时间一样;输出就是一个占空比为1:1的方波..当有音频信号输入时;正半周期间;比较器输出高电平的时间比低电平长;方波的占空比大于1:1;音频信号的负半周期间;由于还有直流偏置;所以比较器正输入端的电平还是大于零;但音频信号幅度高于三角波幅度的时间却大为减少;方波占空比小于1:1..这样;比较器输出的波形就是一个脉冲宽度被音频信号幅度调制后的波形;称为PWMPulse Width Modulation脉宽调制或PDMPulse Duration Modulation脉冲持续时间调制波形..音频信息被调制到脉冲波形中;脉冲波形的宽度与输入的音频信号的幅度成正比..第二部分为脉冲控制的大电流开关放大器..它的作用是把比较器输出的PWM信号变成高电压、大电流的大功率PWM信号..能够输出的最大功率由负载、电源电压和晶体管允许流过的电流来决定..第三部分为由LC网络构成的低通滤波器..其作用是将大功率PWM波形中的声音信息还原出来..利用一个低通滤波器;可以滤除PWM信号中的交流成份;取出PWM信号中的平均值;该平均值即为音频信号..但由于此时电流很大;RC结构的低通滤波器电阻会耗能;不能采用;必须使用LC低通滤波器..当占空比大于1:1的脉冲到来时;C的充电时间大于放电时间;输出电平上升;窄脉冲到来时;放电时间长;输出电平下降;正好与原音频信号的幅度变化相一致;所以原音频信号被恢复出来..D类功放的工作原理见图3.23..a原理简图 b工作波形图3.23D类功放原理图对于数字音频信号输入时;经数字内插滤波器和等比特调制器后;即可得到脉冲宽度与数字音频的采样点数据成正比的PWM信号..其中数字内插滤波器是在数字音频信号的数据之间再插入一些相关联的数据;以内插方式提高数字音频信号的采样点数采样频率;等比特调制器是将数字信号的数据大小转换为脉冲的宽度;使输出信号的脉冲宽度与输入数据的大小成正比..3.D类功放的要求1对功率管的要求..D类功放的功率管要有较快的开关响应和较小的饱和压降..设计考虑的角度与AB类功放完全不同..此时功放管的线性已没有太大意义;更重要的是开关响应和饱和压降..由于功放管处理的脉冲频率是音频信号的几十倍;且要求保持良好的脉冲前后沿;所以管子的开关响应要好..另外;整机的效率全在于管子饱和压降引起的管耗..所以;管子的饱和压降小不但效率高;且功放管的散热结构也能得到简化..若干年前;这种高频大功率管的价格昂贵;限制了D类功放的发展;现在小电流控制大电流的MOSFET已在Hi-Fi功放上得到广泛应用..2对PWM调制电路的要求..PWM调制电路也是的一个特殊环节;要把20kHz以下的音频调制成PWM信号;三角波的频率至少要达到200kHz三角波的频率应在音频信号频率的10~20倍以上..当频率过低时要达到同样要求的THD总谐波失真标准;则对无源LC低通滤波器的元件要求就高;结构复杂..如果三角波的频率高;输出波形的锯齿小;就能更加接近原波形;使THD 小;而且可以用低数值、小体积和精度要求相对差一些的电感和电容来构成低通滤波器;造价相应降低..但是;晶体管的开关损耗会随频率的上升而上升;无源器件中的高频损耗、射频的聚肤效应都会使整机效率下降..更高的调制频率还会出现射频干扰;所以调制频率也不能高于1MHz..而在实际的中小功率D类数字功放中;当三角波的频率达到500kHz以上时;也可以直接由扬声器的音圈所呈现的电感来还原音频信号;而不用另外的LC低通滤波器..另外在PWM调制器中;还要注意到调制用的三角波的形状要好、频率的准确性要高、时钟信号的抖晃率要低;这些参数都会影响到后面输出端由LPF所复原的音频信号的波形是否与输入端的原音频信号的波形完全相同;否则会使两者有差异而产生失真..3对低通滤波器的要求..位于驱动输出端与负载之间的无源LC低通滤波器也是对音质有重大影响的一个重要因数..该低通滤波器工作在大电流下;负载就是音箱..严格地讲;设计时应把音箱阻抗的变化一起考虑进去;但作为一个功放产品指定音箱是行不通的;所以与音箱的搭配中更有发烧友驰骋的天地..实际证明;当失真要求在0.5%以下时;用二阶Butterworth 最平坦响应低通滤波器就能达到要求..如要求更高则需用四阶滤波器;这时成本和匹配等问题都必须加以考虑..近年来;一般应用的已有集成电路芯片;用户只需按要求设计低通滤波器即可..4D类功放的电路保护..D类功率放大器在电路上必须要有过电流保护及过热保护..此二项保护电路为D类功率IC或功率放大器所必备;否则将造成安全问题;甚至伤及为其供电的电源器件或整个系统..过电流保护或负载短路保护的简单测试方法:可将任一输出端与电源端Vcc或地端Ground 短路;在此状况下短路保护电路应被启动而将输出晶体管关掉;此时将没有信号驱动喇叭而没有声音输出..由于输出短路是属于一种严重的异常现象;在短路之后要回到正常的操作状态必需重置Reset放大器;有些IC则可在某一延迟Delay时间后自动恢复..至于过热保护;其保护温度通常设定在150°~160°C;过热后IC自动关掉输出晶体管而不再送出信号;待温度下降20°C~30°C之后自动回复到正常操作状态..5D类功放的电磁干扰..D类功率放大器必须要解决AB类功率放大器所没有的EMIElectro Magnetic Interference;电磁干扰问题..电磁干扰是由于D类功率放大器的功率晶体管以开关方式工作;在高速开关及大电流的状况下所产生的..所以D类功放对电源质量更为敏感..电源在提供快速变化的电流时不应产生振铃波形或使电压变化;最好用环牛变压器供电;或用开关电源供电..此外解决EMI的方案是使用LC电源滤波器或磁珠bead滤波器以过滤其高频谐波..中高功率的D类功率放大器因为EMI太强目前采用LC滤波器来解决;小功率则用Bead处理即可;但通常还要配合PCB版图设计及零件的摆设位置..比如;采用D类放大器后;D类放大器接扬声器的线路不能太长;因为在该线路中都携带着高频大电流;其作用犹如一个天线辐射着高频电磁信号..有些D类放大器的接线长度仅可支持2cm;做得好的D类放大器则可支持到10cm..3.3.2 D类功放实例下面以荷兰飞利浦公司生产的TDA8922功放芯片为例;对D类功放电路进行介绍..TDA8922是双声道、低损耗的D类音频数字功率放大器;它的输出功率为2×25W..