雷达原理(第三版)__丁鹭飞第5章汇总.

合集下载

雷达工作原理

雷达工作原理

雷达工作原理雷达是一种用于探测和追踪目标物体的设备,广泛应用于军事、航空、航海和气象等领域。

它通过发射电磁波并接收其反射信号,通过分析信号的特征来确定目标物体的位置、速度和形态。

本文将介绍雷达的基本原理和工作过程。

一、雷达的基本原理雷达的基本原理是利用电磁波在空间传播时的特性。

雷达发射器发出一束电磁波,并通过天线将电磁波辐射出去。

当电磁波遇到目标物体时,会发生反射或散射,部分信号会被接收天线接收到。

二、雷达的工作过程1. 发射信号:雷达工作时,发射器发出一束有一定频率和功率的电磁波。

电磁波可以是无线电波、微波或其他频率的波。

2. 接收信号:目标物体会对电磁波进行反射或散射,部分反射信号会被雷达接收器接收到。

接收器通过天线接收到的信号转换为电信号,并传送给信号处理系统。

3. 信号处理:信号处理系统对接收到的信号进行处理和分析。

这包括测量信号的时间、频率和幅度特征,以确定目标物体的距离、方位和速度。

4. 显示结果:最后,雷达系统将分析得到的目标信息显示在显示器上。

这可以是雷达图表或其他形式的可视化信息,帮助操作人员更好地理解目标的位置和运动状态。

三、不同类型雷达的原理1. 连续波雷达(CW雷达):连续波雷达发射器持续地发射连续的高频电磁波。

接收器接收到的信号经过混频或激励信号调制后得到目标信息。

2. 脉冲雷达:脉冲雷达发射器以脉冲的形式发射电磁波,每个脉冲都有固定的能量和重复频率。

接收器通过测量脉冲的往返时间来计算目标的距离。

3. 多普勒雷达:多普勒雷达是基于多普勒效应的原理工作的。

当目标物体相对于雷达运动时,接收到的反射信号的频率会发生变化。

根据频率变化的特征,可以计算出目标的速度和运动方向。

四、雷达的应用领域雷达在军事、航空、航海和气象等领域有着广泛的应用。

1. 军事:雷达在军事领域中用于目标探测、导航、火控和情报收集等任务。

它可以帮助军队追踪和监视敌方目标,提供重要的战术信息。

2. 航空和航海:雷达在航空和航海领域中用于导航和防撞系统。

雷达基本工作原理课件-新版.ppt

雷达基本工作原理课件-新版.ppt

微波传输线 发射脉冲
发射机
T/R 触发器
天线 回波
接收机
电源
船电
显示器
Fig1-2 (2)
回波 船首线 方位
精品
T/R
Receiver
Transmitter
第二节 雷达的基本组成、作用
一、基本组成七部分及作用:
1、定时器(触发电路、同步电路等): 是雷达的指挥中心,产生周期性的窄脉冲——触发脉冲 送:1)发射机:控制发射开始 2)接收机:控制近距离增益 3)显示器:控制计时开始
船舶导航雷达
精品
第一章 雷达基本工作原理
引言
Radar —Radio detection and ranging
—无线电探测和测距
雷达:发射微波并接收目标反射回波,对目标进行探测 和测定目标信息
现代雷达 IBS的重要组成部分 定位、导航、避碰
主要传感器
精品
雷达 罗经 计程仪 GNSS AIS ECDIS
二、船用雷达单元构成:
1、三单元雷达: 收发机(触发电路、发射机、接收机、收发开关) 显示器、天线、中频电源
2、二单元雷达: 天线收发机、显示器、精中品频电源
荧光屏的单位长度:在不同量程代表不同的距离
二. 雷达测方位原理
1、利用收发定向天线 ,只向一个方向发射雷达波且 只接收此方向上的目标的反射回波
2、天线旋转依次向四周发射雷达波,则可探知周围 物标的方位——天线的精品方向即目标的方向
触发器
天线
方位与 船首线
收发机 回波
显示器
ARPA
Fig1-2(1)
第二节 雷达的基本组成、作用
5、接收机:超外差式,将微弱回波信号放大千万倍以符合

