组合数学 母函数与递推关系习题解答共38页文档
(完整word版)组合数学课后答案
![(完整word版)组合数学课后答案](https://img.taocdn.com/s3/m/a80762391eb91a37f1115c9f.png)
习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。
现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。
那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。
(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。
递推关系与母函数法
![递推关系与母函数法](https://img.taocdn.com/s3/m/47e207ef6294dd88d0d26b30.png)
递推关系与母函数法1.2 递推关系Hanoi塔问题:这是组合数学中的著名问题。
n个圆盘依其半径大小,从下而上套在柱A上,如图1.1所示。
每次只允许取一个转移到柱B或柱C上,而且不允许大盘放在小盘上方。
若要求把柱A上的n个盘转移到柱C上,请设计一种方法,并估计要移动几个盘次,现在只有A,B,C三根柱子可供使用。
设a,b,c是3个塔座。
开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。
各圆盘从小到大编号为1,2,…,n,现要求将塔座a 上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。
在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。
图1.1Hanoi塔是个典型的问题,第一步要设计算法,进而估计它的复杂性,即估计工作量。
这一问题有典型的意义,第一步先解决算法问题,即如何完成n个盘的搬动,进一步还要对算法作出复杂性分析,即对要作多少盘次的搬动进行估计。
算法设计:n=时,第一步先把最上面一个圆盘套在柱B上;第二步把第二个圆盘转2移到柱C上;最后再把柱B上的一个圆盘转移到柱C上,到此转移完毕。
假定1n-个盘子的转移算法已经确定。
对于一般n个圆盘的问题,先把上面的1n-个圆盘转称到柱B上,再把最后一上圆盘转移到柱C上,然后把柱B上的1n-个圆盘转移到柱C上,转移完毕。
上述的算法是递归的连用。
2n=时,第一步便利用n=时已给出了算法;3算法把上面两个圆盘移到柱B上,第二步再把第三个圆盘转移到柱C上;最后把柱B上的两个圆盘转移到柱C上,4,5,,n= 以此类推。
图1.1形象地给出4n=的转移过程。
void hanoi (int n, int a, int b, int c) {if (n > 0) {hanoi (n-1, a, c, b); move (a,b);hanoi (n-1, c, b, a); } }算法分析:令n h 表示n 个圆盘所需要的转移盘次。
组合2母函数递推关系
![组合2母函数递推关系](https://img.taocdn.com/s3/m/fae157fd04a1b0717fd5dd15.png)
TP SHUAI
16
2.1 递推关系-线性常系数递推关系
定义1 如果序列{an}满足
a n C1a n 1 C 2a n 2 C k a n k b(n), a 0 d 0 ,a1 d1,,a k 1 d k 1, C1 ,C2 ,...C k (C k 0),d 0 ,d1,d k 1是常数
组合数学
帅天平
北京邮电大学数学系 Email: tpshuai@
第二章:递推关系与母函数
1,递推关系引入,Fibonacci数列 2,常系数递推关系求解 3,母函数及其性质 4,用母函数求解递推关系 5,母函数的应用-整数剖分 6指数型母函数及其应用 7,非线性递推关系举例--几类特殊组合数
t t 2 ... t 6 枚举子
TP SHUAI
26
2.2 母函数-引入6
母函数的思想很简单— 即:把离散数列和幂级数一一对应起来,把离散数 列间的相互结合关系对应成为幂级数间的运算关 系,最后由幂级数形式来确定离散数列的构造. 再看下面的例子.
