初中数学经典几何模型大汇总

合集下载

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。

E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。

初中几何48个模型作业帮

初中几何48个模型作业帮

初中几何是数学中的一个重要部分,它涉及到许多基本的几何概念和定理。

在学习初中几何时,了解和掌握一些常见的几何模型是非常有帮助的。

以下是48个初中几何模型:1. 等边三角形模型2. 等腰三角形模型3. 直角三角形模型4. 平行四边形模型5. 菱形模型6. 矩形模型7. 正方形模型8. 梯形模型9. 圆模型10. 扇形模型11. 弓形模型12. 切线模型13. 抛物线模型14. 双曲线模型15. 椭圆模型16. 角平分线定理模型17. 中线定理模型18. 弦长定理模型19. 勾股定理模型21. 外角和定理模型22. 线段比例定理模型23. 相似三角形判定定理模型24. 三角形内心定理模型25. 三角形外心定理模型26. 三角形重心定理模型27. 三角形垂心定理模型28. 四边形对角线性质定理模型29. 四边形面积公式模型30. 圆的周长公式模型31. 圆的面积公式模型32. 扇形面积公式模型33. 弓形面积公式模型34. 点到直线距离公式模型35. 两点间距离公式模型36. 角平分线性质定理模型37. 中位线定理模型38. 切线的性质定理模型39. 切线的判定定理模型40. 抛物线性质定理模型41. 双曲线性质定理模型43. 角的平分线性质定理的逆定理模型44. 三线合一的逆定理模型45. 线段垂直平分线的逆定理模型46. 余角、补角定理的逆定理模型47. 同位角、内错角、同旁内角定理的逆定理模型48. 正弦、余弦、正切的应用(三角函数的应用)这些几何模型可以帮助你更好地理解和掌握初中几何的知识点,并且能够让你更加熟练地解决各种几何问题。

希望这些信息对你有所帮助!。

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案) 初中数学几何模型大全及经典题型(含答案)全等变换平移:平行线段平移形成平行四边形。

对称:以角平分线、垂线或半角作轴进行对称,形成对称全等。

旋转:相邻等线段绕公共顶点旋转形成旋转全等。

对称半角模型通过翻折将直角三角形对称成正方形、等腰直角三角形或等边三角形。

旋转全等模型半角:相邻等线段所成角含1/2角及相邻线段。

自旋转:通过旋转构造相邻等线段的旋转全等。

共旋转:通过寻找两对相邻等线段构造旋转全等。

中点旋转:将倍长中点相关线段转换成旋转全等问题。

模型变形当遇到复杂图形找不到旋转全等时,先找两个正多边形或等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

几何最值模型对称最值:通过对称进行等量代换,转换成两点间距离及点到直线距离。

旋转最值:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

剪拼模型通过中点的180度旋转及平移改变图形的形状,例如将三角形剪拼成四边形或将矩形剪拼成正方形。

正方形的边长可以通过射影定理来求解。

假设正方形的边长为x,那么正方形的对角线长为x√2.将正方形分成两个等腰直角三角形,可以得到等腰直角三角形的斜边长为x√2/2.因此,根据射影定理,可以得到等腰直角三角形的高为x/2,进而得到正方形的边长为x=x√2/2.通过平移和旋转,可以将一个正方形变成另一个正方形。

这可以通过旋转相似模型来实现。

例如,两个等腰直角三角形可以通过旋转全等来实现形状的改变,而两个有一个角为300度的直角三角形可以通过旋转相似来实现形状的改变。

更一般地,两个任意相似的三角形可以通过旋转成一定角度来实现旋转相似,其中第三边所成夹角符合旋转“8”字的规律。

在相似证明中,需要注意边和角的对应关系。

相等的线段或比值在证明相似时可以通过等量代换来构造相似三角形。

另外,从三垂线到射影定理的演变,再到内外角平分线定理,需要注意它们之间的相同和不同之处。

初中几何48个模型总结

初中几何48个模型总结

初中几何48个模型总结1. 引言几何是数学的重要分支,它研究空间的形状、大小和相对位置关系,是培养学生的空间想象力和逻辑思维能力的有效方法之一。

初中阶段主要学习了48个基本的几何模型,本文将对这些模型进行总结和概述。

2. 一维几何模型(线段)2.1 线段的定义线段是由两个不同的点确定的有限部分,它有长度但没有宽度。

2.2 线段的表示方法线段可以用两个端点表示,如AB代表由点A和点B确定的线段。

2.3 线段的性质•线段的长度可以用两个端点的坐标计算得到。

•相等线段具有相等的长度。

•如果两个线段的长度相等,则它们是相等线段。

3. 二维几何模型(平面图形)3.1 三角形三角形是由三条边和三个顶点组成的平面图形。

- 根据边的长短,三角形可以分为等边三角形、等腰三角形和普通三角形。

- 根据角度的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。

3.2 四边形四边形是由四条边和四个顶点组成的平面图形。

- 根据边的长短和角的大小,四边形可以分为正方形、长方形、菱形、平行四边形和梯形。

3.3 多边形多边形是由多条边和多个顶点组成的平面图形。

- 根据边的数量,多边形可以分为五边形、六边形、七边形等等。

4. 三维几何模型(立体图形)4.1 三棱柱三棱柱是由两个全等的底面和三个并排的矩形侧面组成的立体图形。

4.2 矩形长方体矩形长方体是由六个矩形面组成的立体图形,其中相对的面全等且平行。

4.3 正方体正方体是由六个正方形面组成的立体图形,所有的面都是相等的。

4.4 三棱锥三棱锥是由一个底面和三条共边的三角形侧面组成的立体图形。

4.5 圆柱体圆柱体是由两个全等的圆面和一个侧面组成的立体图形,侧面是一个矩形。

4.6 球体球体是由无数个半径相等的点组成的立体图形,它的表面到中心的距离都是相等的。

4.7 圆锥体圆锥体是由一个底面和一个顶点连接底面边上的点所形成的所有线段组成的立体图形。

4.8 圆柱圆柱是由两个平行圆底面和一个侧面组成的立体图形。

初中数学常见几何模型大全

初中数学常见几何模型大全

初中数学常见几何模型大全
以下是一些常见的初中数学几何模型大全:
1. 点(Point):没有大小和形状,用一个大写字母表示。

2. 直线(Line):由无限多个点组成,没有宽度和厚度。

3. 线段(Line Segment):直线上的两个点及其之间的部分。

4. 射线(Ray):起始于一个点,延伸至无穷远的部分。

5. 角(Angle):由两条射线共享一个端点而形成的图形。

6. 三角形(Triangle):由三条线段组成的图形。

7. 直角三角形(Right Triangle):一个角为直角(90度)的三角形。

8. 等腰三角形(Isosceles Triangle):具有两边长度相等的三角形。

9. 等边三角形(Equilateral Triangle):三条边都相等的三角形。

10. 平行四边形(Parallelogram):具有两对平行边的四边形。

11. 矩形(Rectangle):具有四个直角的平行四边形。

12. 正方形(Square):具有四个相等边和四个直角的矩形。

13. 梯形(Trapezoid):具有一对平行边的四边形。

14. 圆(Circle):由所有与圆心距离相等的点组成的图形。

15. 圆环(Annulus):由两个同心圆之间的区域组成。

16. 椭圆(Ellipse):平面上所有到两个给定点距离之和等于常数的点的轨迹。

17. 弧(Arc):圆上的一段连续的部分。

18. 扇形(Sector):圆心角及其对应的弧所围成的区域。

这些是初中数学中常见的几何模型,它们在解题和证明过程中起着重要的作用。

初中数学九大几何模型

初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等 (1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OB C DE图 1OABCD E图 2OABCDE图 1OACDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COBCDEOB CDEOA CD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