雷达原理

雷达原理
离 散型 寄生输出
4
雷达原理
2.4 固态发射机
• 固态发射机发展概况和特点
– 逐步替代常规微波电子管发射机,优点如下 • 寿命长、可靠性高 • 体积小、重量轻 • 工作频带宽、效率高 • 系统设计和运用灵活、维护方便, 成本较低
– 平均功率大而峰值功率受限,适用于高工作比 雷达,如连续波雷达
– 在 UHF ~ L 波段发展较快
• 雷达的基本概念
– 利用电磁波的二次辐射、转发或目标固有辐射 来探测目标,获取目标空间坐标、速度、特征 等信息的一种无线电技术,相应的设备称为雷 达站或雷达机,简称雷达
– 二次辐射:反射(单基地)、散射(多基地)
– 转发:二次雷达(导航)
– 固有辐射:通信及雷达信号(被动/无源)、随 机热运动电磁辐射(导引头)
雷达原理
1.1 雷达的概念
• 雷达信号处理
– 目标信号总是被淹没于 杂波(+干扰)+ 噪声
的背景中 – 杂波及干扰强度往往超过目标信号的千万倍 – 信号处理作用
• 增强待测目标信噪比,提取目标参数 • 抑制杂波和干扰信号
雷达原理
1.2 雷达探测原理
• 雷达回波中的可用信息
– 斜距 R ( Rmax 可由雷达方程估算)
• 总效率
– 发射机输出功率与其输入总功率之比 – 对主振放大式发射机应改善输出级的效率
雷达原理
2.2 雷达发射机电性能指标
• 信号形式(调制形式)
– 不同信号形式对发射机的要求各异
波形 简单脉冲 脉冲压缩 高工作比多卜勒
调制类型 矩形调幅
线性调频、相位编码 矩形调幅
工作比(占空比)% 0.01 ~ 1 0.1 ~ 10 30 ~ 50

雷达工作原理

雷达工作原理

雷达工作原理第一篇:雷达工作原理雷达的原理雷达(radar)原是“无线电探测与定位”的英文缩写。

雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。

雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。

天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。

电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。

天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。

由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。

接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。

根据电磁波的传播速度,可以确定目标的距离为:S=CT/2其中S:目标距离T:电磁波从雷达到目标的往返传播时间C:光速雷达测定目标的方向是利用天线的方向性来实现的。

通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。

两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。

测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。

雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。

其中,作用距离是指雷达刚好能够可靠发现目标的距离。

雷达原理复习PPT课件

雷达原理复习PPT课件
3、与二进制码盘相比,循环码盘的优缺点是什么? 循环码盘的优点:在采用循环码时,几时在交界处反应不灵敏,其结果也只是误成相邻的 十进制数,不会产生大误差。 缺点:循环码时一种变权代码,不能直接进行算术运算,必须把循环码变换成二进制码。
1、已知某雷达最大作用距离为150Km,雷达天线的高度为10m,距雷达60Km处有一高度为 100m的目标,问:此时雷达是否可以观察到此目标? Rs=4.1*(+)=4.1*13.16=53.956km 则Rmax=min(Rs,Rmax)=min(53.956,150)-53.956km 因53.956<60,则雷达不能观察到此目标 2、已知某雷达无衰减时的最大作用距离为100Km,问当单程传播衰减为0.4dB/Km时,则雷 达的实际最大作用距离是多少? 有衰减时最用距离计算图,读图知答案 3、在目标尺寸比雷达工作波长大很多的情况下,要降低云雨回波对雷达测距性能的影响, 应降低还是提高雷达的工作频率? 要降低云雨回波时对雷达测距性能的影响,应降低雷达的工作频率,为了提高工作波长, 即要降低f,可减小云雨回波的影响,而又不会明显减小正常雷达目标的截面积。
6
7
• 4、什么是相参积累和非相参积累,并说明二者对检测因子的影响。
• 相参积累:信号在中频积累时要求信号见有严格的相位关系
• 非相参积累:由于信号在包络检波后失去了相位信息而只保留下幅度信息,因而检波后积累就不需要信号间 有严格的相位关系。
• 对非相参积累:M个等幅脉冲积累后对检波因子Do的影响是:
• 接收机的灵敏度体现接收机的接收微弱信号的能力
• 灵敏度的物理意义:表示接收机可接收到最小可测信号功率的能力
• 动态范围:体现接收机的抗过载性能
• 噪声系数:体现接收机的噪声性能