(1 a 1 x )(1 a 2 x ) (1 anx ) 1 (a 1 a 2 an ) x (a 1a 2 a 1a 3 an 1an ) x 2 a 1a 2 anx n (2-1-1)
) F2 n1 F2 n F2 n2
F1 F3 F5 F2 n1 F2 n
TP SHUAI 13
2.1 递推关系-Fibonacci数列10
3)
证明:
F 2 F22 Fn 2 Fn Fn 1 1
组合数学第2章答案
![组合数学第2章答案](https://img.taocdn.com/s3/m/28561d2614791711cc791771.png)
组合数学第2章答案2.1 求序列{0,1,8,27,…3n …}的母函数。
解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()46414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。
解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x -2.3 已知母函数G (X )=25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B A G (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x ---,求对应的序列{}n a 。
解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。
组合数学(4)递推递归母函数
![组合数学(4)递推递归母函数](https://img.taocdn.com/s3/m/fe901b14b7360b4c2e3f6474.png)
ACM 暑期集训 组合数学(4) 递推 递归 母函数1 递推关系序列{a n }=a 0,a 1,…,a n ,…,把 a n 与某些a i (i <n )联系起来的等式叫做关于序列{a n }的递推方程。
当给定递推方程和适当的初值就唯一确定了序列。
递推关系分类: (1)按常量部分:齐次递推关系:指常量=0,如F(n)=F(n-1)+F(n-2) 非齐次递推关系:指常量≠0,如F(n)=2*F(n-1)+1 (2)按运算关系:线性关系,如上面的两个;非线性关系,如F(n)=F(n-1)*F(n-2)。
(3)按系数:常系数递推关系,如(1)中的两个;变系数递推关系,如D(n)=(n-1)(D(n-1)+D(n-2)。
(4)按数列的多少一元递推关系,只涉及一个数列,上面的均为一元; 多元递推关系,涉及多个数列,如⎩⎨⎧+=+=----111177n n nn n n a b b b a a Fibonacci 数列为1,1,2,3,5,8,13,.....long long data[100]; data[1]=1; data[2]=1;for(int i=3;i<=50;i++) data[i]=data[i-1]+data[i-2]; while(cin>>n) cout<<data[n]<<endl;例1:直线割平面问题。
在一个无限的平面上有N 条直线,试问这些直线最多能将平面分割成多少区域?F(1) = 2; F(2) = 4; F(3) = 7; F(n)=F(n-1)+n; (n>1)int recurrence(int n) //递推 {f[1]=2;for(i=2;i<=n;i++) f[n]=f[n-1]+n; return f[n]; }int recursion(int n) 递归: {if(n==1) return 2;//递归终止条件 else return recursion(n-1)+n; }更快的方法是求出通项:F(n)=n^(n+1)/2+1例2:HDOJ2050 折线割平面问题在一个无限的平面上有N 条折线,试问这些折线最多能将平面分割成多少区域?F(n)=F(n-1)+4n-3; F(n)=2*n^2-n+1;例3:椭圆割平面问题。
组合数学第六章递推关系
![组合数学第六章递推关系](https://img.taocdn.com/s3/m/c43240778e9951e79b892747.png)
h(n)=b’1q1 n+b’2q2 n+……+b’kqk n = + 成立,从而b1q1 n+b2q2 n+……+bkqk n是该递推关系的通 +
• 常系数线性齐次递推关系的求解步骤 1. 根据题意求递推关系 2. 利用递推关系得到特征方程 3. 解特征方程,求特征根 解特征方程, 4. 利用特征根写递推关系通解 5. 根据初值确定通解中的系数 6. 给出递推关系的解 • 关于微分方程求解的已知结论: 关于微分方程求解的已知结论 微分方程求解的已知结论
例6.1.2 Fibonacci数列问题是一个古老的数 数列问题是一个古老的数 学问题,是于1202年提出的,问题表述如下: 1202年提出的 学问题,是于1202年提出的,问题表述如下: 把一对兔子( 雄各一只) 把一对兔子(雌、雄各一只)在某年的 开始放到围栏中, 开始放到围栏中,每个月这对兔子都生出一 对新兔,其中雌、雄各一只。 对新兔,其中雌、雄各一只。由第二个月开 每对新兔每个月也生出一对新兔, 始,每对新兔每个月也生出一对新兔,也是 雄各一只。 雌、雄各一只。问一年后围栏中有多少对兔 这是一个数学模型的形象表示, 子?这是一个数学模型的形象表示,不能真 正用来表示兔子的繁殖规律。 正用来表示兔子的繁殖规律。
方程 xk-c1xk-1-c2xk-2-……-ck=0 • 递推关系的特征根 特征方程的k个根q1 , q2……qk(可能有重根),其中qi (i=1,2,……,k)是复数。 • 递推关系的解与特征根的关系? 递推关系的解与特征根的关系?