七年级数学几何模型大全

七年级数学几何模型大全

七年级数学几何模型大全七年级的小伙伴们,今天咱们来唠唠七年级数学里那些超有趣的几何模型。

一、角平分线模型1. 双角平分线模型- 想象一下,有一个角,然后从这个角的顶点引出两条角平分线。

比如说∠AOB,OC平分∠AOB,OD平分∠AOC。

这里面就有很多好玩的关系哦。

- 如果设∠AOB = 2α,那么∠AOC=α,∠AOD = α/2。

这里面的关键就是根据角平分线的定义,把角之间的关系找出来。

就像分蛋糕一样,角平分线就是把角这个“大蛋糕”分成相等的“小蛋糕”。

- 而且还有个重要的结论呢,如果两个角平分线所夹的角是β,那么β = 1/2∠AOB或者β = 1/2 (∠AOB - ∠COD),这就看具体的图形情况啦。

2. 邻补角角平分线模型- 当有两个邻补角的时候,它们的角平分线可是很特别的。

比如说∠AOC和∠BOC是邻补角,OE平分∠AOC,OF平分∠BOC。

- 因为∠AOC+∠BOC = 180°,又因为OE和OF是角平分线,所以∠EOC+∠FOC=1/2(∠AOC + ∠BOC)=90°。

这就像两个小伙伴,把相邻的两块“角蛋糕”各自分一半,然后这两半加起来正好是个直角呢。

二、平行线模型1. “Z”字形模型(内错角模型)- 当有两条平行线被第三条直线所截的时候,就会出现像“Z”字一样的图形。

比如说直线a∥b,直线c与a、b相交。

- 这里面的内错角是相等的哦。

就好像在两条平行的铁轨(a和b)上,有一根枕木(c)横过来,形成的内错角就像在铁轨两边对称的位置,它们的大小是一样的。

- 如果∠1和∠2是内错角,那么∠1 = ∠2。

这个结论在证明角相等或者计算角的度数的时候可太有用啦。

2. “F”字形模型(同位角模型)- 还是两条平行线被第三条直线所截,不过这个时候是同位角的关系。

就像“F”字的形状。

- 同位角也是相等的呢。

比如说∠3和∠4是同位角,只要a∥b,那么∠3 = ∠4。

可以想象成在平行的道路(a和b)上,同样位置的标记(∠3和∠4),它们的角度肯定是一样的呀。

初中几何46种模型大全

初中几何46种模型大全

初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。

在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。

本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。

正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。

正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。

2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。

长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。

长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。

3. 平行线模型平行线模型是相互平行的直线。

平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。

平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。

4. 菱形模型菱形模型是具有四个相等的直角边的矩形。

菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。

菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。

5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。

等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。

6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。

初中数学30种模型汇总(最全几何知识点)

初中数学30种模型汇总(最全几何知识点)

10.等面积模型:D是BC的中点
20.平移构造全等
30.二次函数中平行四边形存在性模型
01.三线八角
同位角:找F型
内错角:找Z型
同旁内角:找U型
02.拐角模型
一.锯齿型
1
1
3
2
2
3
4
∠1+∠3=∠2
∠1+∠2=∠3 +∠4
左和=右和
二.鹰嘴型
1
1
2
3
3
2
∠1+∠3=∠2
∠1+∠3=∠2
鹰嘴+小=大
一.大小等边三角形
虚线相等,且夹角为60°
(全等,八字形)
四.大小等腰三角形(顶角为α)
结论:虚线相等,且夹角为α
(全等,八字形)
三. 大小等腰直角三角形
结论:虚线相等,且夹角为90°
(全等,八字形)
二.大小正方形
结论:虚线相等,且夹角为90°
(全等,八字形)
15.半角模型
条件:正方形ABCD
∠EDF=45°
证:EF=AE+CF
条件:CD=AD,∠ADC=90°
∠EDF=45°
∠A+∠C=180°
证明:EF=AE+CF
条件:AB=AD
∠B+∠D=180°
∠EAF=1 ∠BAD
2
证明:EF=BE+DF
条件:AB=AC,∠BAC=90°
∠DAE=45°
证明:DE2=BD2+CE2
△CEF为直角三角形
初中数学30种模型汇总
(最全几何知识点)
01.三线八角
02.拐角模型
03.等积变换模型