雷达原理介绍ppt课件

雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个

雷达原理第三版丁鹭飞精品PPT课件

雷达原理第三版丁鹭飞精品PPT课件

设雷达发射功率为Pt, 雷达天线的增益为Gt, 则在自由空间
工作时, 距雷达天线R远的目标处的功率密度S1为
S1
PtGt
4R2
(5.1.1)
目标受到发射电磁波的照射, 因其散射特性而将产生散射回波。
散射功率的大小显然和目标所在点的发射功率密度S1以及目标 的特性有关。用目标的散射截面积σ(其量纲是面积)来表征其散
Pr
Si min
PtAr2 42Rm4 ax
PtG 22 (4 )3 Rm4 ax
(5.1.7)
第 5 章 雷达作用距离

1
Rmax
PtAr2
42
Si
min
4
1
Rmax
PtG 22 (4 )3 Si min
4
(5.1.8) (5.1.9)
式(5.1.8)、(5.1.9)是雷达距离方程的两种基本形式, 它表明了作 用距离Rmax和雷达参数以及目标特性间的关系。
第 5 章 雷达作用距离
5.2 最小可检测信号
5.2.1 典型的雷达接收机和信号处理框图如图5.2所示, 一般把检波
器以前(中频放大器输出)的部分视为线性的, 中频滤波器的特性 近似匹配滤波器, 从而使中放输出端的信号噪声比达到最大。
第 5 章 雷达作用距离
Si min
kT0BnF
n
S N o min=Do
Pr
Ar S2
PtGtA (4R2 )2
(5.1.4)
第 5 章 雷达作用距离
由天线理论知道, 天线增益和有效面积之间有以下关系:
G
4A 2
式中λ为所用波长, 则接收回波功率可写成如下形式:
Pr
PtGtGr2 (4 )3 R4

雷达原理 课件PPT(第三版) 丁鹭飞 雷达发射机

雷达原理 课件PPT(第三版) 丁鹭飞  雷达发射机
发射一种特定的大功率无线电信号。发射机在雷达中就是起这 一作用的, 也就是说, 它为雷达提供一个载波受到调制的大功率 射频信号, 经馈线和收发开关由天线辐射出去。
第2章 雷达发射机


Tr 大功率射 频振荡器 至天线
Tr 定时信号 脉冲调制器
Tr
电 源
图 2.1 单级振荡式发射机
第2章 雷达发射机
图 2.9 采用频率合成技术的主振放大式发射机

第2章 雷达发射机 图2.9是采用频率合成技术的主振放大式发射机的原理方框 图, 图中基准频率振荡器输出的基准信号频率为F。在这里, 发射 信号 ( 频率 f0=NiF+MF) 、稳定本振电压 ( 频率 fL=NiF) 、相参振荡 电压(频率fc=MF)和定时器的触发脉冲(重复频率fr=F/n)均由基准 信号F经过倍频、分频及频率合成而产生, 它们之间有确定的相
成分布放大器的四极管链,则具有10 %以上乃至几个倍频程的
带宽)。 这种放大链较多用于地面远程雷达和相控阵雷达中。
第2章 雷达发射机 在1000 MHz以上放大链通常有行波管-行波管、 行波管-速 调管和行波管-前向波管等几种组成方式: 1) 行波管-行波管式放大链 这种放大链具有较宽的频带, 可 用较少的级数提供高的增益, 因而结构较为简单。 但是它的输
雷达工作频率在1000MHz
(
以上时, 通常选用直线电子注微波管
O 型管 ) 和正交场型微波管 (M 型管 ) 作为发射机的射频放大管。
在表2.2中我们对高功率脉冲工作的O型管和分布发射式的M型管 在同一频段、同样峰值功率和平均功率电平下的各项主要性能 进行了比较。在1000 MHz以下用得较多的是微波三、 四极管(栅 控管), 在表2.3中列出了它们的主要性能。