具有如下特点:效率高可达90%;工作电压范围宽电源供电±12.5V~±30V;静态电流小最大静流不超过75mA;失真低;可用于双声道立体声系统的放大SE接法;Single-Ended或单声道系统的放大BTL接法;Bridge-Tied Load;双声道SE接法的固定增益为30dB;单声道BTL接法的固定增益为36dB;输出功率高典型应用时2×25W;滤波效果好;内部的开关振荡频率由外接元件确定典型应用为350kHz;并具有开关通断的“咔嗒/噼噗”噪声抑制;负载短路的过流保护;静电放电保护;芯片过热保护等功能..广泛应用于平板电视、汽车音响、多媒体音响系统和家用高保真音响设备等..1.内部结构与引脚功能TDA8922的内部结构如图3.24所示;包含两个独立的信号通道和这两个通道共用的振荡器与过热、过流保护及公共偏置电路..每个信号通道主要包括脉宽调制和功率开关放大两个部分..图3.24 TDA8922内部结构1脉宽调制..输入的模拟音频信号经电压放大后;与固定频率的三角波相比较;全部音频信息被调制在PWM 信号的宽度变化中..三角波的产生由压控振荡器实现;三角波的频率由7脚外接的RC定时元件确定..比较器是一个带锁相环的脉宽调制电路;调制后的电路与功率输出级的门控电路相连;地线被连接到公共地端..当音频信号幅度大于三角波信号幅度时;比较器输出高电平;反之;比较器输出低电平..PWM 信号是一个数字脉冲信号;其脉宽的变化反映音频信号的全部信息..脉冲信号的高、低电平控制两组功率管的通/断;高/低两值之间的转换速度决定两组功率管之间的通/断的转换时间..电路中采用触发器来调整比较器输出的波形;通过快速转换使输出波形得到明显的改善..2功率开关放大..功率开关放大部分由门控电路、高电平与低电平驱动电路、MOSFET功率管所组成..门控电路用于输出级的功率开关管在开关工作时的死区校正;防止两个MOSFET管在交替导通的瞬间的穿透电流所引起的无用功耗;因为在高频开关工作时;需要分别将两个MOSFET管的截止时间提前而将导通时间滞后;防止两个管子在交替导通的瞬间同时导通而产生贯通电流;这一贯通电流是从正电源到负电源直通而不流向负载的..PWM 信号控制着MOSFET功率管的通/断;驱动扬声器发声..开关功率管集成在数字功率IC内;有利于缩小整个功放的体积;降低成本;提高产品竞争力..在输出端与高电平驱动器之间接有自举电容;用于提高在上管导通期间的高电平驱动器送到上管栅极的驱动电平;保证上管能够充分导通..3工作模式选择与过热过流保护电路..TDA8922芯片中除了每个声道中的脉宽调制与功率开关放大电路外;还有工作模式选择与过热保护与过流保护..6脚为工作模式选择端;当6脚外接5V电源时为正常工作模式;此时D 类功放各电路正常工作;当6脚接地0V时为待机状态;此时芯片内的主电源被切断;主要电路都不工作;整机静态电流极小;当6脚电平为电源电压的一半约2.5V时为静音状态;此时各电路都处于工作状态;但输入级音频电压放大器的输出被静音;无信号输送到扬声器而无声..过热保护与过流保护是通过芯片温度检测和输出电流检测来实现的..当温度传感器检测到芯片温度>150 oC时;则过热保护电路动作;将MOSFET 功放级立即关闭;当温度下降至约130 oC时;功放级将重新开始切换至工作状态..如果功放输出端的任一线路短路;则功放输出的过大电流会被过流检测电路所检出;当输出电流超过最大输出电流4A时;保护系统会在1μs 内关闭功率级;输出的短路电流被开关切断;这种状态的功耗极低..其后;每隔100毫秒系统会试图重新启动一次;如果负载仍然短路;该系统会再次立即关闭输出电流的通路..除过热过流保护外;芯片内还有电源电压检测电路;如果电源电压低于±12.5伏;则欠压保护电路被激活而使系统关闭;如果电源电压超过±32伏;则过压保护电路会启动而关闭功率级..当电源电压恢复正常范围±12.5V~±32V时;系统会重新启动..4输出滤波器..输出滤波器的用途是滤除PWM 信号中的高频开关信号和电磁干扰信号; 降低总谐波失真..LPF参数的选择与系统的频率响应和滤波器的类型有关..音频信号的频率在20Hz~20 kHz;而开关脉冲信号和电磁干扰信号的频率都远大于音频信号频率;因此LPF所用的LC元件参数;可选择在音频通带内具有平坦特性的低通滤波器..TDA8922包含两个独立的功率放大通道;这两个独立的通道可接成立体声模式;也可接成单声道模式..立体声模式采用SESingle-Ended接法;如图3.24所示;L、R输入的模拟音频信号分别送入各自声道的输入端;L、R扬声器分别接在各自声道输出端的LPF上;从而构成立体声放音系统;单声道模式采用平衡桥式BTL接法;如图3.25所示;此时两个通道的输入信号的相位相反;扬声器直接跨接在两个通道的输出端;此时扬声器获得的功率可增加一倍6dB..图3.25 TDA8922用于单声道的BTL接法TDA8922TH各引脚的功能如表3.2所示..表3.2TDA8922各引脚功能2.典型应用电路TDA8922的典型应用电路如图3.26所示..图3.26 TDA8922的典型应用电路当将TDA8922用于双声道立体声的D类数字功放时;左、右声道的模拟音频信号分别加至输入端的in1和in2..左、右声道的扬声器采用SE接法;分别接在各自声道功放输出端的LPF后与地之间;扬声器的阻抗选用4Ω;此时输入端的4个开关的状态为:J1和J2处于接通状态;J3和J4处于断开状态..两个声道各自独立..当将TDA8922用于单声道的D类数字功放时;电路采用平衡桥式接法BTL..单声道模拟音频信号加在in1或者in2端子上;此时输入端的4个开关设置状态为:J1和J2处于断开状态;J3和J4处于接通状态;两个声道输入端所加的模拟音频信号的相位正好相反..功放输出端的扬声器选用8Ω;直接跨接在双声道功放输出端LPF的两端;构成BTL的接法..正常工作时;6脚的模式选择开关置于“on”位置;即6脚接在5.6V的稳压源上..。