(完整版)初中数学九大几何模型

(完整版)初中数学九大几何模型

初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。

初中数学几何模型归纳

初中数学几何模型归纳

初中数学几何模型归纳1. 直线模型:直线是最基本的几何图形,可以用直线方程y = kx + b 来表示。

其中,k 是斜率,b 是截距。

2. 点模型:点是几何图形中的基本元素,可以用坐标(x, y) 来表示。

3. 线段模型:线段是由两个端点确定的有限长度的直线部分。

线段可以用起点和终点的坐标来表示。

4. 射线模型:射线是由一个端点和一个方向确定的无限延伸的直线部分。

射线可以用起点和方向向量来表示。

5. 角模型:角是由两条射线的公共端点和这两条射线之间的夹角组成的。

角可以用顶点、始边和终边来表示。

6. 三角形模型:三角形是由三条边和三个内角组成的多边形。

三角形可以用三边的长度和三个内角的大小来表示。

7. 四边形模型:四边形是由四条边和四个内角组成的多边形。

四边形可以用四边的长度和四个内角的大小来表示。

8. 圆模型:圆是由一个圆心和一个半径确定的平面上的所有点到圆心的距离都等于半径的图形。

圆可以用圆心和半径来表示。

9. 椭圆模型:椭圆是由两个焦点和一个长轴、短轴确定的平面上的所有点到两个焦点的距离之和等于常数的图形。

椭圆可以用两个焦点和长轴、短轴的长度来表示。

10. 双曲线模型:双曲线是由两个焦点和一个实轴、虚轴确定的平面上的所有点到两个焦点的距离之差等于常数的图形。

双曲线可以用两个焦点和实轴、虚轴的长度来表示。

11. 正多边形模型:正多边形是由相等的边和相等的内角组成的多边形。

正多边形可以用边数和内角度数来表示。

12. 梯形模型:梯形是由一对平行边和一对非平行边组成的四边形。

梯形可以用两对边的长度和夹角来表示。

13. 矩形模型:矩形是由四个直角和两对相等的边组成的四边形。

矩形可以用两对边的长度和夹角来表示。

14. 正方形模型:正方形是特殊的矩形,它的四个边都相等且四个角都是直角。

正方形可以用边长来表示。

15. 三角形面积模型:三角形的面积可以通过底边长度和高来计算,公式为S = (底边长度×高) / 2。

初中几何46种模型大全

初中几何46种模型大全

初中几何46种模型大全篇一:在初中几何学习中,学生需要掌握各种几何模型的性质和应用。

下面是46种常见的初中几何模型的介绍和拓展。

1. 点:几何学中最基本的对象,没有大小和形状。

2. 线段:由两个点确定的一段连续直线。

3. 直线:无限延伸的、由无数个点组成的连续直线。

4. 射线:起点固定,无限延伸的直线段。

5. 平行线:在同一平面上,永不相交的两条直线。

6. 垂直线:两条直线相交时,相互间的角度为90度。

7. 角:由两条线段或射线共享一个端点所夹成的图形。

8. 直角:角度为90度的角。

9. 锐角:角度小于90度的角。

10. 钝角:角度大于90度但小于180度的角。

11. 三角形:由三条线段连接的图形。

12. 等腰三角形:两边相等的三角形。

13. 等边三角形:三边相等的三角形。

14. 直角三角形:一条边与另外两条边成90度角的三角形。

15. 斜边:直角三角形的最长边。

16. 等腰梯形:有两对平行边,且一对边相等的梯形。

17. 长方形:有四个直角的四边形。

18. 正方形:四边相等且有四个直角的四边形。

19. 平行四边形:有两对平行边的四边形。

20. 五边形:有五条边的多边形。

21. 六边形:有六条边的多边形。

22. 正多边形:所有边相等且所有角相等的多边形。

23. 圆:平面上所有到圆心距离相等的点的集合。

24. 弧:圆上的一段连续曲线。

25. 弦:圆上连接两个非相邻点的线段。

26. 切线:与圆只有一个交点的直线。

27. 弓形:圆上的一段弧和与之相连的两条半径所围成的图形。

28. 圆心角:以圆心为顶点的角。

29. 多边形:有多个边和角的图形。

30. 正多边形:所有边相等且所有角相等的多边形。

31. 直角梯形:有一对直角且有两对平行边的梯形。

32. 正弦:在直角三角形中,对于一个角,其对边与斜边的比值。

33. 余弦:在直角三角形中,对于一个角,其邻边与斜边的比值。

34. 正切:在直角三角形中,对于一个角,其对边与邻边的比值。

初中数学几何模型大全及解析

初中数学几何模型大全及解析

初中数学几何模型大全及解析几何是数学中的重要分支,它研究的是形状、大小、结构和空间关系等内容。

初中数学中的几何部分主要包括平面几何和立体几何两个方面。

为了更好地理解和应用几何知识,我们可以通过各种模型来帮助我们进行学习和解析。

本文将介绍一些常见的初中数学几何模型及其解析,帮助学生更加直观地理解几何概念。

一、平面几何模型1. 平面图形模型平面图形模型可以通过纸片、卡纸或者其他材料制作而成。

例如,矩形模型可以通过两个相等的矩形纸片叠放而成,学生可以直观地观察到矩形的性质,如长宽相等、对角线相等、相邻边互相垂直等。

类似地,三角形、正方形、梯形等不同的图形也可以通过相应的材料来制作模型,帮助学生更好地理解其性质和特点。

2. 折纸模型折纸模型是平面几何中常用的模型之一。

学生可以通过纸张的折叠来制作出不同的图形。

例如,通过将一个正方形纸张对折,可以制作出一个正方形、一个矩形或者一个等边三角形。

通过折纸模型的制作和观察,学生可以更好地理解各种图形的性质,并且锻炼了空间想象能力和手工操作能力。

3. 各类角度模型角度是几何中的重要概念。

为了更好地理解和判断各类角度,可以使用角度模型进行学习和实践。

例如,通过两条相交的直线和一把量角器或者两个相等的直角三角形,可以制作出不同的角度模型,比如直角、锐角和钝角。

通过观察和实践,学生可以深入了解角度的概念和性质,并且能够通过角度模型进行角度测量和判断。

二、立体几何模型1. 空间几何模型立体几何模型可以帮助学生更好地理解和判断空间关系。

例如,通过连接适量的珠子和棍子,可以制作出不同的空间模型,如正方体、长方体、圆柱体等。

这样的模型能够帮助学生深入理解不同立体图形的性质,如面数、棱数和顶点数,并且能够帮助学生进行体积和表面积的计算。

2. 立体切割模型立体切割模型可以将复杂的立体图形简化为多个平面图形的组合。

例如,通过将一个长方体切割成多个长方形和正方形,可以帮助学生更好地理解长方体的各种性质和关系。

初中数学几何48个解题模型

初中数学几何48个解题模型

以下是初中数学几何的一些解题模型,总共列出了48个:平面几何:
直线的性质
角的性质
三角形的性质
四边形的性质
平行线与角的关系
垂直线与角的关系
三角形的分类
三角形中的线段比例问题
三角形的相似性质
相似三角形中的线段比例问题
圆的性质
圆的切线与弦的关系
直角三角形的性质
等腰三角形的性质
正方形的性质
空间几何
空间几何体的性质(长方体、正方体、圆柱体、球体等)空间几何体的表面积和体积计算
平行面与角的关系
垂直面与角的关系
对称性质和投影性质
空间图形的相似性质
空间中的立体角
空间中的直线与平面的位置关系切线与切平面的关系
空间中的平行与垂直关系
空间中的正交、斜交关系
平行四边形的性质
空间中的平行四边形
坐标几何:
直线的方程与性质
两点间的距离公式
点到直线的距离公式
点关于坐标轴对称的性质
点关于另一个点对称的性质
点关于一条直线对称的性质
直线的斜率与倾斜角
平行线与垂直线的斜率关系
直线的截距方程
线段的中点公式
.二次函数的图像与性质
圆的方程与性质
双曲线的方程与性质
抛物线的方程与性质
椭圆的方程与性质
对数函数的图像与性质
指数函数的图像与性质
函数的复合与逆函数的性质
函数的最值与极值
平面几何与坐标几何的联系
这些模型覆盖了初中数学几何的基本知识点,可以帮助学生更好地理解和应用几何知识进行解题。