雷达原理讲义及模拟题参考答案

雷达原理讲义及模拟题参考答案

§1.3 雷达的工作频率
无论发射波的频率如何, 只要是通过辐射电磁能量和利用从目标反射回来的回波, 以便 对目标探测和定位,都属于雷达系统的工作范畴。 常用的雷达频率:220~35000MHz(220MHz~35GHz) ,实际上各类雷达工作的频率在两 头都超出了上述范围(激光,红外雷达,广播) 大多数工作在 200MHz~10GHz 1m—300MHz;1 分米—3000MHz=3GHz;1cm—30GHz;1mm—300GHz 频段名称 UIIF 波段 L 波段 S 波段 C 波段 X 波段 Ku 波段 K 波段 Ka 波段 mm 波段 频率 300~1000MHz 1000~2000MHz 2000~4000MHz 4000~8000MHz 8000~12000MHz 12.0~18GHz 18~27GHz 27~40GHz 40~300GHz 国际电信联盟分配的雷达频段 420~450MHz 890~940MHz 1215~1400MHz 2300~2500MHz 2700~3700MHz 5250~5925MHz 8500~10680MHz 13.4~14GHz 15.7~17.7GHz 24.05~24.25GHz 33.4~36GHz
§1.4 雷达的应用和发展
§1.4.1 应用
按应用平台:太空,空中,地面,海上(空基,地基,海基) 作用:探测,定位,跟踪 军用:预警雷达(超远程雷达) ,洲际导弹,洲际轰炸机;搜索和警戒雷达,飞机;引 导指挥雷达(监视雷达) (预警飞机) ,引导歼击机;火控雷达,火炮;制导雷达,导弹;战 场监视雷达,坦克,车辆,人员;机载雷达(截击,护尾,导航(可民用) ,火控) ;无线电 测高仪;雷达引信。 民用:气象雷达,航行管制(空中交通雷达) ,宇宙航行中用雷达,遥感,另有飞机导 航,航道探测,公路测速 按雷达信号形式分: 脉冲,连续波,脉冲压缩(LPM/相位编码) 脉冲多普勒,噪声雷达,频率捷变雷达等 按角度跟踪分:单脉冲,圆锥扫描雷达,隐蔽锥扫雷达等 按测量目标的参量分:测高,两坐标,三坐标,测速,目标认别等 按信号处理方式分:分集雷达(频率分集,极化分集等等) ,相参,非相参积累雷达, 动目标显示雷达,合成孔径雷达等 按天线扫描方法分:机械扫描,相控阵,频扫等

2023年大学_《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载

2023年大学_《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载

2023年《雷达原理》第三版(丁鹭飞耿富录著)课后答案下载《雷达原理》第三版内容简介第1章绪论1.1 雷雷达传感器雷达传感器达的任务1.2 雷达的基本组成1.3 雷达的工作频率1.4 雷达的应用和发展1.5 电子战与军用雷达的发展主要参考文献第2章雷达发射机2.1 雷达发射机的任务和基本组成2.2 雷达发射机的主要质量指标2.3 单级振荡和主振放大式发射机2.4 固态发射机2.5 脉冲调制器主要参考文献第3章雷达接收机3.1 雷达接收机的组成和主要质量指标 3.2 接收机的'噪声系数和灵敏度3.3 雷达接收机的高频部分3.4 本机振荡器和自动频率控制3.5 接收机的动态范围和增益控制3.6 滤波和接收机带宽主要参考文献第4章雷达终端显示器和录取设备4.1 雷达终端显示器4.2 距离显示器4.3 平面位置显示器4.4 计算机图形显示4.5 雷达数据的录取4.6 综合显示器简介4.7 光栅扫描雷达显示器主要参考文献第5章雷达作用距离5.1 雷达方程5.2 最小可检测信号5.3 脉冲积累对检测性能的改善 5.4 目标截面积及其起伏特性 5.5 系统损耗5.6 传播过程中各种因素的影响 5.7 雷达方程的几种形式主要参考文献第6章目标距离的测量6.1 脉冲法测距6.2 调频法测距6.3 距离跟踪原理6.4 数字式自动测距器主要参考文献第7章角度测量7.1 概述7.2 测角方法及其比较7.3 天线波束的扫描方法7.4 三坐标雷达7.5 自动测角的原理和方法主要参考文献第8章运动目标检测及测速8.1 多卜勒效应及其在雷达中的应用8.2 动目标显示雷达的工作原理及主要组成 8.3 盲速、盲相的影响及其解决途径8.4 回波和杂波的频谱及动目标显示滤波器 8.5 动目标显示雷达的工作质量及质量指标 8.6 动目标检测(MTD)8.7 自适应动目标显示系统8.8 速度测量主要参考文献第9章高分辨力雷达9.1 高距离分辨力信号及其处理9.2 合成孔径雷达(SAR)9.3 逆合成孔径雷达(ISAR)9.4 阵列天线的角度高分辨力主要参考文献《雷达原理》第三版作品目录《雷达原理(第四版)》分为雷达主要分机及测量方法两大部分。