数字功放工作原理

数字功放工作原理

数字功放工作原理数字功放(Digital Power Amplifier)是一种使用数字信号处理技术来实现音频信号功率放大的电子设备。

它采用了数字信号处理器(DSP)和PWM(脉宽调制)技术,能够将数字音频信号转换为模拟信号并进行功率放大,以驱动扬声器产生音频声音。

数字功放的工作原理如下:1. 输入信号处理:数字功放首先接收音频输入信号。

这个信号可以是通过麦克风、CD播放器或其他音频设备提供的模拟信号,也可以是经过模数转换器(ADC)转换为数字信号后的数字音频信号。

2. 数字信号处理:数字功放将输入信号经过数字信号处理器(DSP)进行处理。

DSP可以对音频信号进行各种处理,如均衡、滤波、时延控制、喇叭校准等,以优化音频质量。

3. 数字到模拟转换:经过数字信号处理的音频信号被送入数字到模拟转换器(DAC),将其转换为模拟信号。

DAC会将离散的数字音频样本以一定频率合成为连续的模拟音频信号。

4. 模拟信号放大:转换为模拟信号后,音频信号经过PWM脉宽调制技术被送入功率放大器。

PWM技术将音频信号转换为脉冲信号,通过调整脉冲的宽度来控制输出信号的幅值。

5. 输出功率放大:脉冲信号经过功率放大器进行功率放大,以便驱动扬声器产生大功率的音频声音。

功率放大器的工作原理是通过对电流或电压进行放大,将低功率的音频信号转换为足够大的功率信号。

6. 扬声器输出:经过功率放大后,放大器的输出信号被传送到扬声器,驱动扬声器震动产生声音。

通过数字信号处理和PWM技术的结合,数字功放能够实现高效率的功率放大,具有音频精度高、信噪比好、失真低、功率利用率高等优势。

同时,数字功放还能够实现灵活的数字信号处理和音频参数调整,提供更好的音频体验。

数字音频功率放大器的分析

数字音频功率放大器的分析
格 式 ,后 者 对 双 声 道 立 体 声 采 用 1 2k z 2 i 格 9 H / 4B t 式 , 对 6声 道 环 绕 声 采 用 9 H / 4bt 式 。 的 而 6k z 2 i格
境 提供解决方 案 。 数 字 音 响 正 推 动 着 消 费 娱 乐 市 场 的 发 展 , 消 费
维普资讯
数 字 音频 功 率 放 大 器 的分 析 沈 山 豪f '・述 综・ O
∞ = l- ,
( 中科 院 声 学 所 ,北 京 10 8 ) 0 0 0

- ●
1 引 言
18 9 2年 C D开 创 了数 字 音 响 时 代 ,9 7年 问世 19 的 DV 开创 了数 字 视 听 时 代 , 线 电转 播 的数 字 电 D 无 视 ( T 在 英 、 等 国 也 早 已 在 19 D V) 美 9 8年 底 先 后 播 出 , 且 数 字 电影 院也 开 始 在 美 国 、 并 中国 出现 。在 数 字 科 技 日新 月 异 的进 展 中 ,所 有 家 用 音 响 组 合 和 视 听 组 合 也 将 进 一 步 向数 字 化 方 向 发 展 , 势 所 趋 , 大 不
形 , 有 明显 畸变 , 明 这种 方 法适 用 于 变速 语音 没 说 的音 调 恢 复 。
[ 考文 献】 参 【】刘 骁 , 海 燕 , 1 张 刘镇 清 .一 种 变速 语 音 音调 复 原 的处 理 方 法 .电声技 术 ,0 0 7 : - . 20 ( )7 9
[】 T 3 0 5 X 2 MS 2 C 4 DS R frn e e. C so Pit g P eeec S t utm r i nn
者 的音 响 设 备 ,例 如 家 用 音 响 和 多 媒 体 电 脑 的立 体 声 系 统 ,便 携 式 C D播 放 机 和 汽 车音 响 等 都 在 期 待 着 音 响数 字 化 能 够 以 大 众 化 的市 场 价 格 为 他 们 提 供 质 量 更 高 的 音 响 产 品 。这 类 新 产 品 的关 键 部 分 将 是 数 字 音 频 功 率 放 大 器 ,它 可 以取 代 那 些 既 笨 重 而 噪 声 又 大 的模 拟 音 频 功 放 。数 字 音 频 功 放 的特 点 是 采 用 脉 冲宽 度 调 制 ( WM) 统 和 开关 电源 供 电 。由于 P 系 调 制 器 采 用 数 字 逻 辑 电路 执 行 , 换 极 快 , 于 负 反 转 用 馈 电路 可 比模 拟 反馈 电路 的控 制 受 延 迟 的影 响 较 小 从 而 减 少 了失 真 ,同 时 采 用 局 部 反 馈 可 以 进 一 步 减 少 延 迟 以提 高 传 真 度 。