当然,具体应用哪些模型还需要根据具体题目的要求和条件来判断。

初中数学常用几何模型

初中数学常用几何模型

目录1. 8字模型与飞镖模型2.手拉手全等模型3.三垂直全等模型4.角平分线平行线模型5. 角平分线+两垂线段模型6.等腰三角形的存在性问题7.A型、8型相似模型8.一线三等角相似模型8字模型与飞镖模型资料编号:202109012143关键词 8字模型 飞镖模型8字模型如图所示,AC 、BD 相交于点O ,连结AD 、BC ,则有C BD A ∠+∠=∠+∠.OACBD因为这个图形像数字8,所以我们把这个模型称为8字模型. 8字模型的证明:证法一:∵D A AOB ∠+∠=∠ C B AOB ∠+∠=∠ ∴C B D A ∠+∠=∠+∠.(三角形的一个外角等于与它不相邻的两个内角之和) 证法二:∵︒=∠+∠+∠180AOD D A ︒=∠+∠+∠180BOC C B ∴AOD D A ∠-︒=∠+∠180 BOC C B ∠-︒=∠+∠180 ∵BOC AOD ∠=∠ ∴C B D A ∠+∠=∠+∠.点评 8字模型的结论常被用来求角度或证明两个角相等,多出现在几何综合题中.有些复杂的几何问题,应用8字模型的结论,往往会出奇制胜,达到意想不到的效果(见后面的例题).如图所示,有结论:DBABCD∠+∠+∠=∠.因为这个图形像飞镖,所以我们把这个模型称为飞镖模型. 飞镖模型常被用来推导几何图形中角之间的等量关系.AB CD飞镖模型的证明:证法一:延长BC,交AD于点E,如下图所示.∵BADBCD∠+∠=∠∠+∠=∠1,1∴DBABCD∠+∠+∠=∠.证法二:作射线AC,如下图所示.∵DB∠+∠=∠∠+∠=∠42,31∴DB∠+∠+∠+∠=∠+∠4321∴DBBADBCD∠+∠+∠=∠.FBECADAEAE例1. 如图所示,求证:︒=∠+∠+∠+∠+∠180E D C B A .B EC AD证法一:(飞镖模型)设BD 与CE 相交于点F ,如图所示. ∵︒=∠+∠+∠180BFE E B CFD BFE ∠=∠ ∴︒=∠+∠+∠180CFD E B ∵D C A CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B A . 证法二:(8字模型) 连结CD ,如图所示,则有21∠+∠=∠+∠E B∵︒=∠+∠+∠180ADC ACD A∴︒=∠+∠+∠+∠+∠18021ADB ACE A ∴︒=∠+∠+∠+∠+∠180E ADB ACE B A . 证法三:(利用三角形内角和定理与外角和定理) ∵︒=∠+∠+∠18021ADB EC ∠+∠=∠∠+∠=∠21 ∴︒=∠+∠+∠+∠+∠180ED C B A .BECDA例2. 如图所示,=∠+∠+∠+∠+∠+∠F E D C B A _________.F CBEAD解法一:(利用8字模型) ∵32∠+∠=∠+∠B A3121∠+∠=∠+∠∠+∠=∠+∠F E D C∴=∠+∠+∠+∠+∠+∠F E D C B A()3212∠+∠+∠∵︒=∠+∠+∠180321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A . 解法二:(利用三角形内角和定理与外角和定理) ∵B A ∠+∠=∠1DC FE ∠+∠=∠∠+∠=∠32∴=∠+∠+∠321F E D C B A ∠+∠+∠+∠+∠+∠ ∵︒=∠+∠+∠360321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A .例3. 如图所示,=∠+∠+∠+∠+∠E D C B CAD _________.解:(利用飞镖模型)设BD 与CE 相交于点F ,如图所示.FBECD A∵︒=∠+∠+∠180BFE E B ∴︒=∠+∠+∠180CFD E B ∵D C CAD CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B CAD .例4. 如图,△ABC 和△DCE 均是等腰三角形,CE CD CB CA ==,,=∠BCADCE ∠.(1)求证:AE BD =;(2)若︒=∠70BAC ,求BPE ∠的度数.NMPDABCE(1)证明:∵=∠BCA DCE ∠ ∴ACD DCE ACD BCA ∠+∠=∠+∠ ∴ACE BCD ∠=∠ 在△BCD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD ACE BCD CA CB ∴△BCD ≌△ACE (SAS ) ∴AE BD =; (2)解:方法一:∵△BCD ≌△ACE∴21∠=∠ ∵CB CA =∴︒=∠=∠70ABC BAC ∵PBA PAB BPE ∠+∠=∠ ∴PBA BAC BPE ∠+∠+∠=∠2︒=︒+︒=∠+︒=∠+∠+︒=140707070170ABC PBA方法二:∵︒=∠=70,BAC CB CA ∴︒=∠=∠70ABC BAC ∵︒=∠+∠+∠180ABC BAC ACB ∴︒=︒-︒-︒=∠407070180ACB ∵△BCD ≌△ACE ∴21∠=∠∵APB ACB ∠+∠=∠+∠21 ∴︒=∠=∠40APB ACB ∵︒=∠+∠180APB BPE ∴︒=︒-︒=∠14040180BPE .点评 方法二用到了“8”字模型的结论,如下图所示.例5. 如图所示,△ABC 和△ADE 都是等腰 直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥.证明:(1)∵△ABC 和△ADE 都是等腰直角三角形 ∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12(8字模型) ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例6.(1)问题发现 如图1,△ABC 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .填空: ①AEB ∠的度数为_________;②线段AD 、BE 之间的数量关系为_________;(2)拓展探究如图2,△ABC 和△DCE 均为等腰直角三角形,︒=∠=∠90DCE ACB ,点A 、D 、E 在同一直线上,CM 为△DCE 的高,连结BE ,请写出AEB ∠的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.图 1ECAB D图 2MEBCAD解:(1)①︒60; ②BE AD =;提示: ∵△ABC 和△DCE 均为等边三角形 ∴CE CD CB CA ==,︒=∠=∠60DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠ ∴BCE ACD ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS ) (属于“手拉手”全等模型) ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB (属于“8”字模型) ∴︒=∠=∠60ACB AEB . (2)解:︒=∠90AEB ,CM BE AE 2=-; 理由如下:∵︒=∠=∠90DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠∴BCE ACD ∠=∠∵△ABC 和△DCE 均为等腰直角三角形 ∴CE CD CB CA ==, 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS )……………………………………7分 ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB ∴︒=∠=∠90ACB AEB……………………………………8分 ∵DE CM CE CD ⊥=, ∴CM 平分DCE ∠∴︒=∠=∠=∠=∠45ECM DCM CED CDE ∴EM DM CM == ∴CM DE 2= ∵AD AE DE -= ∴CM BE AE 2=-.手拉手全等模型资料编号:202108292312关键词 手拉手全等模型 三角形全等手拉手全等模型介绍手拉手全等模型常见的有三种图形形式:两个等腰直角三角形组成的手拉手全等模型、两个等边三角形组成的手拉手全等模型以及两个普通等腰三角形组成的手拉手全等模型.必须说明的是,组成手拉手全等模型的两个等腰三角形,共用顶角的顶点(即两个顶角的顶点重合),且两个等腰三角形的顶角相等.如图1、图2、图3所示,如果把大等腰三角形的腰长看作大手,小等腰三角形的腰长看作小手,两个等腰三角形共用顶角的顶点,类似大手拉着小手,所以把这种模型称为手拉手模型(手拉手模型还有手拉手相似模型).图中两个等腰三角形的相对位置发生变化时,始终存在一对全等三角形. 手拉手模型常和旋转结合,作为几何综合题出现.图 1图 2图 3在图1、图2、图3中,△ABC 和△ADE 均为等腰三角形,AE AD AC AB ==,,且DAE BAC ∠=∠,连结BD 、CE ,则△ABD ≌△ACE . 结论证明:(以图1为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ). 结论证明:(以图2为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ).点评 手拉手全等模型的依据都是SAS. 重要推论推论1 如图所示,△ABC 和△ADE 均为等腰直角三角形,︒=∠=∠90DAE BAC ,连结BD 、CE ,则有: (1)△ABD ≌△ACE ; (2)CE BD CE BD ⊥=,.推论1证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)∵△ABD ≌△ACE ∴21,∠=∠=CE BD延长BD 交CE 于点F ,如图所示. ∵BCF DBC BFE ∠+∠=∠ ∴ACB DBC BFE ∠+∠+∠=∠2︒=∠+∠=∠+∠+∠=901ACB ABC ACBDBC∴CE BD ⊥.