雷达原理知识点汇总

雷达原理知识点汇总

雷达原理知识点汇总第一章绪论1、雷达概念(Radar):radar的音译,“Radio Detection and Ranging ”的缩写。

原意是“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。

2、雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。

在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。

3、雷达的任务:利用目标对电磁波的反射来发现目标并对目标进行定位。

随着雷达技术的发展,雷达的任务不仅仅是测量目标的距离、方位和仰角,而且还包括测量目标的速度,以及从目标回波中获取更多有关目标的信息。

4、从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息?斜距R : 雷达到目标的直线距离OP。

方位角α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。

俯仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。

5、雷达工作方式连续波和脉冲波6、雷达测距原理R=(C∆t)/2式中,R为目标到雷达的单程距离,∆t为电磁波往返于目标与雷达之间的时间间隔,C为电磁波的传播速率(3×108米/秒)7、影响雷达性能指标脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。

8、距离测量分辨力两个目标在距离方向上的最小可区分距离:Δr c=c/2(τ+d/υn)∆rc=c/2(τ+d/υn)或者Δr c=c/2∙1/B∆rc=c/2∙1/B其中,d为光点直径,υnυn为光点扫面速度;B为有效相关带宽。

9、雷达由哪几个主要部分,各部分的功能是什么?同步设备:雷达整机工作的频率和时间标准。

发射机:产生大功率射频脉冲。

雷达原理第三版丁鹭飞

雷达原理第三版丁鹭飞
2.3.2
1.
在雷达整机要求有很高的频率稳定度的情况下, 必须采用主 振放大式发射机。 因为在单级振荡式发射机中, 信号的载频直 接由大功率振荡器决定。由于振荡管的预热漂移、温度漂移、 负载变化引起的频率拖曳效应、 电子频移、 调谐游移以及校准 误差等原因, 单级振荡式发射机难于达到高的频率精度和稳定度。
第2章 雷达发射机
在1000 MHz以上放大链通常有行波管-行波管、 行波管-速 调管和行波管-前向波管等几种组成方式:
1) 行波管-行波管式放大链 这种放大链具有较宽的频带, 可 用较少的级数提供高的增益, 因而结构较为简单。 但是它的输 出功率往往不大, 效率也不是很高, 常应用于机载雷达及要求轻 便的雷达系统中。
冲重复周期为Tr, 则有
Pav


Pt

Tr

Ptf r
式中的fr=1/Tr是脉冲重复频率。τ/Tr=τfr称作雷达的工作比D。 常
规的脉冲雷达工作比的典型值为D=0.001, 但脉冲多卜勒雷达的
工作比可达10-2数量级, 甚至达10-1数量级。显然, 连续波雷达的
D=1。
第2章 雷达发射机
3.
发射机的总效率是指发射机的输出功率与它的输入总功率 之比。 因为发射机通常在整机中是最耗电和最需要冷却的部 分, 有高的总效率, 不仅可以省电, 而且对于减轻整机的体积重 量也很有意义。对于主振放大式发射机, 要提高总效率, 特别要 注意改善输出级的效率。
第2章 雷达发射机 表2.2 高功率脉冲工作的O型管和分布发射式M型管的性能比较
第2章 雷达发射机 表2.2 高功率脉冲工作的O型管和分布发射式M型管的性能比较
第2章 雷达发射机 表 2.3 微波三、四极管的主要电性能