数字功放简介

数字功放简介

数字功放简介数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。

电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。

数字功放原理数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高.图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中.图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM 码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠.开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确.数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起.从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低.利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.较好的方案是采用调节电源电压的方式来衰减音量,以改变加到低通滤波器上的脉冲电压幅度来改变输出功率.这样量化比特率仍可充分利用,由于电压下降,量化噪声也随之下降,所以音量减小,但信噪比和动态范围仍能保持不变.由于功放电源的功率较大,改变电源电压不能用电阻衰减或分压方式来实现,必须从电源整流稳压部分就开始.TACT公司采用的方法是在数字稳压电源的DC-DC逆变过程中,改变占空比来改变最终输出电压.这类方案目前还只能在分立元件做功率输出部分的整机中采用,集成化数字功放IC仍用衰减模拟输入为主来调节音量.从现状来看,数字功放已能商品运用在功率一般的普通用途放大器上性价比和小型、节电等方面都有长处.几瓦的小功率型集成功放芯片,控制电路和功率开关器件已一体化,使用非常方便.几十瓦以上的大功率用数字功放芯片,一般只集成控制电路部分,大功率开关器件需另外集成或自行配置,以便整机设计灵活.在H F领域中,数字功放还只能算是在探索,离商品化还有一段过程.但数字功放是功率放大后起之秀这点是不容置疑的.数字功放制作方法在音频的领域中功率放大器一般可以分为5类,就是A类、AB类、B类、C类和D类,一般C类功放在发射电路中,不能直接性采用模拟信号输入,而其他的四种可以直接输出模拟信号,放大之后信号用来推动扬声器发出声音.D类是比较特殊的一种功放,它以通、断两种状态存在.因此,它不能直接放大模拟音频信号,而需要把模拟信号经"脉宽调制"变换后再放大.外行曾把此种具有"开关"方式的放大,称为"数字放大器",事实上,这种放大器还不是真正意义的数字放大器,它仅仅使用PWM调制,即用采样器的脉宽来模拟信号幅度.这种放大器没有量化和PCM编码,信号是不可恢复的.传统D类的PWM调制,信号精度完全依赖于脉宽精度,大功率下的脉宽精度远远不能满足要求.因此必须研究真正意义的数字功放,即全(纯)数字功率放大器.数字功放是新一代高保真的功放系统,它将数字信号进行功率转换后,通过滤波器直接转换为音频信号,没有任何模拟放大的功率转换过程.CD唱机(或DVD机)、DAT(数字录音机)、PCM(脉冲编码调制录音机)都可作为数字音源,用光纤和同轴电缆口直接输出到数字功放.此外,数字功放也具备模拟音频输入接口,可适应现有模拟音源.国外对数字音频功率放大器领域进行了二三十年的研究.在20世纪60年代中期,日本研制出8bit的数字音频功率放大器;1983年,国外提出了D类(数字)PWM功率放大器的基本结构.但是这些功放仅能实现低位D/A功率转换,若要实现16bit、44.1KHz采样的功率放大器.随着数字信号处理(DSP)和音频数字压缩技术的结合、新型离散功率器件及其应用的发展,使开发实用化的16bit数字音频功率放大器成为可能.国内外一些从事数字信号处理的技术人员,专门研究音频数字编码技术,在不损伤音频信号质量的情况下,尽量压缩数据库.经过多次实验,终于将末级功放开关频率由没有压缩数据时的约2.8GHz减至小于1MHz,从而降低了对开关功放管的要求.同时在开关功率放大部分,采用了驱动缓冲器和平衡电桥技术,实现了在不提高工作电压的情况下能够输出较大的功率,并且设计了完善的防止开关管击穿的保护电路.2.技术特点国内外一些公司研制出的数字功放,直接从CD唱机的接口(光纤和数字同轴电缆)接受数字PCM音频信号(模拟音频信号必须经过内置的A/D转换变成数字信号后才能进行处理),在整个信号处理和功率放大过程中,全部采用数字方式,只有在功率放大后为了推动音箱才转化为模拟信号.数字功放的主要技术特点为:(1) 采用两电平(0、1)多脉宽脉冲差值编码.(2) 采用平衡电桥脉冲速推技术.(3) 采用高倍率数字滤波技术.(4) 利用数字算法处理噪声问题.(5) 采用非线性抵消技术.{{分页}}3. 工作原理如图1所示,数字功放从光纤或数字同轴电缆接口接受数字PCM音频编码信号,或通过模拟音频输入接口接收模拟音频信号,并通过内部A/D转换器得到数字音频信号,再通过专用音频DSP芯片进行码型变换,得到所需要的音频数字编码格式,经过小信号数字驱动电路送入开关功率放大电路进行功率放大,最后将功率脉冲信号通过滤波器,提取模拟音频信号.图1 全数字音频功放电路的组成框图由图1可知,音频数字信号经过DSP编码后,直接控制场效应管开关网络的工作状态.场效应管驱动器用来缓冲DSP并增强信号,使之能驱动大功率MOSFET开关管.由于高电平脉冲信号只有微分分量,故需通过积分电路才能得到大功率原始音频信息.下面用一个简单的数字和物理模型来阐述数字功放的编码过程,如图2所示.图2 数字功放编码过程示意图图中表示两个相邻采样点N和N+1的采样值为AN和AN+1,中间点a1、a2、a3……为超采样点.超采样点是由数字滤波器计算产生的.通过数字滤波器后,所有采样点包括超采样点所构成的音频信号是比较平滑的.{{分页}}在数字功放中,首先建立一组不同脉宽的脉冲单元,它的脉宽虽然各不相同,但其宽度始终固定的,都是系统时钟周期的倍数.第一个超采样点a1与数值AN的差为Δx1,即a1-AN=Δx1,得到Δx1后,即用上述脉冲单元去量度它,仅用一个脉冲单元表示,余数保留至下次量度,假设余数为ΔΔx1.接着传送的第二个差值编码为a2-a1=Δx2,由于上次还保留余数ΔΔx1,所以还应加上,即当前应用一个脉冲单元去量度Δx2+ΔΔx1,同样余数保留至下一次累计.由此看出,用脉冲单元表示后的余数,即低于最小量度单位的部分并没有丢失,而是累加至相邻超采样点上.而从音频信号的角度来说,曲线AN,a1,a2,a3……AN+1下方的面积和原值相等,因此音频信号并没有产生失真,但曲线增加了以ΔΔx1,ΔΔx2……ΔΔxN幅度上下波动的噪声,这种噪声分量不大,频率很高,用一个较简单的滤波器就可滤除,不会影响到音频信号还原.在能量放大部分,采用平衡电桥开关技术,每通道使用四只MOSFET开关功放管构成平衡电桥开关网络.当功放管处于开关放大状态时,输出波形和输入的脉冲信号波形相同,但幅度近似于工作电压,即VOUT=VBUS,经滤波器滤波后,输出到负载上的波形峰值为VBUS.设MOSFET管内阻为rDSON,负载阻值为RLOAD,电源电压为VBUS,滤波器阻抗为Rx,则负载上均方值电流IRMS=VBUS/[(2rDSON+RLOAD+Rx)]所以负载上承受的功率为PLOAD=I2RMSXRLOAD={V2BUS/[2(2rDSON+RLOAD+Rx)2]}XRLOADη=[RLOAD/(2rDSON+RLOAD+Rx)]/[1+fX(■+▲)]其中■=16VBUS/[π2XIRATEX(2rDSON+RLOAD+Rx)]▲=2IRATE(t2RR/VBUS)(2rDSON+RLOAD+Rx)当包含有开关损耗时,效率可由下式计算:采用RFP22N10 MOSFET功放,内阻rDSON为0.08Ω,负载RLOAD为8Ω,工作电压VBUS为40V,开关频率f为700KHz,变换速率IRATE 为50A/us,翻转恢复时间tRR为100ns,滤波器内阻Rx为0.04Ω,可算出:PLOAD=95W,η=78%.在滤波器设计时,我们采用六阶巴特沃斯低通滤波器,用于将大功率数字脉冲信号转换为模拟音频信号.巴特沃斯滤波器的特点是带内平坦度高,从而使得输出音频信号幅频特性较好.数字功放中音质和载波频率的关系数字功放一直以来被许多人认为低音很不错,但是高音刺耳.在我们开发这个产品的过程当中,其实也发现了这个问题.我们回到数字功放的原理: 音频信号(20~20K)经过一个PWM的调制,然后通过一个开关功率放大电路,把PWM信号放大,最后通过滤波器,把PWM信号滤除掉,这样就剩下一个大功率的音频信号可以直接推动喇叭了.这个调制过程是数字功放的关键.一般现在流行的几个数字功放的方案的PWM频率都是工作在300K~500K范围,有些低音跑甚至工作在100K以下的频率.工作频率越高,越难选择开关管,开关的速度如果变慢了,容易发热,想减轻发热,就需要把死区调大,死区调大了,就导致失真变大.这个是一个两难的选择.于是选用极端快速的开关管,是数字功放第一要务.数字功放的采样频率,直接决定了音质,这个是我们在开发数字功放的过程中发现的一个重要现象.举个简单的例子,应该可以很好理解这个原理.假设PWM的开关频率为300K(300~450K是现在市面上的数字功放的最常见的频率),1: 如果输入一个20HZ的低频信号进入,那么等于把一个20HZ的低频信号周期分割为15000个采样点,这个采样点足够在输出的时候完美表达一个正玄波的波形,低音可以得到很好的表现.2: 如果输入一个1K的中频信号,那么他就产生300K/1K , 也就是一个周期300个采样点,这个还是可以接受的,但是已经开始恶化了.3: 如果输入一个20K的中频信号,那么只产生300K/20K ,也就是一个周期15个采样点, 已经不能完整表达一个正玄波了,个人认为,这就是高音恶化难听的主要原因,我们再来看看,到底多高的频率能高好的表达音频信号.