推论2 如图所示,△ABD 和△BCE 均为等边三角形,点A 、B 、C 在同一直线上,连结AE 、CD ,则有:FGHEDACB(1)△ABE ≌△DBC ; (2)DC AE =; (3)︒=∠60DHA ; (4)△ABG ≌△DBF ; (5)△BEG ≌△BCF ; (6)连结GF ,则AC GF //; (7)连结HB ,则HB 平分AHC ∠.推论2证明:(1)∵△ABD 和△BCE 均为等边三角形 ∴BC BE DB AB ==,,︒=∠=∠60CBE ABDFGHEDCAB∵点A 、B 、C 在同一直线上 ∴︒=∠=∠120DBC ABE 在△ABE 和△DBC 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE DBC ABE DB AB ∴△ABE ≌△DBC ;(2)由(1)可知:△ABE ≌△DBC ∴DC AE =;(3)∵△ABE ≌△DBC ∴21∠=∠∵12∠+∠=∠+∠ABD DHA ∴︒=∠=∠60ABD DHA ; (“8”字模型)(4)∵︒=∠=∠60CBE ABD ∴︒=︒-︒-︒=∠606060180DBF ∴DBF ABG ∠=∠ 在△ABG 和△DBF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DBF ABG DB AB 21 ∴△ABG ≌△DBF (ASA ); (5)∵△ABG ≌△DBF ∴BF BG =由前面可知:︒=∠=∠60CBF EBG 在△BEG 和△BCF 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE CBF EBG BF BG ∴△BEG ≌△BCF (SAS );(6)连结GF ,如图所示.∵BF BG =,︒=∠60FBG ∴△BFG 为等边三角形 ∴︒=∠=∠60ABD BGF ∴AC GF //;(7)连结HB ,如图所示,作DC BN AE BM ⊥⊥,.∵△ABE ≌△DBC ∴DBC ABE S S ∆∆=,DC AE = ∴BN DC BM AE ⋅=⋅2121 ∴BN BM =∵DC BN AE BM ⊥⊥,,BN BM = ∴点B 在AHC ∠的平分线上 ∴HB 平分AHC ∠.点评 要求学生能从复杂的几何图形中辨识出手拉手全等模型,并能用SAS 证明两个三角形全等.模型举例例1. 如图,在△ABC 和△ADE 中,AE AD AC AB DAE BAC ==︒=∠=∠,,90,点C 、D 、E 在同一条直线上,连结BD . 求证:(1)△ABD ≌△ACE ;(2)试猜想BD 、CE 有何关系,并证明.ECAB D分析:由条件可知△ABC 和△ADE 均为等腰直角三角形,所以该图形中存在手拉手全等模型,手拉手全等模型的依据都是SAS . 证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)CE BD CE BD ⊥=,. 理由如下:∵△ABD ≌△ACE ∴E CE BD ∠=∠=1, ∵︒=∠=90,DAE AE AD ∴︒=∠=∠45E ADE ∴︒=∠451C ∴︒=︒+︒=∠+∠=∠9045451ADE BDE ∴CE BD ⊥.例2. 如图,△OAB 和△OCD 都是等边三角形,连结AC 、BD 相交于点E . (1)求证:①△OAC ≌△OBD ;②︒=∠60AEB ; (2)连结OE ,OE 是否平分AED ∠?请说明理由.EDOABC(1)证明:①∵△OAB 和△OCD 都是等边三角形 ∴OD OC OB OA ==,︒=∠=∠60COD AOB∴BOC COD BOC AOB ∠+∠=∠+∠ ∴BOD AOC ∠=∠ 在△OAC 和△OBD 中∵⎪⎩⎪⎨⎧=∠=∠=OD OC BOD AOC OB OA ∴△OAC ≌△OBD (SAS ); ②∵△OAC ≌△OBD ∴21∠=∠∵︒=∠+∠+∠180ABE EAB AEB ∴︒=∠+∠+∠+∠1802ABO EAB AEB ∴︒=∠+∠+∠+∠1801ABO EAB AEB ∴()︒=∠+∠+∠+∠1801ABO EAB AEB∴︒=∠+∠+∠180ABO OAB AEB ∴OAB ABO AEB ∠-∠-︒=∠180︒=︒-︒-︒=606060180C(2)OE 平分AED ∠. 理由如下:作BD ON AC OM ⊥⊥, ∵△OAC ≌△OBD ∴OBD OAC S S ∆∆=,BD AC = ∴ON BD OM AC ⋅=⋅2121 ∴ON OM =∵BD ON AC OM ⊥⊥,,ON OM = ∴OE 平分AED ∠.(到角两边距离相等的点在角的平分线上)例3. 如图所示,△ABC 和△ADE 都是等腰直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥. 证明:(1)∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12 ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例4. 如图,在线段AE 的同侧作等边△ABC 和等边△CDE (︒<∠120ACE ),点P 与点M 分别是线段BE 和AD 的中点. 求证:△CPM 是等边三角形.PMDBA EC分析:本题图形中包含手拉手全等模型,我们可以证明△ACD 和△BCE 全等.另外,关于等边三角形的判定,可先证明三角形是等腰三角形,再证明三角形有一个角等于︒60.证明:∵△ABC 和△CDE 都是等边三角形 ∴CE CD BC AC ==,,︒=∠=∠60DCE ACB ∴ACE DCE ACE ACB ∠+∠=∠+∠∴ACD BCE ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∴△ACD ≌△BCE (SAS ) ∴BE AD =∠=∠,21∵点P 与点M 分别是线段BE 和AD 的中点 ∴AM BP =在△ACM 和△BCP 中∵⎪⎩⎪⎨⎧=∠=∠=BP AM BC AC 21 ∴△ACM ≌△BCP (SAS ) ∴CP CM =,43∠=∠∴︒=∠=∠+∠=∠+∠=∠6043ACB ACP ACP PCM ∵CP CM =,︒=∠60PCM ∴△CPM 是等边三角形.三垂直全等模型资料编号:202108282255关键词 三垂直全等模型 一线三等角全等模型 三角形全等三垂直全等模型介绍如图1、图2、图3所示,为三种常见的三垂直全等模型.图 1图 2图 3如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,. 结论:△BCD ≌△CAE .结论的证明:∵DE AE DE BD ⊥⊥, ∴︒=∠=∠90E D ,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠901BCD ∴1∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC E D B 1 ∴△BCD ≌△CAE (AAS ).重要推论推论1 如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,,则有:BD AE DE +=;图 1证明:由前面可知:△BCD ≌△CAE ∴BD CE AE CD ==, ∵CE CD DE += ∴BD AE DE +=.推论2 如图2所示,BC AC BC AC CD BD CD AE =⊥⊥⊥,,,,则有:BD AE DE -=.图 2证明:∵CD BD CD AE ⊥⊥, ∴︒=∠=∠9021,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠903BCD ∴3∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC B 213 ∴△BCD ≌△CAE (AAS ) ∴AE CD CE BD ==, ∵CE CD DE -= ∴BD AE DE -=.说明 三垂直全等模型是一种常见的几何模型,同学们要记住这种几何模型的图形特征和题目特点,以后遇到这种模型常常要证明两个三角形全等. 模型举例例1. 如图,直线l 上有三个正方形c b a ,,,若c a ,的面积分别是5和11,则b 的面积是_________.l cba IH JFEBADCGlcba IHJFEBADCG分析 三垂直全等模型作为一种重要且常见的几何模型,要求同学们能从复杂的几何图形中辨识出这种模型,若能找出这种模型,往往要证明两个三角形全等,从而解决相关的问题.解析:根据“三垂直全等模型”,本题易证:△BCG ≌△GJF . ∴JF CG =由题意可得:11,522====JF S BC S c a ∴112=CG在Rt △BCG 中,由勾股定理得:16115222=+=+==CG BC BG S b .∴b 的面积是16.例2. 如图1所示,已知在△ABC 中,︒=∠90BAC ,AC AB =,点P 为BC 上一动点(CP BP <),分别过点B 、C 作AP BE ⊥于点E ,AP CF ⊥于点F . (1)求证:BE CF EF -=;(2)如图2,若点P 为BC 延长线上一点,其他条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.图 1图 2PCBA(1)证明:∵AP BE ⊥,AP CF ⊥ ∴︒=∠=∠901E ,︒=∠+∠903CAE ∵︒=∠90BAC ∴︒=∠+∠902CAE ∴32∠=∠在△ABE 和△CAF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB E 321 ∴△ABE ≌△CAF (AAS ) ∴CF AE AF BE ==, ∵AF AE EF -= ∴BE CF EF -=;(2)如图3所示.