雷达原理_第五章-雷达作用距离

雷达原理_第五章-雷达作用距离

5.2 最小可检测信号
一、最小可检测信号 S i min
根据雷达作用距离,可确定检测目标信号所需的最 小输出信噪比以及接收机最小可检测信号功率。
SiminKToBnFoN Soo
min
5.2 最小可检测信号
二、最小可检测信噪比
(
S N
) o min
典型的雷达接收机和信号处理框图如图5.2所示, 一般
通常加到接收机中频滤波器(或中频放大器)上的噪声 是宽带高斯噪声, 其概率密度函数由下式给出:
5.2 最小可检测信号
p(v) 21exp2v22
(5.2.8)
此处,p(v)dv是噪声电压处于v和v+dv之间的概率; σ2是方差, 噪声的均值为零。高斯噪声通过窄带中频滤波 器(其带宽远小于其中心频率)后加到包络检波器, 根据随 机噪声的数学分析可知, 包络检波器输出端噪声电压振幅 的概率密度函数为
5.1 雷 达 方 程
i
4S1A1/(4)
S1
A1
(5.1.11)
式(5.1.11)表明:导电性能良好各向同性的球体, 它的截面 积σi等于该球体的几何投影面积。这就是说, 任何一个反 射体的截面积都可以想像成一个具有各向同性的等效球体 的截面积。
5.1 雷 达 方 程
等效的意思是指该球体在接收机方向每单位立体角所 产生的功率与实际目标散射体所产生的相同, 从而将雷 达截面积理解为一个等效的无耗各向均匀反射体的截 获面积(投影面积)。 因为实际目标的外形复杂, 它的后 向散射特性是各部分散射的矢量合成, 因而不同的照射 方向有不同的雷达截面积σ值。
5.2 最小可检测信号
p(r)r2exp2r22 r0
(5.2.9)
此处r表示检波器输出端噪声包络的振幅值。可以看出: 包络振幅的概率密度函数是瑞利分布的。设置门限电平UT, 噪声包络电压超过门限电平的概率就是虚警概率Pfa, 它可 以由下式求出:

雷达原理(第三版)__丁鹭飞第4章

雷达原理(第三版)__丁鹭飞第4章
A型显示器大多数采用静电偏转示波管。图4.9绘出了示波 管各极的信号波形及时间关系。 要使电子束从左到右均匀扫掠, 在一对X偏转板上应加入锯齿电压波。为了增大扫掠振幅及避 免扫掠过程中偏转板中心电位变化引起的散焦, 通常在X偏转板 上加入推挽式的锯齿波。回波信号加在一个Y偏转板上。由于 回波滞后主波时间tR与线性锯齿波电压振幅成正比, 所以, 显示 器上回波迟后主波的水平距离与目标的斜距成正比。
4.1.2
雷达对显示器的要求是由雷达的战术和技术参数决定的, 通常有以下几点:
1) 显示器的类型选择 显示器类型的选择主要根据显示器的 任务和显示的内容, 例如显示目标斜距采用A型、J型或A/R型; 显示距离和方位采用P型; 在指挥部和航空管制中心则选用情况 显示器和综合显示器。
2) 显示的坐标数量、种类和量程 这些参数主要根据雷达的 用途和战术指标来确定。
角 位 方
第 4 章 雷达终端显示器和录取设备
正北
图 4.2 平面显示器的图像
第 4 章 雷达终端显示器和录取设备
平面显示器既可以用极坐标显示距离和方位, 也可以用直角 坐标来显示距离和方位, 若为后者,则其画面如图4.4所示, 称为 B式显示器, 它以横坐标表示方位, 纵坐标表示距离。通常方位 角不是取整个360°, 而是取其中的某一段, 即雷达所监视的一 个较小的范围。如果距离也不取全程, 而是某一段, 这时的B式 就叫做微B显示器。在观察某一波门范围以内的情况时可以用 微B显。
第 4 章 雷达终端显示器和录取设备
X 扫描
刻度 辉亮 移动距标
回波
X扫 描
重复周期
工作 期 停止期
辉亮
匿 影
(a)
(b)
图 4.9 A (a) 示波管各极波形; (b)波形时间关系