下面是一个表:PWM 20 250 500 1K 2K 5K 10K 15K 20K100K 5000 400 200 100 50 20 10 7 5300K 15000 1200 600 300 150 60 30 20 15500K 25000 2000 1000 500 250 100 50 33 25600K 30000 2400 1200 600 300 120 60 40 301000K 50000 4000 2000 1000 500 200 100 67 502000K 100000 8000 4000 2000 1000 400 200 133 100从上表,可以看出,如果PWM的频率是100K 输入一个20K的音频信号,他只能把20K的一个周期分辨出5个信号,这显然不行,100K最高可以比较好的表达1K的信号(有100个采样点),所以工作在100K的数字功放只能是作为低音炮(20~250HZ).一个300K的数字功放也只能比较完美的表达5K(有60个采样点)的高音.一个600K的数字功放,可以比较好的表达10K的音频当工作频率达到1~2M的时候,才能真正的把高音的失真减低,减低并不等于完美:)能追求更高的频率是每个数字功放设计师的梦想,但是必须基于更先进的器件(更高的工作频率的功率管).采样频率越低,高频波形的折线化越严重,为什么有些低频率(400K)的数字功放失真怎么那么低呢.这个主要是出现在失真的测量方法上,普通的失真测量是输入1K信号,输出后测量1K信号产生的谐波(2K 3K,4K ,5K等),2K 4K 比较高,那是偶次失真(电子管常见的失真),3K5K比较高是奇次失真(晶体管电路常见的失真),也就是说实际上标称的失真只是代表1KHZ的失真,而不能代表其他信号频率的失真.于是就会产生了标称失真很低,但是实际的听感不舒服了.大家可以回头去看看上面哪个表,300K以上的数字功放对1KHZ的表达是比较完美的了.从这个角度,也证明了平时大家的感觉,为什么数字功放高音总是不舒服.关键的问题还是基频不够高.从另一个角度,我们再探讨一下基频和音频信号的关系.----关于滤波器.数字功放,基本都有滤波器(小功率的现在发展到没滤波器了),这个滤波器的作用主要是把PWM的基频滤除,一个陡峭的滤波器是非常难以设计的.双方的频率越靠近,想用简单的滤波器把两个不同频率的信号分离越困难.所以说,频率越高滤波器越容易处理.当然频率高滤波器使用的材料是有很大区别的.很多300~500K的数字功放只使用一个两阶滤波器.这个是远远不够的,很多数字功放输出都有0.3~1V的静态电压,我测试过两家提供的半成品板,有家甚至达到了3V的高频电压输出,这个是非常恐怖的事情.这个输出电压是高频电压,频率就是PWM的基频,虽然理论上这个信号是听不见的,但是他会严重干扰高音喇叭的工作.我初期设计过600K的CLASS-D 必须使用4阶以上的滤波器才能有效减低这个输出电压.DDX的数字功放解决方案前言随着现在数字音源和数字音频的快速发展,在对数字音频信号直接放大的数字音频放大器也得到了飞速的发展.它有效率的与数字音源对接,实现了端到端的纯数字音频处理和放大的优点.这种DDX音频放大器可以接受来自DSP直接输入的数字音频编码信号,采用专利的DDX信号处理技术来控制高效的功率器件,不需要为每个声道准备D/A转换器,从而减少了中间不必要的转换层级,音质得到显着的改善,成本也随着零部件数目的减少而下降,从而把高音质、低功耗和低制造成本带到人气很旺的高速增长的应用领域,如平板电视机、无线产品和个人音响系统.DDX音频放大器的基本结构DDX音频放大器包括2个主要部分:第一部分是采用专利DDX技术的调制器,它把数字音频接口得到的或者A/D转换得到的PCM数字音频数据转换成三态调制信号输出;第二部分是功率输出级,它包括三态驱动逻辑电路和全桥电路.经过三态调制的脉冲信号控制全桥电路中晶体管的导通与截止,在负载的两端产生极性相反的脉冲信号,脉冲的频率成份包含还原的音频信号和与调制过程相关的高频分量,因此通常需要在输出级和扬声器之间插入一个低通滤波器,避免高频分量直接驱动扬声器,从而在扬声器上得到还原并且放大的音频输出(如图1所示).图1 DDX基本功能块图DDX音频放大器驱动方式和调制方式DDX音频放大器的输出级采用全桥电路,它包含两个半桥输出级.每个半桥电路包括两个输出晶体管,一个是连接到正电源的高端功率管,另一个是连接到负电源的低端功率管.全桥电路可以由单电源供电,在相同的电源电压下,全桥电路的输出信号摆幅是半桥电路的两倍,理论上可以提供的最大输出功率是其四倍.传统的D类放大器采用差分工作方式,开关信号控制两个半桥电路中功率管的导通与截止,半桥A的输出极性必须与半桥B的输出极性相反,使负载电流从一个半桥流入,从另一个半桥流出,为滤波器提供极性相反的脉冲信号,因此只存在正态和负态这两种差分工作状态.图2 DDX驱动状态DDX音频放大器的调制器采用DDX专利的三态调制技术,增加了一个共模工作状态,即两个半桥输出的极性相同(都为低),从而使滤波器的两端被连接到地.这个共模状态称为阴尼态,和差分工作状态配合产生DDX三态调制,如图2所示.阴尼态用于表示低功率水平,代替两态方案中在正态和负态之间的开关.当音频信号处于低功率水平的时候,传统的两态方案仍然使输出晶体管处于开关状态,输出正负抵消的无用信号给滤波器和扬声器,这样不但增加了的开关损耗和能量开销,降低了音频放大器的效率和信噪比,而且不断地处于开关状态不可避免地产生EMI.DDX三态调制方案利用阴尼态表示低功率水平,正态和负态用于对扬声器提供大功率.在相同测试条件下,DDX三态调制方案比采用两态调制方案的传统D 类放大器产生的高频载波分量低16dB,在低功率水平时的放大器效率提高了20%.DDX三态调制方案的独有特性也改善了电源抑制比(PSRR),因为在低功率水平时,滤波器的差分动作非常小,阴尼态使扬声器的两端接地,从而使电源的噪声不被听见.许多D类放大器采用PWM输出至器件输入的负反馈环路以改善器件的线性,通过控制环路对输出进行校正,以减少失真问题和电源问题.闭环设计的优势是以可能出现的稳定性问题为代价的,这也是所有反馈系统共同面临的问题.而DDX音频放大器采用数字开环的设计,即使在驱动低阻抗扬声器的时候也不会产生放大器的稳定性问题.同时,利用先进的数字信号处理技术(DSP),对预期的输出级误差进行预补偿或者校正,也可以改善放大器的线性输出特性.并且可以在数字域对每个通道音频信号独立地编程,进行诸如分段EQ控制,低音/高音控制和音量控制等处理,而这些都可以通过I2C数字接口对内部寄存器进行编程来实现,不仅方便了用户的开发和使用,而且为用户增加了附加价值.DDX音频放大器种类DDX音频放大器芯片主要分成两类,一类是完全独立的设计,即DDX控制芯片和音频功率放大器芯片是分开的,最多能处理八个音频通道,最大输出功率为单通道350W;另一类是单芯片设计,即集成了DDX控制和音频功率放大器功能,同时拥有2.1通道的DDX控制和音频放大器,输出总功率为40W至160W.用户可以根据产品开发的实际需要进行灵活地选择和搭配组合.参考设计方案-平板电视专用音箱下面我们以意法半导体(STM)最新推出的一款DDX音频放大器STA328为例,来具体了解DDX音频放大器的结构和功能,以及如何利用DDX音频放大器进行产品设计和开发.该解决方案的主要特征:*音频放大器的输出为2.0通道(2×80W)或者2.1通道(2×40W+1×80W);*32条预设音频EQ曲线;*四选一HDMI选择开关控制器;*接收模拟立体声音频信号;*接收光纤和同轴接口的真数字编码音频信号(立体声PCM);*红外线遥控.随着平板电视设计变得更薄,扬声器变得更小,机箱声学特性越来越不理想,修正音频信号变得十分重要.我们为平板电视设计的这种2.1通道专用音箱,就是充分利用了DDX单芯片的高集成度,结合从声源到扬声器的纯数字流处理能力,为平板电视提供低成本、高效能、高音质的外置音响系统.这套专用音箱参考方案的电路结构如图3所示.图3 平板电视专用音箱参考方案的电路结构示意图这套音箱可以通过红外线遥控进行操作,意法半导体(STM)- ST72324作为人机界面控制MCU,接受来自红外遥控器的指令,向DDX音频放大器STA328发出相应的控制命令.另外,ASAHI KASEI MICROSYSTEMS (AKM)- AK4113是一个24位立体声数字音频接收器,可以接收来自光纤接口和同轴接口的高保真数字编码音频信号,然后转化为PCM音频信号,通过I2S总线输出,可以支持高达216KHz的采样率;AKM - AK5358A是一个高性价比的24位立体声A/D转换器,把立体声模拟音频信号转换为PCM音频信号,通过I2S总线输出.AK4113和AK5358A可以分别接收来自数字接口和模拟接口的音频信号源,为DDX音频放大器STA328提供PCM数字音频信号.设置STA328的输出级为2.1通道(2×40W+1×80W),搭配相应的音箱,还原并且放大来自前端数字音源或者模拟音源的音频信号.由于是针对平板电视这样的显示播放平台,当面临多个高清内容源的输入选择时,大多数平板电视的HDMI接口在使用上就会显得不方便,因此我们加入了英特矽尔(Intersil)-ISL54100.它是一个四选一HDMI选择开关控制器,不仅可以切换各路数字视频和音频信号,而且具有重新整理功能,通过一个内置的锁相环进行重新同步调整和均衡,可有效恢复因线材物理上的问题造成的信号衰变,能将高清信号传输距离延长15米.结语利用DDX音频放大器对数字音源输出的音频信号进行直接处理和放大,可以方便地实现高保真,高效率和低成本的音频放大器,为数字音源,音频处理和功率放大的整合提供了完整的端到端数字解决方案.。