图 3BECFEF+=.提示:关键在于证明△ABE≌△CAF.例3.如图,在△ABC中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,求证:BEADDE-=;(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE、AD、BE之间的数量关系.图 1图 2图 3图 1(1)证明:①∵MNAD⊥,MNBE⊥∴︒=∠=∠9021∵︒=∠90ACB ∴︒=∠+∠904ACD ∵︒=∠+∠903ACD ∴43∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC 4321 ∴△ADC ≌△CEB (AAS ); ②∵△ADC ≌△CEB ∴BE CD CE AD ==, ∵CD CE DE += ∴BE AD DE +=;图 2(2)∵MN AD ⊥,MN BE ⊥ ∴︒=∠=∠90CEB ADC ∵︒=∠90ACB ∴︒=∠+∠902ACD ∵︒=∠+∠901ACD ∴21∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC CEB ADC 21 ∴△ADC ≌△CEB (AAS )∴BE CD CE AD ==, ∵CD CE DE -= ∴BE AD DE -=; (3)AD BE DE -=.提示:仍然是证明△ADC ≌△CEB .图 3例4.(1)如图1所示,已知在△ABC 中,AC AB BAC =︒=∠,90,直线m 经过点A ,m BD ⊥于点D ,m CE ⊥于点E ,求证:CE BD DE +=;(2)如图2,将(1)中的条件改为:在△ABC 中,AC AB =,D 、A 、E 三点都在直线m 上,且有α=∠=∠=∠BAC AEC BDA ,其中α为任意锐角或钝角,请问结论CE BD DE +=是否成立?若成立,请你给出证明;若不成立,请说明理由.m 图 1EDCBA m图 2ECD A B(1)证明:∵m BD ⊥,m CE ⊥ ∴︒=∠=∠9021 ∴︒=∠+∠903BAD ∵︒=∠90BAC ∴︒=∠+∠904BAD ∴43∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB 4321 ∴△ABD ≌△CAE (AAS ) ∴CE AD AE BD ==, ∵AE AD DE += ∴BD CE DE +=;(2)成立. 理由如下:∵︒=∠+∠+∠1801BAD BDA ∴α-︒=∠+∠1801BAD ∵︒=∠+∠+∠1802BAD BAC ∴α-︒=∠+∠1802BAD ∴21∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB AEC BDA 21∴△ABD≌△CAE(AAS)∴AE=,AD=CEBD∵AE=ADDE+∴BD=.DE+CE点评第二问所涉及到的几何模型为“一线三等角全等模型”,而我们在前面花大篇幅所介绍的“三垂直全等模型”属于“一线三等角全等模型”的特殊情况.BEFDBCA角平分线平行线模型资料编号:202108310011关键词 角平分线 平行线 等腰三角形角平分线平行线模型介绍如图所示,OM 平分AOB ∠,点P 是OM 上一点,过点P 作OB PC //,交OA 于点C ,则△POC 是等腰三角形. 下图就是角平分线平行线模型.MOBACP模型证明:∵OM 平分AOB ∠ ∴21∠=∠ ∵OB PC // ∴31∠=∠ ∴32∠=∠ ∴CP CO =∴△POC 是等腰三角形.点评 在角平分线的条件下,常过角平分线上一点作一边的平行线,构造等腰三角形. 重要推论推论1 如图所示,在△ABC 中,ABC ∠、ACB ∠ 的平分线交于点D ,过点D 作BC EF //,交AB 于 点E ,交AC 于点F ,则有: (1)FC FD ED EB ==,; (2)CF BE EF +=; (3)AC AB C AEF +=∆.推论1证明: (1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; (2)∵DF DE EF += ∴CF BE EF +=;(3)∵AF EF AE C AEF ++=∆ ∴AF DF DE AE C AEF +++=∆ AF CF BE AE +++= AC AB +=.推论2 如图所示,四边形ABCD 为平行四边形,把△BCD 沿对角线BD 折叠,得到△D BC ','BC 交AD 于点E ,则△BDE 为等腰三角形.EC'DBCA说明:由折叠可知:BD C CBD '∠=∠,即BD 平分BC C ',所以上图中包含角平分线平行线模型.推论2证明:由折叠可知:21∠=∠∵四边形ABCD 为平行四边形 ∴BC AD // ∴31∠=∠ ∴32∠=∠∴EDEB=∴△BDE为等腰三角形.模型举例例1.如图,把一张长方形的纸片ABCD沿BD对折,使点C落在点E处,BE与AD 相交于点O.(1)由折叠可知△BCD≌△BED,除此之外,图中还存在其他的全等三角形,请写出一组全等三角形:________________;(2)图中有等腰三角形吗?请你找出来:__________;(3)若8AB,求OB的长度.,6==BC解:(1)△ABD≌△EDB;(或△ABD≌△CDB或△AOB≌△EOD)(2)△BOD;提示:如图上所示,由折叠可知:=∠1∠2∵BCAD//(为什么?)∴3=∠1∠∴3∠2∠=∴OD OB =,即△BOD 为等腰三角形. (3)由(2)可知:OD OB =. 设x OD OB ==,则x OA -=8 ∵四边形ABCD 为长方形 ∴︒=∠90A在Rt △AOB 中,由勾股定理得:222OB AB OA =+∴()22268x x =+-解之得:425=x ∴425=OB . 例2. 如图,点O 是△ABC 的边AC 上一个动点,过点O 作直线BC MN //.直线MN 交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F . (1)求证:OF OE =;(2)若6,8==CF CE ,求OC 的长.DNMEF BCAO(1)证明:∵CE 平分ACB ∠ ∴21∠=∠ ∵BC MN // ∴32∠=∠ ∴31∠=∠ ∴OC OE = 同理可证:OC OF = ∴OF OE =;(2)解:∵CF 平分ACD ∠ ∴ACD ∠=∠215 ∵51∠+∠=∠ECF ∴ACD ACB ECF ∠+∠=∠2121 ()︒=︒⨯=∠+∠=901802121ACD ACB在Rt △ECF 中,由勾股定理得:10682222=+=+=CF CE EF由(1)可知:521==EF OC . 例3. 如图,在△ABC 中,AD 平分BAC ∠,点E 、F 分别在BD 、AD 上,AB EF //,且CD DE =. 求证:AC EF =.EDBCAF证明:作AB CG //交AD 的延长线于点G . ∴G ∠=∠1 ∵AD 平分BAC ∠ ∴21∠=∠ ∴G ∠=∠2 ∴GC AC = ∵AB EF // ∴31∠=∠ ∴G ∠=∠3在△EDF 和△CDG 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DC DE G 543 ∴△EDF ≌△CDG (AAS ) ∴CG EF = ∴AC EF =. 例4. 解答下列问题:(1)如图1所示,在△ABC 中,BC EF //,点D 在EF 上,BD 、CD 分别平分ACB ABC ∠∠、,写出线段EF 与BE 、CF 的数量关系;(2)如图2所示,BD 平分ABC ∠,CD 平分外角ACG ∠,BC DE //交AB 于点E ,交AC 于点F ,写出线段EF 与BE 、CF 的数量关系,并说明理由;(3)如图3所示,BD 、CD 为外角BCN CBM ∠∠、的平分线,BC DE //交AB 的延长线于点E .交AC 的延长线于点N ,直接写出线段EF 与BE 、CF 的数量关系.图 1EFDBCAG图 2FEDBC AMN图 3F EDBCA(1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF += ∴CF BE EF +=; (2)CF BE EF -=. 理由如下:∵BD 平分ABC ∠ ∴21∠=∠ ∵BC DE //∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF -= ∴CF BE EF -=; (3)CF BE EF +=.例5. 如图,在梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠.求证:BC AB AD -=.EB CAD证明:延长AE 交BC 的延长线于点F . ∵AE 平分BAD ∠ ∴21∠=∠ ∵BC AD // ∴F ∠=∠2 ∴F ∠=∠1 ∴BF BA =∵BF BA =,BE 平分ABC ∠ ∴FE AE =在△ADE 和△FCE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AED FE AE F 2F∴△ADE ≌△FCE (ASA ) ∴FC AD = ∵BC BF FC -= ∴BC AB AD -=.点评 利用右图所示的辅助线也能证明问题.角平分线+两垂线段模型资料编号:202112022157关键词 角平分线性质定理 等腰三角形 三角形全等 辅助线 垂线段 模型介绍 角平分线+两垂线段模型如图1,点P 是AOB ∠的平分线上一点,过点P 作OB PE OA PD ⊥⊥,,由角平分线的性质定理则有PE PD =.这就是角平分线+两垂线模型.这种模型蕴含了边相等、角相等和三角形全等,还可以构造出等腰三角形.在图1中,若连结DE ,则得到等腰三角形PDE 和等腰三角形DOE .图 1模型推论(1)PED PDE ∠=∠; (2)Rt △POD ≌Rt △POE ; (3)OE OD =.