引理6.2.1 设q是非零复数.则f(n)=qn是常系数线 引理 性齐次递推关系的解,当且仅当q是它的特征根. 证明 设f(n)=qn是递推关系(6.2.2)的解,即
求解递推关系的常用方法 (1)迭代归纳法; (2)特征根法; (3)生成函数法;
组合数学 母函数与递推关系
![组合数学 母函数与递推关系](https://img.taocdn.com/s3/m/ff39c44569eae009581bec3d.png)
§2.1 母函数 用类似的方法还可以得到:
C (n,1) x 2C (n,2) x 2 3C (n,3) x 3 nC (n, n) x nx(1 x)
n
2 2
n 1
C (n,1) 2 C (n,2) 3 C (n,3) n C (n, n)
2 3 2
§2.2 递推关系 整理得
x x (1 2 x) H ( x) x 1 x 1 x
这两种做法得到的结果是一样的。即:
2
x H ( x) (1 x)(1 2 x)
§2.2 递推关系 如何从母函数得到序列 (1), h(2), ?下 h 面介绍一种化为部分分数的算法。
(1 x) n
§2.2
递推关系
利用递推关系进行计数这个方法在算法 分析中经常用到,举例说明如下: 例一.Hanoi问题:这是个组合数学中的 著名问题。N个圆盘依其半径大小,从下而 上套在A柱上,如下图示。每次只允许取一 个移到柱B或C上,而且不允许大盘放在小 盘上方。若要求把柱A上的n个盘移到C柱上 请设计一种方法来,并估计要移动几个盘 次。现在只有A、B、C三根柱子可用。
C (m n, m) C (n,0)C (m,0) C (n,0)C (m,0) C (n,0)C (m,0) 正法如下: (2 - 1 - 3)
m n
(1 x) (1 1 / x) x (1 x)
n m
m
§2.1 母函数
[C (n,0) C (n,1) x C (n, n) x ]
h(2) x h(3) x H ( x) h(1) x H ( x) x
2 3
右端第一项为:
组合数学第二章课后习题答案
![组合数学第二章课后习题答案](https://img.taocdn.com/s3/m/bada2c4ac850ad02de80417e.png)
2.1题(陈兴)求序列{ 0,1,8,27,3n }的母函数。
解:由序列可得到32333()23n G x x x x n x =+++++因为23111n x x x x x =++++++- 2311()'12341n x x x nx x-=++++++-设 2311()()'23(1)1n np x x x x x n x nx x-==++++-+-2222221[()]'123(1)n n p x x x x n x n x --=+++++-+设 2223212()[()]'23(1)n nq x x p x x x x n x n x -==++++-+3323231[()]'123(1)n n q x x x n x n x --=++++-+ 3233313[()]'23(1)n n x q x x x x n x n x -=+++-+ 由以上推理可知[()]'x q x =,[7*94*(6)],n n +-所以可通过求得[()]'x q x 得到序列的母函数:32()4G x x x x =++2321()()[34(3)]6n H x F x dx x x n x +==++++⎰2.2题(陈兴)已知序列343,,,,333n ⎧+⎛⎫⎛⎫⎛⎫⎫⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭⎩,求母函数 解: 3*2*14*3*2(3)*(2)*(1)()3*2*13*2*13*2*1nn n n G x x +++=+++=1[3.2.1 4.3.2(3)(2)(1)]6n x n n n x ++++++211()()[3.2 4.3(3)(2)]6n F x G x dx x x n n x +==+++++⎰ 2321()()[34(3)]6n H x F x dx x x n x +==++++⎰3431()()[]6n I x H x dx x X x ++==++⎰因为23111n x x x x+=+++++-所以211()(1)61I x x x x=----所以31()[]'''61x G x x=-就是所求序列的母函数。
最新组合数学习题答案(1-4章全)
![最新组合数学习题答案(1-4章全)](https://img.taocdn.com/s3/m/c49029e82e3f5727a4e9624f.png)
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
递推关系与母函数 - 哈尔滨工程大学智能信息处理研究中心
![递推关系与母函数 - 哈尔滨工程大学智能信息处理研究中心](https://img.taocdn.com/s3/m/522bf51f6edb6f1aff001f23.png)
n r
' n ' n ' n B m B m ... B m r 成立,则称 1 1 2 2 r
是递推关系式1的通解,其中:B1’ , B2’ ,…, Br’是任意常数
9
无重特征根