功率放大器常见的分类

功率放大器常见的分类

功率放大器常见的分类功率放大器是一种将信号电平增大的电路,用于驱动负载,例如扬声器、电动机等等。

功率放大器的主要作用是将信号源的信号放大,增加输出信号的驱动能力,使输出的信号可以更好地驱动负载。

根据放大器的使用场景和应用需求的不同,功率放大器可以分为以下几种分类。

分类一:按照功率级别分类根据功率级别的高低,功率放大器可以分为很多不同的类别。

1.低功率放大器低功率放大器通常是指功率在几百mW到几个W之间的放大器。

它们广泛应用于小型电子设备,例如智能手机、平板电脑、MP3播放器等等。

2.中功率放大器中功率放大器的功率级别在几个W到几十W之间,这种放大器通常用于家庭音响系统、汽车音响系统、电视机等等。

3.高功率放大器高功率放大器的功率级别在几十W到几千W之间,这种放大器通常用于专业音响系统、舞台音响系统、演唱会音响系统等等。

分类二:按照工作方式分类1.甲类功率放大器甲类功率放大器是一种比较常见的功率放大器类型,它的输出电流波形与输入信号波形完全相同,但输出电流只在输入信号的正半周或负半周上进行放大。

甲类功率放大器的效率一般比较低。

2.乙类功率放大器乙类功率放大器在正、负半周都有放大,但是在输入的小信号范围内,乙类功率放大器会自动关闭,以减小功耗和热损失。

乙类功率放大器的效率比甲类功率放大器高很多。

3.甲乙混合类功率放大器甲乙混合类功率放大器是甲类功率放大器和乙类功率放大器的组合,它既能够输出高保真度的信号,同时又具有高的效率。

甲乙混合类功率放大器通常是高端音响设备中的重要组成部分。

分类三:按照管路技术分类1.BJT功率放大器BJT功率放大器是基于双极型晶体管的电路,其结构简单,价格较便宜,在各种电气设备中被广泛应用。

但该种功率放大器效率较低,不太适合高功率的应用场景。

2.MOSFET功率放大器MOSFET功率放大器是比较流行的一种功率放大器,它基于金属氧化物半导体场效应管(MOSFET)实现电路放大功能。

[资料]关于数字功放和模拟功放的优弊病

[资料]关于数字功放和模拟功放的优弊病

关于数字功放和模拟功放的优缺点"数字功放"的基本电路是早已存在的D类放大器(国内称丁类放大器)。

以前,由于价格和技术上的原因,这种放大电路只是在实验室或高价位的测试仪器中应用。

这几年的技术发展使数字功放的元件集成到一两块芯片中,价格也在不断下降。

理论证明,D类放大器的效率可达到100%。

然而,迄今还没有找到理想的开关元件,难免会产生一部分功率损耗,如果使用的器件不良,损耗就会更大些。

但是不管怎样,它的放大效率还是达到90%以上。

由于功耗和体积的优势,数字功放首先在能源有限的汽车音响和要求较高的重低音有源音箱中得到应用。

随着DVD家庭影院、迷你音响系统、机顶盒、个人电脑、LCD电视、平板显示器和移动电话等消费类产品日新月异的发展,尤其是SACD、DVDAudio等一些高采样频率的新音源规格的出现,以及音响系统从立体声到多声道环绕系统的进化,都加速了数字功放的发展。

近年来,数字功放的价格呈不断下降的趋势,有关这方面的专利也层出不穷。

D类输出功率和消耗功率与AB类功率放大器消耗比例采用低频音频信号调制一个固定高频频率的脉宽的一种放大器被人们称为D类放大器又有人称为数字音频放大器,他最大的特点是效率特别高(理论上可以达到100%,实际在85%以上),采用非常小的电子器件就可以制造出很大功率的音频放大器。

小功率,即1W-3W的功率放大器而言,在相同播放内容的状况下,AB类功率放大器与D类功率放大器的功率效率各约为AB=15%及D=75%。

在播放1W 音乐的状况下,AB类功率放大器需要消耗6.7W的功率,但D类功率放大器在同样的播放条件下只消耗1.33W。

因此,使用D类功率放大器可延长电池的使用时间达5倍(6.7W/1.33W)。

低功率的使用除了手机,DVD、MP3及PMP之外还有一些流行产品如iPod、手机、及数字相框。

那么中功率的情况下,即10W-30W的功率放大器而言在相同播放内容以语音为主的状况下,AB类功率放大器与D类功率放大器的功率效率分别为AB= 25%及D=80%。