证明:(1)∵OP 平分AOB ∠,OB PE OA PD ⊥⊥, ∴PE PD = ∴PED PDE ∠=∠; (2)∵OB PE OA PD ⊥⊥, ∴△POD 和△POE 都是直角三角形 在Rt △POD 和Rt △POE 中∵⎩⎨⎧==PE PD OP OP∴Rt △POD ≌Rt △POE (HL );(3)由(2)可知: Rt △POD ≌Rt △POE ∴OE OD =.模型应用例1. 如图2所示,在△ABC 中,︒=∠90C ,AD 平分CAB ∠,若4,6==BD BC ,那么点D 到直线AB 的距离是__________.图 2图 3分析 本题条件中有角平分线,有角平分线上一点到一边的垂线段(距离),唯独缺少该点到另一边的垂线段(距离),若作出该垂线段,则可构造出角平分线+两垂线段模型. 解:作AB DE ⊥,则线段DE 的长度即为点D 到直线AB 的距离. ∵AD 平分CAB ∠,AB DE AC DC ⊥⊥, ∴DC DE = ∵4,6==BD BC∴246=-=-=BD BC DC ∴2=DE∴点D 到直线AB 的距离是2.例2. 如图4所示,在△ABC 中,︒=∠︒=∠70,50C B ,AD 是△ABC 的角平分线,AB DE ⊥于点E .(1)求EDA ∠的度数;(2)若3,8,10===DE AC AB ,求ABC S ∆.图 4图 5分析 对于(1),可根据直角三角形的两个锐角互余解决问题;对于(2),可构造角平分线+两垂线段模型求出AC 边上的高DF ,从而求出△ACD 的面积,继而求出△ABC 的面积. 解:(1)∵︒=∠︒=∠70,50C B∴︒=︒-︒-︒=∠-∠-︒=∠607050180180C B CAB ∵AD 平分CAB ∠ ∴︒=∠=∠30211CAB ∵AB DE ⊥ ∴︒=∠+∠901EDA∴︒=︒-︒=∠-︒=∠603090190EDA ; (2)作AC DF ⊥.∵AD 平分CAB ∠,AB DE ⊥,AC DF ⊥ ∴3==DF DE∴DF AC DE AB S S S ACD ABD ABC ⋅+⋅=+=∆∆∆2121 382131021⨯⨯+⨯⨯=27=.例3. 如图6所示,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,AB DE ⊥,DF BD =,求证: (1)EB CF =; (2)EB AF AB 2+=.图 6图 7分析 根据条件知图6中存在角平分线+两垂线段模型,故有DE DC =,这就为Rt △DCF 和Rt △DEB 全等提供了条件.证明:(1)∵AD 平分BAC ∠,AB DE ⊥,AC DC ⊥(︒=∠90C ) ∴DE DC =在Rt △DCF 和Rt △DEB 中∵⎩⎨⎧==DE DC DB DF∴Rt △DCF ≌Rt △DEB (HL ) ∴EB CF =;(2)在Rt △ACD 和Rt △AED 中∵⎩⎨⎧==DE DC AD AD∴Rt △ACD ≌Rt △AED (HL ) ∴AE AC = ∵EB AE AB +=∴EB AF EB EB AF EB CF AF EB AC AB 2+=++=++=+=.例4. 如图8所示,在四边形ABCD 中,BD DC AD AB BC ,,=>平分ABC ∠. 求证:︒=∠+∠180BCD BAD .图 8ABC D图 9E分析 本题难度较高,要证明︒=∠+∠180BCD BAD ,可证明BCD ∠等于BAD ∠的邻补角,而证明两个角相等,可通过证明两个角所在的三角形全等完成,必要时需要添加辅助线来构造全等三角形.题中已有角平分线的条件,过角平分线上的点向角的两边作垂线段,即作出角平分线+两垂线段模型,即可构造出全等三角形. 证明:过点D 作BC DE ⊥,BA DF ⊥,交BA 的延长线于点F . ∵BD 平分ABC ∠,BC DE ⊥,BA DF ⊥ ∴DF DE =在Rt △DCE 和Rt △DAF 中∵⎩⎨⎧==DF DE DA DC∴Rt △DCE ≌Rt △DAF (HL ) ∴1∠=∠C ,即1∠=∠BCD ∵︒=∠+∠1801BAD ∴︒=∠+∠180BCD BAD .例5. 如图10所示,AD 平分BAC ∠,DE 所在直线是BC 的垂直平分线,E 为垂足,过点D 作AC DN AB DM ⊥⊥,.求证:(1)CN BM =; (2)()AC AB AM +=21. 图 10图 11分析 对于(1),我们能想到的最直接的方法是全等法,那就是证明BM 和CN 所在的三角形全等即可,图中只需连结DB 、DC ,就可以构造出全等三角形;对于(2),直接下手证明会比较困难,于是我们把等式转化为AM AC AB 2=+,证明这个等式成立即可,当然,第(1)问的结论会为我们提供重要的条件. 证明:(1)连结DB 、DC ,如图11所示. ∵DE 垂直平分BC ∴DC DB =∵AD 平分BAC ∠,AC DN AB DM ⊥⊥, ∴DN DM =在Rt △DBM 和Rt △DCN 中∵⎩⎨⎧==DNDM DC DB ∴Rt △DBM ≌Rt △DCN (HL )∴CN BM =;(2)在Rt △ADM 和Rt △ADN 中∵⎩⎨⎧==DN DM AD AD∴Rt △ADM ≌Rt △AND (HL ) ∴AN AM =∵CN AN BM AM AC AB -++=+ ∴AM AN AM AC AB 2=+=+ ∴()AC AB AM +=21.等腰三角形的存在性问题资料编号:202111182021关键词 等腰三角形 分类讨论 尺规作图 垂直平分线在八年级数学中,学完了等腰三角形的性质和判定后,我们会遇到等腰三角形的存在性问题,这类问题往往需要学生根据情况分类讨论,确定等腰三角形的各种存在形态,然后根据每种形态解决相关问题.然而我看到的是,学生不能考虑到每一种可能的形态,从而造成漏解.究其原因,我想是学生分类讨论思想方法欠缺,不会借助于圆和线段垂直平分线的性质辅助解决问题造成的.下面,我将教会大家如何借助于圆的知识和线段垂直平分线的性质,将等腰三角形的各种存在性(形态)“一网打尽”.如图1所示,已知线段AB ,现确定一点C ,使△ABC 为等腰三角形.图 1AB由于没有指明线段AB 是腰长还是底边长,所以我们需要分为两种情况进行讨论:(1)当AB 为等腰三角形的腰长时:①以点A 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图2所示;图 2B图 3②以点B 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图3所示;(2)当AB为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB的垂直平分线l,垂足为点D,则垂直平分线l上任一异于点D的点都可以作为点C,如图4所示.B图 4使△ABC为等腰三角形.下面讨论已知线段AB和直线m,在直线m上确定一点C,B Array m图 5由于没有指明线段AB是腰长还是底边长,所以我们需要分为两种情况进行讨论: (1)当AB为等腰三角形的腰长时:①以点A为圆心,AB的长为半径画圆(或圆弧),则圆(或圆弧)与直线m的交点即为点C,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图6所示;m图 6②以点B 为圆心,AB 的长为半径画圆(或圆弧),则圆(或圆弧)与直线m 的交点即为点C ,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图7所示;m图 7(2)当AB 为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB 的垂直平分线l ,直线l 与直线m 的交点即为点C ,如图8所示.m图 8我们知道,角平分线和平行线组合在一起,即构成角平分线+平行线模型,这种模型中就存在等腰三角形,如图9所示.B图 9若要在OB边上确定一点D,使得△COD为等腰三角形,根据角平分线+平行线模型的特征,我们过点C作OA边的平行线,该平行线与OB边的交点,即为其中一个点D的位置,如图10所示,该点D也是线段OC的垂直平分线与OB边的交点,只不过作平行线更容易找出该点.B图 10其余各点D的确定如图(11)、(12)所示,你是否知道这些点是怎样确定出来的吗?B图 11图 12以上共有3个点D,使得△COD为等腰三角形.解决等腰三角形的存在性问题,一般分为三步:分类、画图、计算.当然,随着学习的深入,以后我们还会遇到因动点而产生的等腰三角形问题,让我们拭目以待.应用例1.如图所示,在正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有__________个.第 6 题图图 1图 2答案 8解析 本题考查等腰三角形的存在性问题.分别以点A 、B 为圆心,以AB 的长为半径作圆,如图1所示,则可以找到这样的点C 有4个.这两种情况下,△ABC 是以AB 为腰长的等腰三角形.若AB 为底边长,则作出AB 的垂直平分线,如图2所示,可以找到这样的点C 有4个.综上所述,符合条件的点C 有8个.例2. 如图所示,︒=∠60AOB ,OC 平分AOB ∠,如果射线OA 上的点E 满足△OCE是等腰三角形,那么OEC ∠的度数为__________.解:∵OC 平分AOB ∠,∴︒=∠=∠3021AOB AOC 分为三种情况:①当CE CO =时,如图1所示,∴︒=∠=∠30EOC OEC ;图 1图 2②当OE OC =时,如图2所示. ∵OE OC = ∴OCE OEC ∠=∠ ∴︒=︒-︒=∠75230180OEC ; ③当EC EO =时,如图3所示.图 3(说明:此时,点E 在线段OC 的垂直平分线上或OB CE //) ∵EC EO =∴︒=∠=∠30ECO EOC∴︒=︒-︒-︒=∠1203030180OEC .综上所述,OEC ∠的度数为︒30或︒120或︒75.点评 在讨论一个三角形为等腰三角形时,常常需要分为三种情况进行讨论.。