雷达原理(第三版)--丁鹭飞第5章PPT课件

雷达原理(第三版)--丁鹭飞第5章PPT课件


P
P2
4
S1
4
据此, 又可定义雷达截面积σ为
4返回接收 入机 射每 功角 单 率内 位 密的 立 度回 体波功率
σ定义为, 在远场条件(平面波照射的条件)下, 目标处每单位入射 功率密度在接收机处每单位立体角内产生的反射功率乘以4π。
.
9
第 5 章 雷达作用距离
为了进一步了解σ的意义, 我们按照定义来考虑一个具有良好导 电性能的各向同性的球体截面积。 设目标处入射功率密度为S1, 球目标的几何投影面积为A1, 则目标所截获的功率为S1A1。 由于 该球是导电良好且各向同性的, 因而它将截获的功率S1A1全部均 匀地辐射到4π立体角内, 根据式(5.1.10),可定义
输出噪声功率通常是在接收机检波器之前测量。大多数接收机 中, 噪声带宽Bn由中放决定, 其数值与中频的3dB带宽相接近。 理想接收机的输入噪声功率Ni为
Ni kT0Bn
.
15
第 5 章 雷达作用距离
故噪声系数Fn亦可写成
Fn
(S/ N)i (S/ N)o
输入信噪比 输出端信噪比
(5.2.1)
将上式整理后得到输入信号功率Si的表示式为
Et Pt 0 Ptdt
代替脉冲功率Pt, 用检测因子Do= (S/N)o min替换雷达距离方程 (5.2.6)式时, 即可得到。
用检测因子Do表示的雷达方程为
R m a x (4)2 E k tG 0 tF A T n r D 0 C B L 1 /4 ( 4P )t3 k G t0 G F T r n D 0 2 C B L 1 /4(5.2.7)
S N omin=Do
匹配 接收机
检波器
检波后 积累
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电性能的各向同性的球体截面积。 设目标处入射功率密度为S1, 球目标的几何投影面积为A1, 则目标所截获的功率为S1A1。 由于 该球是导电良好且各向同性的, 因而它将截获的功率S1A1全部均 匀地辐射到4π立体角内, 根据式(5.1.10),可定义
S1 A1 /(4 ) i 4 A1 S1
雷达是通过目标的二次散射功率来发现目标的。 为了描述 目标的后向散射特性, 在雷达方程的推导过程中, 定义了“点” 目标的雷达截面积σ, 如式(5.1.2)所示,
P2=S1σ
P2为目标散射的总功率, S1为照射的功率密度。雷达截面积σ 又可写为
P2 S1
第 5 章 雷达作用距离
由于二次散射, 因而在雷达接收点处单位立体角内的散射功率PΔ
(5.1.11)
式(5.1.11)表明, 导电性能良好各向同性的球体, 它的截面积σi等
于该球体的几何投影面积。这就是说, 任何一个反射体的截面积 都可以想像成一个具有各向同性的等效球体的截面积。
第 5 章 雷达作用距离 等效的意思是指该球体在接收机方向每单位立体角所产生的功 率与实际目标散射体所产生的相同, 从而将雷达截面积理解为一
目标的回波信号本身也是起伏的,故接收机输出的是随机量。
雷达作用距离也不是一个确定值而是统计值 , 对于某雷达来讲 , 不能简单地说它的作用距离是多少, 通常只在概率意义上讲, 当 虚警概率 ( 例如 10-6) 和发现概率 ( 例如 90%) 给定时的作用距离是 多大。
第 5 章 雷达作用距离
5.1.2 目标的雷达截面积 (RCS)
第 5 章 雷达作用距离
P
R S1
图 5.1 目标的散射特性
第 5 章 雷达作用距离
5.2 最小可检测信号
5.2.1 最小可检测信噪比
(5.1.7)
第 5 章 雷达作用距离 或
Rmax
PtAr2 2 4 S i min
1 4
(5.1.8)
1 4
Rmax
Pt G 2 2 3 ( 4 ) S i min
(5.1.9)
式(5.1.8)、(5.1.9)是雷达距离方程的两种基本形式 , 它表明了作
(5.1.6)
单基地脉冲雷达通常收发共用天线, 即Gt=Gr=G, At=Ar, 将此
第 5 章 雷达作用距离
由式(5.1.4)~(5.1.6)可看出, 接收的回波功率Pr反比于目标与
雷达站间的距离R的四次方, 这是因为一次雷达中, 反射功率经 过往返双倍的距离路程, 能量衰减很大。接收到的功率Pr必须超 过最小可检测信号功率Si
用距离Rmax和雷达参数以及目标特性间的关系。
第 5 章 雷达作用距离 雷达方程虽然给出了作用距离和各参数间的定量关系, 但因
未考虑设备的实际损耗和环境因素, 而且方程中还有两个不可能
准确预定的量: 目标有效反射面积σ和最小可检测信号Si min, 因此 它常用来作为一个估算的公式, 考察雷达各参数对作用距离影响 的程度。 雷达总是在噪声和其它干扰背景下检测目标的, 再加上复杂
第 5 章 雷达作用距离
Pt Gt P2 S1 4R 2
(5.1.2)
又假设P2均匀地辐射, 则在接收天线处收到的回波功率密度为
P2 PtGt S2 2 4R (4R 2 )2
波功率为Pr, 而
(5.1.3)
如果雷达接收天线的有效接收面积为Ar, 则在雷达接收处接收回
Pt GtA Pr Ar S2 2 2 (4R )
min,
雷达才能可靠地发现目标, 当Pr正
好等于Si min时, 就可得到雷达检测该目标的最大作用距离Rmax。 因为超过这个距离, 接收的信号功率Pr进一步减小, 就不能可靠 地检测到该目标。它们的关系式可以表达为
PtAr2 PtG 22 Pr Si min 2 4 3 4 4 Rmax (4 ) Rmax