数字功放原理

数字功放原理

数字功放原理数字功放(Digital Power Amplifier)是一种利用数字信号处理技术对音频信号进行处理和放大的功放器。

与传统的模拟功放相比,数字功放具有更高的效率、更低的失真和更小的体积,因此在音响领域得到了广泛的应用。

本文将对数字功放的原理进行介绍,以便读者对其工作原理有一个清晰的认识。

数字功放的基本原理可以分为数字信号处理和功率放大两个部分。

首先,输入的模拟音频信号会经过模数转换器(ADC)转换成数字信号。

然后,经过数字信号处理单元(DSP)对数字信号进行滤波、均衡和混响等处理,最终得到经过处理的数字音频信号。

接下来,经过数字-模拟转换器(DAC)将处理后的数字信号转换成模拟信号,再经过功率放大器放大后输出到喇叭上。

数字功放的核心是数字信号处理单元(DSP),它能够对音频信号进行高精度的处理,包括均衡、滤波、混响等效果。

与传统的模拟功放相比,数字功放在信号处理上具有更大的灵活性和精度,可以实现更多种类的音效处理,同时也更容易实现数字音频处理器的功能集成。

另外,数字功放的功率放大部分也采用了数字控制技术。

传统的模拟功放在功率放大部分使用的是类比电路,效率较低,同时容易产生较大的热量。

而数字功放采用数字功率放大器,能够根据音频信号的实际情况动态调整功率放大器的工作状态,使得功率放大器的工作效率更高,同时也减少了功放器的发热量。

总的来说,数字功放的原理是利用数字信号处理技术对音频信号进行处理和放大,具有高效率、低失真和小体积的特点。

通过数字信号处理单元对音频信号进行精确处理,再经过数字功率放大器放大输出,实现了高保真的音频放大效果。

数字功放在音响领域的应用前景广阔,相信随着技术的进步和成本的降低,数字功放会成为音响行业的主流产品。

数字电视发射机功率放大器分析及损坏处理对策分析

数字电视发射机功率放大器分析及损坏处理对策分析

数字电视发射机功率放大器分析及损坏处理对策分析随着我国社会经济的不断发展,科学技术也在逐渐提升;现阶段我国电视的发射设备处于更替时期,主要将其更换成数字固态技术;其利用数字固态技术探究数字电视发射机与电路的状况,以此来诊断功率放大器常出现的问题并作出相应的解决措施,因此,其能有效提高数字电视发射机功率放大器的使用率,且能加强电视的信号强度。

本文根据如何提高电视的有效使用率对其发射机功率放大器进行了分析,继而提高用户对电视的满意度。

标签:数字电视发射机;功率放大器;损坏;处理对策0 引言新型的数字电视发射机是以相应数据信号为基础,将其目标音频与视频进行压缩处理以及编码完成;且将左右数据进行统一整理,继而使其成为新型的TS 流。

其有一般的视频、音频差异较大,这种新型的传输码流会以符合参数标准的信号形式传入发射频道,并利用功率放大器输向有需求的客户端。

1 数字电视发射机功率放大器分析(1)数字电视发射机功率放大器的组成。

数字电视发射机中的核心部分为功率放大器,其不仅是数字电视发射机的重要组成部分,也是成本最高的机种;功率放大器是影响发射器正常运行的关键影响因素[1]。

1kW 地面数字电视发射机的功放系统由三个400W(数字平均功率)采用Doherty电路设计的功放单元、一个同相三功率分配器、一个同相三功率合成器及吸收负载组成。

各功放单元采用进口大功率器件和优质进口的阻容元件,使整机的技术指标、可靠性大大提高;而使用Doherty电路设计的功放单元,使整机效率达到31%以上。

1kW发射机功放系统的分配器和合成器采用同相分配、同相功率合成方式,输入输出阻抗均为50Ω。

三路功率合成器采用带状线平面等相位合成电路方案,合成损耗指标极低,典型值在0.1dB左右;隔离度好,典型值在25-30dB;并且每一路的相位相等,对于功率的调试和问题分析非常方便;其结构简洁,相比于耦合方式思路生产的产品更加可靠,相位平衡度更加完美。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数字功率放大器的讨论.txt31岩石下的小草教我们坚强,峭壁上的野百合教我们执著,山顶上的松树教我们拼搏风雨,严寒中的腊梅教我们笑迎冰雪。

对数字功率放大器的讨论1 数字功放的发展前景随着人民生活水平的提高,许多人特别是音响发烧友们对音频功率放大器能否完美不失真的还原声音的要求近乎于苛刻。

模拟的功率放大器经过了几十年发展,在这方面的技术已经相当成熟,可以说是达到了登峰造极的地步。

环保与能量的利用率已渐渐成为人们所关注的问题,正因为这样,广大消费者对功放的效率要求越来越高。

但是模拟功率放大器在这方面几乎达到了极限。

另外模拟磁带播放机如录音机逐步被淘汰,数字光碟播放机如CD、VCD、DVD 等已占据主流。

针对这一现实数字功放应运而生。

音响中用的功率放大器,常用的是A类或者AB类功放,近年来,利用脉宽调制原理设计的D类功放也进入音响领域。

功率放大器通常根据其工作状态分为五类。

即A类、AB类、B类、C类、D类。

在音频功放领域中,前四类均可直接采用模拟音频信号直接输入,放大后将此信号用以推动扬声器发声。

D 类放大器比较特殊,它只有两种状态,不是通就是断。

因此,它不能直接输入模拟音频信号,而是需要某种变换后再放大。

人们把此种具有"开关"方式的放大,称为"数字放大器"。

国外在数字音频功率放大器领域进行了二、三十年的研究,六十年代中期,日本研制出8bit 数字音频功率放大器。

1983年,M.B.Sandler等学者提出D类(数字)PCM功率放大器的基本结构。

主要是围绕如何将PCM信号转化为PWM信号。

把信号的幅度信号用不同的脉冲宽度来表示。

此后,研究的焦点是降低其时钟频率,提高音质。

随着数字信号处理(DSP)技术和新型功率器件及应用的发展,开发实用化的16位数字音频功放成为可能。

一个音响系统必须具备音源、功放和音箱三大部分。

音源部分目前已数字化了,如CD、VCD、DVD、DAB和数字电视等。

但的功放和音箱仍然是模拟统治的天下。

在人们进入数字化、信息化的开发过程中自然想到了功放的数字化这一问题。

模拟功放始终无法解决效率、成本、音质这三者。

国外这几家公司研制的数字功放价格均在一万美元以上,远远超过了普通大众的承受能力,因此,从世界水平来看,现有功放仍停留在模拟放大的水平上,而数字功放技术尚未大规模商业应用。

国内市场也开始出现AV数码功放,但所谓的数字功放实质上仅仅是指音频处理部分采用了数字处理,其功率放大器则仍然采用模拟放大,这与真正意义的数字功放相差甚远。

音响产品的数字化是必然趋势。

由于数字功放有很多优点,如体积小、功率大、高、与数字音源的无缝结合、能有效降低信号间传递干扰、实现高保真等。

在数字音源已经大量普及的时代,数字功放将会取代现有的模拟功放。

>>>数字功放的特点数字功放在功能模块上可分为:信号输入、信号处理、功率放大、输出部分。

若从信号输入到整个功率转换均是在数字方式下进行,没有模拟音频信号出现,则称为全数字功放(或纯数字功放)。

数字功放与模拟功放相比有如下一些明显优势:·(1)整个频段内无相对相移,声场定位准确由于采用无负反馈的放大电路、数字滤波器等处理技术,可以将输出滤波器的截止频率设计得较高,从而保证在20Hz-20kHz内得到平坦的幅频特性和很好的相频特性。

·(2)瞬态相应好,即"动态特性"好由于它不需传统功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之无模拟放大、无负反馈的牵制,故具有更好的"动力"特征。