初中数学几何模型大汇总

初中数学几何模型大汇总

初中数学几何模型大汇总几何模型是数学中的重要内容之一,对于初中数学学习来说,掌握并熟练运用各种几何模型是非常重要的。

下面是几何模型的大汇总,供初中学生学习参考。

一、平面图形的模型:1.直角三角形模型:直角三角形由两个直角边和一个斜边构成,可以利用直角三角形模型解决与直角三角形有关的问题。

2.等腰三角形模型:等腰三角形的底边两侧边相等,可以利用等腰三角形模型解决与等腰三角形有关的问题。

3.等边三角形模型:等边三角形的三边相等,可以利用等边三角形模型解决与等边三角形有关的问题。

4.平行四边形模型:平行四边形的对边平行且相等,可以利用平行四边形模型解决与平行四边形有关的问题。

5.矩形模型:矩形的四个角都是直角,可以利用矩形模型解决与矩形有关的问题。

6.正方形模型:正方形的四个边相等且都是直角,可以利用正方形模型解决与正方形有关的问题。

7.菱形模型:菱形的两对对边相等,可以利用菱形模型解决与菱形有关的问题。

8.圆形模型:圆形由中心点和半径构成,可以利用圆形模型解决与圆有关的问题。

二、立体图形的模型:1.正方体模型:正方体的六个面都是正方形,可以利用正方体模型解决与正方体有关的问题。

2.长方体模型:长方体的六个面有两个相等的长方形,可以利用长方体模型解决与长方体有关的问题。

3.球体模型:球体是由无数个半径相等的圆构成,可以利用球体模型解决与球体有关的问题。

4.圆柱模型:圆柱的底面是圆,可以利用圆柱模型解决与圆柱有关的问题。

5.圆锥模型:圆锥的底面是圆,可以利用圆锥模型解决与圆锥有关的问题。

6.圆台模型:圆台的底面是圆,可以利用圆台模型解决与圆台有关的问题。

7.正棱柱模型:正棱柱的底面是正多边形,可以利用正棱柱模型解决与正棱柱有关的问题。

8.正棱锥模型:正棱锥的底面是正多边形,可以利用正棱锥模型解决与正棱锥有关的问题。

9.正多面体模型:正多面体的面都是相等的正多边形,可以利用正多面体模型解决与正多面体有关的问题。

初中数学几何模型大全(精心整理)

初中数学几何模型大全(精心整理)

三线八角同位角找F型内错角找Z型同旁内角找U型拐角模型1.锯齿形∠2=∠1+∠3 ∠1+∠2=∠3+∠42.鹰嘴型鹰嘴+小=大∠2=∠1+∠3 ∠2=∠1+∠33.铅笔头型∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)等积变换模型S△ACD=S△BCD 八字模型∠A+∠B=∠C+∠DAD+BC>AB+CD飞镖模型∠D=∠B+∠C+∠AAB+AC>BD+CD内内角平分线模型∠A∠D=90°+12内外角平分线模型∠D=1∠A2外外角平分线模型∠D=90°-1∠A2平行平分出等腰模型HG=HM等面积模型 D是BC的中点S△ABD= S△ACD 倍长中线模型:D是BC的中点S△FBD= S△ECD角平分线构造全等模型角平分线垂直两边角平分线垂直中间角平分线构造轴对称以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。

三垂模型拉手模型大小等边三角形虚线相等且夹角为60°大小等腰三角形顶角为a,虚线相等,且夹角为a大小等腰直角三角形虚线相等且夹角为90°大小正方形虚线相等,且夹角为90°半角模型正方形ABCD ∠EDF=45°得:EF=AE+CFCD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180°得:EF=AE+CF∠BADAB=AD,∠B+∠D=180°,∠EAF=12得:EF=BE+DFAB=AC,∠BAC=90°,∠DAE=45°得:DE2=BD2+CE2△CEF为直角三角形上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

初中数学54个几何模型

初中数学54个几何模型

初中数学54个几何模型初中数学中的几何模型是指在几何学中用来描述和表示几何概念的模型。

下面将介绍54个常见的几何模型。

1. 点:几何中最基本的概念,没有大小和形状。

2. 直线:由无数个点连成的路径,无限延伸,没有宽度。

3. 射线:由一个起点出发,无限延伸的路径。

4. 线段:两个点之间的路径,有特定的长度。

5. 面:由无数个点连成的平面,有长度和宽度,没有厚度。

6. 圆:由同一平面上距离圆心相等的点组成的闭合曲线。

7. 椭圆:平面上到两个焦点的距离之和恒定的点的轨迹。

8. 椭圆弧:椭圆上的一段曲线。

9. 双曲线:平面上到两个焦点的距离之差恒定的点的轨迹。

10. 双曲线弧:双曲线上的一段曲线。

11. 抛物线:平面上到一个焦点的距离等于到直线的距离的点的轨迹。

12. 抛物线弧:抛物线上的一段曲线。

13. 球:由空间中到一个固定点的距离恒定的点组成的集合。

14. 圆锥:由平面和母线(与平面交于一点的直线)构成的几何体。

15. 圆柱:由平面和平行于平面的两个母线构成的几何体。

16. 圆台:由平面和平行于平面的两个母线及它们之间的曲面构成的几何体。

17. 球台:由平面和球的一部分构成的几何体。

18. 球梯:由平面和球的一部分及它们之间的曲面构成的几何体。

19. 直角三角形:有一个内角为90度的三角形。

20. 等腰三角形:有两边相等的三角形。

21. 等边三角形:三边长度均相等的三角形。

22. 直角梯形:有一个内角为90度的梯形。

23. 等腰梯形:有两边平行且相等的梯形。

24. 矩形:四个内角均为90度的四边形。

25. 正方形:四边长度均相等且内角均为90度的四边形。

26. 平行四边形:有两组对边平行的四边形。

27. 菱形:有四个边相等的四边形。

28. 六边形:有六个边的多边形。

29. 正六边形:六边形的六个内角均为120度。

30. 五边形:有五个边的多边形。

31. 正五边形:五边形的五个内角均为108度。

32. 正多边形:所有边和内角均相等的多边形。

初中数学几何模型大全及解析

初中数学几何模型大全及解析

初中数学几何模型大全及解析一中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行延长相交【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.二角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .三手拉手模型【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .四邻边相等的对角互补模型五半角模型六一线三角模型七弦图模型八最短路径模型【两点之间线段最短】1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】综合练习已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.⑴求证:EG=CG且EG⊥CG;⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:经典几何模型大汇总
几何作为很多人的学习难点,一直都是很多学生的学习难点。

很多学生在初中几何的学习过程中都会遇到两个问题,一是定理定义记不住,在需要运用时想不起来,二是记住了做题时又不知该用哪个,思维跳跃、逻辑混乱是很多孩子在学习几何的过程中遇到的问题。

下面瑞德特刘老师分享一组初中几何模型大汇总,临近期末考试了,有需要的家长可以作为复习资料拿给孩子看看,一定会对孩子的学习有所帮助的。

相关文档
最新文档