定理:设m1,…,mr是递推关系式1的r个互不相 等的特征根,则:
a n B 1 m B 2 m ... B r m
智能信息处理研究中心(RCIIP)
递推关系与母函数
潘海为
1
递推关系的建立
例6 10个数字(0~9)和4个运算符(+,-,,) 组成 14个元素,求由其中的n个元素构成的排列组 成的算术表达式的个数(含除数为0的情况)
an = 10an-1+ 40an-2 a1 =10,a2=120
若e(n) = 0,称其为齐次递推关系式 若e(n)≠0,称其为非齐次递推关系式 当ci(n)=ci时(i =1,2,…,r)称为常系数递推关 系
4
常系数齐次线性递推关系a n1 c2 a n 2 ... cr a n r 0 其中: cr 0
其中: n r , cr 0
当e(n) = 0时,齐次递推关系式的情况 当e(n)≠0时,非齐次递推关系式的情况
16
定理
r 阶线性常系数非齐次递推关系的通解an是: 该非齐次递推关系的一个特解 a n ,加上其相 应的齐次递推关系的通解 a n 即
*
ana
* n
an
17
非齐次递推关系
18
非齐次递推关系
求解过程
求齐次递推关系的通解 求非齐次递推关系的特解 列出非齐次递推关系的通解形式 根据初始条件确定待定系数
组合数学讲义及答案 3章 递推关系
![组合数学讲义及答案 3章 递推关系](https://img.taocdn.com/s3/m/e3b5aa263968011ca300919c.png)
后两项求和:
m 1 m 1 2m j 2 j r r r + m 1 r j j 0
m2 m 1
=r
2m 2 j j 0
j j r = r
n 2 2
§3.2 常系数线性递推关系
常系数的线性递推关系:
a n c1 a n1 c 2 a n 2 c k a n k 0,
或
c k
0
(3.2.1)
an c1an 1 c2 an 2 ck an k f n , ( ck 0 )
(3.2.2) 分别称为 k 阶齐次递推关系和 k 阶非齐次递推关系。 其中 f(n) 称为自由项。 显 然 , 式 ( 3.2.1 ) 至 少 有 一 个 平 凡 解 a n 0n 0,1,2, ,而人们更关心的是它的非零解。
n k k k r ,求{an}所满足的递推关 k 0
n n n n - 1 n - 2 2 r r +…+ 2 r 2 n 为偶数: a n = n 0 1 2 2
a n 2a n1 1 , a 1 1
3/75
(3.1.3)
《组合数学》
第三章 递推关系
求解
a n = 2n 1
例3.1.2 (Lancaster 战斗方程)两军打仗,每支军队在每 天战斗结束时都清点人数,用 a0 和 b0 分别表示在战斗打响前 第一支和第二支军队的人数,用 an 和 bn 分别表示第一支和第 二支军队在第 n 天战斗结束时的人数,那么,an-1-an 就表示 第一支军队在第 n 天战斗中损失的人数,同样,bn-1-bn 表示 第二支军队在第 n 天战斗中损失的人数。 假设:一支军队所减少的人数与另一支军队在每天战斗开 始前的人数成比例,则
卢开澄《组合数学》习题答案第二章
![卢开澄《组合数学》习题答案第二章](https://img.taocdn.com/s3/m/53b591729a6648d7c1c708a1284ac850ad02042d.png)
2.1 求序列{0,1,8,27,…3n …}的母函数。
解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()046414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。
解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x - 2.3 已知母函数G (X )= 25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B AG (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x---,求对应的序列{}n a 。
解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。
递归与母函数
![递归与母函数](https://img.taocdn.com/s3/m/c0f7ee05cc1755270722080d.png)
= [C(m+ n,0) + C(m+ n,1)x ++ C(m+ n, m+ n)xm+n
比较等号两端项对应系数, 比较等号两端项对应系数,可得一等式 C(m + n, r) = C(m,0)C(n, r) +
C(m,1)C(n, r 1) ++ C(m, r)C(n,0)
相关公式
令r=n,则, ,
解的分析
从x4的系数可知,这8个元素中取4个组合,其组合数为 10.这10个组合可从下面展开式中得到
2 3 2 2 3 (1+ x1 + x1 + x1 )(1+ x2 + x2 )(1+ x3 + x3 + x3 ) 2 2 3 2 2 3 2 2 3 2 = [1+ (x1 + x2 ) + (x1 + x1x2 + x2 ) + (x1 + x1 x2 + x1x2 ) + (x1 x2 + x1 x2 ) + x1 x2 ] 2 3 (1+ x3 + x3 + x3 )