P2 P S1 4 4
据此, 又可定义雷达截面积σ为
返回接收机每单位立体 角内的回波功率 4 入射功率密度
σ定义为, 在远场条件(平面波照射的条件)下, 目标处每单位入射 功率密度在接收机处每单位立体角内产生的反射功率乘以4π。
第 5 章 雷达作用距离
为了进一步了解σ的意义, 我们按照定义来考虑一个具有良好导
(5.1.4)
第 5 章 雷达作用距离 由天线理论知道, 天线增益和有效面积之间有以下关系:
G
4A
2
式中λ为所用波长, 则接收回波功率可写成如下形式:
PtGtGr 2 Pr 3 4 (4 ) R
Pt At Ar Pr 42 R 4
关系式代入上二式即可得常用结果。
(5.1.5)
第 5 章 雷达作用距离
ቤተ መጻሕፍቲ ባይዱ
第 5 章 雷达作用距离
5.1 雷达方程
5.2 显小可检测信号 5.3 脉冲积累对检测性能的改善 5.4 目标截面积及其起伏特性 5.5 系统损耗
5.6 传播过程中各种因素的影响
5.7 雷达方程的几种形式
第 5 章 雷达作用距离
5.1 雷 达 方 程
5.1.1 基本雷达方程
设雷达发射功率为Pt, 雷达天线的增益为Gt, 则在自由空间
工作时, 距雷达天线R远的目标处的功率密度S1为
Pt Gt S1 4R 2
(5.1.1)
目标受到发射电磁波的照射, 因其散射特性而将产生散射回波。 散射功率的大小显然和目标所在点的发射功率密度 S1 以及目标 的特性有关。用目标的散射截面积σ(其量纲是面积)来表征其散 射特性。若假定目标可将接收到的功率无损耗地辐射出来, 则可 得到由目标散射的功率(二次辐射功率)为
个等效的无耗各向均匀反射体的截获面积 (投影面积)。 因为实
际目标的外形复杂, 它的后向散射特性是各部分散射的矢量合成, 因而不同的照射方向有不同的雷达截面积σ值。
除了后向散射特性外, 有时需要测量和计算目标在其它方向
的散射功率, 例如双基地雷达工作时的情况。可以按照同样的概 念和方法来定义目标的双基地雷达截面积 σb。对复杂目标来讲, σb不仅与发射时的照射方向有关, 而且还取决于接收时的散射方 向。
相关文档
最新文档