·(3)无过零失真传统功放都在由于对管配对及各级调整不佳产生的过铃、交越失真。

·(4)效率高、可靠性高、体积小理论上D类功放的效率可达100%,而B类放大器效率仅为78%(理论值),A类功放的效率就非常低。

可靠性知识告诉我们:半导体器件的温度每升高10C,失真率就提高一倍。

(5)·适合于大批量生产产品的一致性好,生产中无需调试,只保证元器件正确安装即可。

天奥DPA功放TA-D990的主要指标:频响:20-20000Hz(≤±0.5dB);信噪比≥100dB;失真度:≤0.05%-0.15%。

D类功放中的功率晶体管工作在开关状态,又称作数字功放。

A类功放的保真度好,但效率甚低,不到10 %,用於高档的专业音响;AB类功放的保真度略为逊色,但效率可以达到20 %至40 %,主要用於汽车、家庭音响以及电脑上;D类功放的效率高达80 %至90 %以上,使用时不需要散热器,或者只需要一只很小的散热器,但是它的保真度和A类及AB类功放相比则大为逊色。

理想的功放是保真度高,同时效率也高。

Tripath Technology公司提供一种保真度好、效率高的音频功率放大器,其中的功率晶体管也是工作在关关状态,即D类,为了区别於用脉宽调制原理设计的D类功率放大器,Tripath把这种音频功率放大器称作T类功率放大器。

用脉调宽制技术的D类功率放大器之所以音质差,原因在於:输出功率晶体管并不是纯粹的开关,也不是匹配得很好,会带来畸变;晶体管在接通和关闭的过程中,接地点的电位会出现波动,从而增大噪音;功率输出电路是用两只(或者四只)功率晶体管接成的桥路,一只功率晶体管导通,另外一只关闭,这之间存在死区;功率输出电路和扬声器之间用一只输出低通滤波器把音频以外的成份滤除,让音频信号进入扬声器,但不可能彻底滤除脉宽调制的载波,这也是造成失真的一个因素。

T类功率放大器的功率输出电路和脉宽调制D类功放相同,功率晶体管也是工作在开关状态,效率和D类功放相当。

它和D类功放不同的是,它不是使用脉冲调宽的方法。

Tripath 公司发明了一种称作"Digital Power Processing (tm) (DPP(tm))"的数字功率处理技术,它是T类功放的核心。

它把通信技术中处理小信号的适应算法及预测算法用到这里。

输入的音频信号和进入扬声器的电流经过DPP(tm)数字处理後用於控制功率晶体管的导通关闭,因而不存在脉宽调制D类功放的那些缺陷。

音频功率放大器的失真用两个指标衡量:一个是THD+N (总谐波失真加噪音)指标,另一个是IMD(互调制失真)指标。

如果在20 Hz至20 kHz频带上的THD+N指标低於0.2 %,IMD指标低於0.4%,就算是低畸变的了。

TA1101是输出10瓦的双声道T类功率放大器,它在音频频带上的THD+N为0.02 %,IMD指标为0.04 %,效率高於80 %。

此外,T类功放的动态范围更宽,响率响应平坦,群延迟小。

DDP(tm)的出现,把数字时代的功率放大器推到一个新的高度。

在T类功率放大器中,功率晶体管的切换频率不是固定的(D类功率放大器中调宽脉冲的频率是固定的),无用分量的功率谱不是像D类功率放大器那样是集中在载频两侧狭窄的频带内,而是散布在很宽的频带上,例如从1.5 MHz至2.5 MHz的频带上,它的波形和扩谱技术的波形相似,因此,功率密度并不高,从而降低了对输出低通滤波器的要求,同时它产生的EMI也不像D类功率放大器那麽严重。

虽说D类功放和T类功放所处理的是音频信号,但会产生EMI,这是因为这两种功放中的功率晶体管的切换频率比音频信号的最高频率高很多。

在A类或者AB音频功放则不存在这种问题。

所以,使用D类功放和T类功放的设计师需要有一点RF设计的知识,并针对EMI下点功夫,例如,合理布置输出低通滤波器的元件,使自已设计的产品符合电磁兼容性的要求。

Tripath Technology在1995年成立於美国加州San Jose,它的技术专长是数字信处理技术以及设计混合信号处理和功率集成电路。

黄燕彬介绍说,联杰元器件有限公司代理Tripath的T类功放集成电路,并且提供利用T类功放集成电路加上输出低滤波器等做成的功放电路板。

这种音质好、效率高、可以输出数十瓦至一百多瓦功率的T类音频功放电路板,上衣口袋都装得下,主要用於多体电脑、手提电脑、家用音响、家庭影院、轻便音响、汽车音响等。

传统的数字语音回放系统包含两个主要过程:1、数字语音数据到模拟语音信号的变换(利用高精度数模转换器DAC)实现;2利用模拟功率放大器进行模拟信号放大,如A类、B类和AB 类放大器。

从1980年代早期,许多研究者致力于开发不同类型的数字放大器,这种放大器直接从数字语音数据实现功率放大而不需要进行模拟转换,这样的放大器通常称作数字功率放大器或者D类放大器。

它具有两大优点:效率很高;模拟信号转换为数字信号输入,能够很好的与数字音源播放机对接。

数字功率放大器的实现包括两个主要部分:第一,把数字光碟播放机从光碟上读下来或者电脑CPU从ROM里读出来的脉冲编码调制(PCM)数字语音数据(通过数字接口),或者模拟信号经A/D后的数字音频信号等等转化成对应的脉宽编码调制(PWM)数字语音数据。

第二,把PWM 信号作为开关控制信号来控制PWM-H桥转换器中开关管的导通与不导通的时间比,经过低通滤波后使得音频信号在负载上放大输出。

2 数字功放的讨论目前的模拟功放按放大器的工作状态可分为:A类放大器、B类推挽放大器、AB类推挽放大器等形式。

下面简单介绍一下这些线性功率放大器的主要特点。

A类放大器的主要特点是:晶体管在输入信号的整个周期内均导通。

可单管工作,也可以推挽工作。

瞬态失真和交替失真较小。

电路简单,调试方便。

但效率较低,晶体管功耗大,功率的理论最大值仅有25%,且有较大的非线性失真。

B类推挽放大器的主要特点是:晶体管在输入信号的半周期内导通,必须用两管推挽工作。

存在交越失真,交替失真较大。

效率较高,晶体管功耗较小,功率理论最大值可达78.5%。

可以抵消偶次谐波失真。

AB类推挽放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。

可以避免交越失真。

交替失真较大。

可以抵消偶次谐波失真。

效率较高,晶体管功耗较小。

理论上也可达到78.5%的功率最大值,但实际上功率的最大值在70%左右可能受到输出级拓扑和输出级斜线的影响,在典型的听音条件下(全功率的30%左右),功放的效率为35%左右。

相对于A类放大器来说,AB和B类推挽放大器具有效率较高、失真较小,功放晶体管功耗较小,散热问题容易解决等优点,是目前音频功率放大器的基本电路形式。

用晶体管制作的AB类放大器和B类放大器在工作状态选择不当时易产生交越失真。

此外,由于推挽级中的晶体管有部分时间处于截止状态,在晶体管导通与截止状态的转换过程中会因其开关特性不佳或因电路参数选择不当而产生交替失真(或叫转换失真)。

交替失真会产生脉冲尖峰,它包含有许多高次谐波,从而产生瞬态互调失真。

相关文档
最新文档