母函数
x2项的系数 1a2+a1a3+…+ an-1an 中所有的项包括 个 项的系数a 中所有的项包括n个 元素a 两个组合的全体 元素 1 , a2 , …,an中取两个组合的全体;同理项系 中取两个组合的全体; 数包含了从n个元素 个元素a 中取3个元素组合 数包含了从 个元素 1 , a2 , …,an 中取 个元素组合 的全体.以此类推. 的全体.以此类推. 若令a 项系数a 若令 1=a2= …=an=1,在 x2项系数 1a2+a1a3+…+ an1 中每一个组合有1个贡献,其他各项以此类推. 1an中每一个组合有1个贡献,其他各项以此类推. 故有: 故有:
组合数学第二章081126
![组合数学第二章081126](https://img.taocdn.com/s3/m/813f0be4b8f67c1cfad6b8e5.png)
1 C (m.1) x C (m.2) x
2
.... C (m.m) x
n m
得:
C(m+n,r )=C(m,0)C(n,r)+C(m,1)C(n,r-1)+…+C(m,r)C(n,0)
第二章 母函数与递推关系
2.1 母函数的引入 同样利用
1 x 1 1/ x
第二章 母函数与递推关系
2.6 指数型母函数 1 问题提出 设有 n 个元素, 其中元素 a1 重复了 n1 次, 元素 a2 重复了 n2 次, …, ... ak 重复了 nk 次,n=n1+n2+ +nk 从中取 r 个排列,求不同的排列数 如果 n1=n2= =nk=1,则是一般的排列问题。 现在由于出现重复,故不同的排列计数便比较复杂。先考虑 n 个 元素的全排列,若 n 个元素没有完全一样的元素,则应有 n!种排列。 若考虑 ni 个元素 ai 的全排列数为 ni! ,则真正不同的排列数为
...
第二章 母函数与递推关系
2.6 指数型母函数 解的分析 先讨论一个具体问题:若有 8 个元素,其中设 a1 重复 3 次,a2 重 复 2 次,a3 重复 3 次。从中取 r 个组合,其组合数为 cr,则序列 c0,c1,c2,c3,c4,c5,c6,c7 的母函数为
从 x 的系数可知,这 8 个元素中取 4 个组合,其组合数为 10。这 10 个组合可从下面展开式中得到
第二章 母函数与递推关系
2.1 母函数的引入
... 定义:对于序列 a0,a1,a1, ,定义 G x a0 a1 x a2 x ... 为序
2
... 列 a0,a1,a1, 的母函数。
《组合数学》教案 2章(母函数)及课后习题讲解
![《组合数学》教案 2章(母函数)及课后习题讲解](https://img.taocdn.com/s3/m/ebd6d79edaef5ef7ba0d3c37.png)
第二章母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方法新方法:母函数方法。
基本思想:把离散的数列同多项式或幂级数一一对应起来,算。
2.1 母函数(一)母函数(1)定义【定义2.1.1】对于数列{}n a ,称无穷级数()∑∞=≡0n n n x a x G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例【例2.1.1】有限数列rn C (r =0, 1, 2, …, n )的普母函数:()x G =nn n n n nx C x C x C C ++++ 2210=()nx +1【例2.1.2】无限数列{1, 1. …, 1, …}的普母函数:()x G = +++++nx x x 21=x-11(3)说明● n a 可以为有限个或无限个。
● 数列{}n a 与母函数一一对应。
{0, 1, 1, …, 1, …}↔ +++++n x x x 20=xx -1 ● 将母函数视为形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”。
(4)常用母函数(二) 组合问题 (1)组合的母函数【定理2.1.1】组合的母函数:设{}m m e n e n e n S ⋅⋅⋅=,,,2211 ,且n 1+n 2+…+n m =n ,则S 的r 可重组合的母函数为()x G =∏∑==⎪⎪⎭⎫ ⎝⎛mi n j j i x 10=∑=n r r r x a 0其中,r 可重组合数为rx 之系数r a ,r =0, 1, 2, …, n 。
理论依据:多项式的任何一项与组合结果一一对应。
【例2.1.3】设有6个红球,7个黑球,8个白球,问 (1) 共有多少种不同的选取方法,试加以枚举? (2) 若每次从中任取3个,有多少种不同的取法? (解)(1)元素符号化(x ,y ,z ↔红、黑、白球),元素的个数以符号的指数区分。
母函数G (x , y , z ) =(1+x +x 2) (1+y ) (1+z )=1+(x +y +z )+(x 2+xy +xz +yz )+(x 2x +x 2x +xxx )+( x 2yz )5种情况:① 数字1表示一个球也不取的情况,共有1种方案; ② 取1个球的方案有3种,即红、黑、白三种球只取1个; ③ 取2个球的方案有4种,即2红、1红1黑、1红1白、1黑1白; ④ 取3个球的方案有3种,即2红1黑、2红1白、三色球各一; ⑤ 取4个球的方案有1种,即全取。
组合数学参考答案解析[卢开澄第四版]_修改版
![组合数学参考答案解析[卢开澄第四版]_修改版](https://img.taocdn.com/s3/m/d881cdda0975f46527d3e14e.png)
1.1 题 从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0; 由上题知当|a-b|=5时 有90对序列。
当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对, 当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!, (b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5! (c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*2 1.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*2 2.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*2 3.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*2 4.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*2 5.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。
母函数与递推关系
![母函数与递推关系](https://img.taocdn.com/s3/m/9c0e543caaea998fcc220ef5.png)
2 3 4 5 6 7
母函数与递推关系
例 求用1元和2元的钞票支付n元的不同方式数。 解:设所求不同方式数为an,则由题设可得{an}的 母函数为 f ( x ) [1 x x 2 ][1 x 2 ( x 2 )2 ( x 2 )3 ] 1 1 1 x 1 x2 1 (1 x )(1 x ) 2
1 2
1 (a b c ) x ( a ab ac b bc c ) x
2 3 2 2 2 2 2 2 2
( a a b ab a c ac abc b b c bc c ) x ...
3 2 2 3 3
母函数与递推关系
母函数与递推关系
算法复杂度为:
h(n) 2h(n 1) 1, h(1) 1
2 3
(*)
H ( x ) h(1) x h(2) x h(3) x ,(**) H(x)是序列 h(1), h(2), h(3), 的母函数。给
定了序列,对应的母函数也确定了。反过来也 一样,求得了母函数,对应的序列也就可得而 知了。当然,利用递推关系(*)式也可以依次求 得 h(2), h(3), ,这样的连锁反应关系,叫做递 推关系。
所以
5 4 1 an , n 1, 2,... 4
n n
母函数与递推关系
§2 递推关系
定义:设(a0,a1,…,an,…)是一个序列,把该序列 中 an 与它前面几个ai(0≤i<n)关联起来的方程称 为递推关系。序列中的一些已知条件称为初始 条件。 例如
an an1 nan2 , an 3an1 n 1
组合数学 第2章习题解答
![组合数学 第2章习题解答](https://img.taocdn.com/s3/m/fbb273a9284ac850ad024278.png)
( a )G
2
= (1 − x )
−4
= ∑ C ( n + 3,3) x n
n=0
∞
2.4 已知母函数 1 − x − 56 x 2,求对应的序列
注意到 1-x-56x2=(1-8x)(1+7x), 用A/(1-8x)+B/(1+7x)的分子等于3-9x 待定A,B的方程组为: A + B = 3 7 A − 8 B = −9 解出A=1,B=2 G(x)=1/(1-8x)+2/(1+7x) 利用基本母函数1/(1-x) an=8n-7n
• 解:G(x)=/Sum{0,n}(anxn) • 参考p61,例2-13,2-14, • 参考p111, 例2-63
2.48有红、黄、蓝、白球各两个,绿、紫、黑球各3个, 问从中取出10个球,试问有多少种不同的取法? 用指数型母函数,可得母函数 x x2 4 x x 2 x3 3 G ( x) = (1 + + ) ⋅ (1 + + + ) 1! 2! 1! 2! 3!
• 用多项式除法,解出a0,a1均为1
1− x + x
2
1 1
1 1 −x x2
2
• P68 x −x • 将(1-x+x2)分解因子,转化为基本母函数.引 用P59,定理2-1. 并参考p56例子2-11. • 这个题目整体都做的不错
2.18(1)课练,用母函数法求 an-6an-1+8an-2=0
注:这个题目中有同学使用的符号 n指代比较 混乱。虽然最后结果对,但过程中未体现出逻 辑的连贯性。 也有同学用积分和求导渐次推理得到正确结论。 十分可贵。不过有的人在最后写有一个 m次方, 令人困惑